lemon/concepts/bpugraph.h
author kpeter
Mon, 18 Feb 2008 03:32:06 +0000
changeset 2575 e866e288cba6
parent 2485 88aa7870756a
permissions -rw-r--r--
Major improvements in NetworkSimplex.

Main changes:
- Use -potenital[] instead of potential[] to conform to the usual
terminology.
- Use function parameter instead of #define commands to select pivot rule.
- Use much faster implementation for the candidate list pivot rule.
It is about 5-20 times faster now.
- Add a new pivot rule called "Limited Search" that is a modified
version of "Block Search". It is about 25 percent faster on rather
sparse graphs.
- By default "Limited Search" is used for sparse graphs and
"Block Search" is used otherwise. This combined method is the most
efficient on every input class.
- Change the name of private members to start with "_".
- Change the name of function parameters not to start with "_".
- Remove unnecessary documentation for private members.
- Many doc improvements.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 /// \ingroup graph_concepts
    20 /// \file
    21 /// \brief The concept of Bipartite Undirected Graphs.
    22 
    23 #ifndef LEMON_CONCEPT_BPUGRAPH_H
    24 #define LEMON_CONCEPT_BPUGRAPH_H
    25 
    26 #include <lemon/concepts/graph_components.h>
    27 
    28 #include <lemon/concepts/graph.h>
    29 #include <lemon/concepts/ugraph.h>
    30 
    31 #include <lemon/bits/utility.h>
    32 
    33 namespace lemon {
    34   namespace concepts {
    35 
    36     /// \ingroup graph_concepts
    37     ///
    38     /// \brief Class describing the concept of Bipartite Undirected Graphs.
    39     ///
    40     /// This class describes the common interface of all 
    41     /// Undirected Bipartite Graphs.
    42     ///
    43     /// As all concept describing classes it provides only interface
    44     /// without any sensible implementation. So any algorithm for
    45     /// bipartite undirected graph should compile with this class, but it 
    46     /// will not run properly, of course.
    47     ///
    48     /// In LEMON bipartite undirected graphs also fulfill the concept of 
    49     /// the undirected graphs (\ref lemon::concepts::UGraph "UGraph Concept"). 
    50     ///
    51     /// You can assume that all undirected bipartite graph can be handled
    52     /// as an undirected graph and consequently as a static graph.
    53     ///
    54     /// The bipartite graph stores two types of nodes which are named
    55     /// ANode and BNode. The graph type contains two types ANode and
    56     /// BNode which are inherited from Node type. Moreover they have
    57     /// constructor which converts Node to either ANode or BNode when
    58     /// it is possible. Therefor everywhere the Node type can be used
    59     /// instead of ANode and BNode. So the usage of the ANode and
    60     /// BNode is not suggested.
    61     ///
    62     /// The iteration on the partition can be done with the ANodeIt and 
    63     /// BNodeIt classes. The node map can be used to map values to the nodes
    64     /// and similarly we can use to map values for just the ANodes and
    65     /// BNodes the ANodeMap and BNodeMap template classes.
    66 
    67     class BpUGraph {
    68     public:
    69       /// \brief The undirected graph should be tagged by the
    70       /// UndirectedTag.
    71       ///
    72       /// The undirected graph should be tagged by the UndirectedTag. This
    73       /// tag helps the enable_if technics to make compile time 
    74       /// specializations for undirected graphs.  
    75       typedef True UndirectedTag;
    76 
    77       /// \brief The base type of node iterators, 
    78       /// or in other words, the trivial node iterator.
    79       ///
    80       /// This is the base type of each node iterator,
    81       /// thus each kind of node iterator converts to this.
    82       /// More precisely each kind of node iterator should be inherited 
    83       /// from the trivial node iterator. The Node class represents
    84       /// both of two types of nodes. 
    85       class Node {
    86       public:
    87         /// Default constructor
    88 
    89         /// @warning The default constructor sets the iterator
    90         /// to an undefined value.
    91         Node() { }
    92         /// Copy constructor.
    93 
    94         /// Copy constructor.
    95         ///
    96         Node(const Node&) { }
    97 
    98         /// Invalid constructor \& conversion.
    99 
   100         /// This constructor initializes the iterator to be invalid.
   101         /// \sa Invalid for more details.
   102         Node(Invalid) { }
   103         /// Equality operator
   104 
   105         /// Two iterators are equal if and only if they point to the
   106         /// same object or both are invalid.
   107         bool operator==(Node) const { return true; }
   108 
   109         /// Inequality operator
   110         
   111         /// \sa operator==(Node n)
   112         ///
   113         bool operator!=(Node) const { return true; }
   114 
   115 	/// Artificial ordering operator.
   116 	
   117 	/// To allow the use of graph descriptors as key type in std::map or
   118 	/// similar associative container we require this.
   119 	///
   120 	/// \note This operator only have to define some strict ordering of
   121 	/// the items; this order has nothing to do with the iteration
   122 	/// ordering of the items.
   123 	bool operator<(Node) const { return false; }
   124 
   125       };
   126 
   127       /// \brief Helper class for ANodes.
   128       ///
   129       /// This class is just a helper class for ANodes, it is not
   130       /// suggested to use it directly. It can be converted easily to
   131       /// node and vice versa. The usage of this class is limited
   132       /// to use just as template parameters for special map types. 
   133       class ANode : public Node {
   134       public:
   135         /// Default constructor
   136 
   137         /// @warning The default constructor sets the iterator
   138         /// to an undefined value.
   139         ANode() : Node() { }
   140         /// Copy constructor.
   141 
   142         /// Copy constructor.
   143         ///
   144         ANode(const ANode&) : Node() { }
   145 
   146         /// Construct the same node as ANode.
   147 
   148         /// Construct the same node as ANode. It may throws assertion
   149         /// when the given node is from the BNode set.
   150         ANode(const Node&) : Node() { }
   151 
   152         /// Assign node to A-node.
   153 
   154         /// Besides the core graph item functionality each node should
   155         /// be convertible to the represented A-node if it is it possible. 
   156         ANode& operator=(const Node&) { return *this; }
   157 
   158         /// Invalid constructor \& conversion.
   159 
   160         /// This constructor initializes the iterator to be invalid.
   161         /// \sa Invalid for more details.
   162         ANode(Invalid) { }
   163         /// Equality operator
   164 
   165         /// Two iterators are equal if and only if they point to the
   166         /// same object or both are invalid.
   167         bool operator==(ANode) const { return true; }
   168 
   169         /// Inequality operator
   170         
   171         /// \sa operator==(ANode n)
   172         ///
   173         bool operator!=(ANode) const { return true; }
   174 
   175 	/// Artificial ordering operator.
   176 	
   177 	/// To allow the use of graph descriptors as key type in std::map or
   178 	/// similar associative container we require this.
   179 	///
   180 	/// \note This operator only have to define some strict ordering of
   181 	/// the items; this order has nothing to do with the iteration
   182 	/// ordering of the items.
   183 	bool operator<(ANode) const { return false; }
   184 
   185       };
   186 
   187       /// \brief Helper class for BNodes.
   188       ///
   189       /// This class is just a helper class for BNodes, it is not
   190       /// suggested to use it directly. It can be converted easily to
   191       /// node and vice versa. The usage of this class is limited
   192       /// to use just as template parameters for special map types. 
   193       class BNode : public Node {
   194       public:
   195         /// Default constructor
   196 
   197         /// @warning The default constructor sets the iterator
   198         /// to an undefined value.
   199         BNode() : Node() { }
   200         /// Copy constructor.
   201 
   202         /// Copy constructor.
   203         ///
   204         BNode(const BNode&) : Node() { }
   205 
   206         /// Construct the same node as BNode.
   207 
   208         /// Construct the same node as BNode. It may throws assertion
   209         /// when the given node is from the ANode set.
   210         BNode(const Node&) : Node() { }
   211 
   212         /// Assign node to B-node.
   213 
   214         /// Besides the core graph item functionality each node should
   215         /// be convertible to the represented B-node if it is it possible. 
   216         BNode& operator=(const Node&) { return *this; }
   217 
   218         /// Invalid constructor \& conversion.
   219 
   220         /// This constructor initializes the iterator to be invalid.
   221         /// \sa Invalid for more details.
   222         BNode(Invalid) { }
   223         /// Equality operator
   224 
   225         /// Two iterators are equal if and only if they point to the
   226         /// same object or both are invalid.
   227         bool operator==(BNode) const { return true; }
   228 
   229         /// Inequality operator
   230         
   231         /// \sa operator==(BNode n)
   232         ///
   233         bool operator!=(BNode) const { return true; }
   234 
   235 	/// Artificial ordering operator.
   236 	
   237 	/// To allow the use of graph descriptors as key type in std::map or
   238 	/// similar associative container we require this.
   239 	///
   240 	/// \note This operator only have to define some strict ordering of
   241 	/// the items; this order has nothing to do with the iteration
   242 	/// ordering of the items.
   243 	bool operator<(BNode) const { return false; }
   244 
   245       };
   246     
   247       /// This iterator goes through each node.
   248 
   249       /// This iterator goes through each node.
   250       /// Its usage is quite simple, for example you can count the number
   251       /// of nodes in graph \c g of type \c Graph like this:
   252       ///\code
   253       /// int count=0;
   254       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
   255       ///\endcode
   256       class NodeIt : public Node {
   257       public:
   258         /// Default constructor
   259 
   260         /// @warning The default constructor sets the iterator
   261         /// to an undefined value.
   262         NodeIt() { }
   263         /// Copy constructor.
   264         
   265         /// Copy constructor.
   266         ///
   267         NodeIt(const NodeIt& n) : Node(n) { }
   268         /// Invalid constructor \& conversion.
   269 
   270         /// Initialize the iterator to be invalid.
   271         /// \sa Invalid for more details.
   272         NodeIt(Invalid) { }
   273         /// Sets the iterator to the first node.
   274 
   275         /// Sets the iterator to the first node of \c g.
   276         ///
   277         NodeIt(const BpUGraph&) { }
   278         /// Node -> NodeIt conversion.
   279 
   280         /// Sets the iterator to the node of \c the graph pointed by 
   281 	/// the trivial iterator.
   282         /// This feature necessitates that each time we 
   283         /// iterate the edge-set, the iteration order is the same.
   284         NodeIt(const BpUGraph&, const Node&) { }
   285         /// Next node.
   286 
   287         /// Assign the iterator to the next node.
   288         ///
   289         NodeIt& operator++() { return *this; }
   290       };
   291 
   292       /// This iterator goes through each ANode.
   293 
   294       /// This iterator goes through each ANode.
   295       /// Its usage is quite simple, for example you can count the number
   296       /// of nodes in graph \c g of type \c Graph like this:
   297       ///\code
   298       /// int count=0;
   299       /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count;
   300       ///\endcode
   301       class ANodeIt : public Node {
   302       public:
   303         /// Default constructor
   304 
   305         /// @warning The default constructor sets the iterator
   306         /// to an undefined value.
   307         ANodeIt() { }
   308         /// Copy constructor.
   309         
   310         /// Copy constructor.
   311         ///
   312         ANodeIt(const ANodeIt& n) : Node(n) { }
   313         /// Invalid constructor \& conversion.
   314 
   315         /// Initialize the iterator to be invalid.
   316         /// \sa Invalid for more details.
   317         ANodeIt(Invalid) { }
   318         /// Sets the iterator to the first node.
   319 
   320         /// Sets the iterator to the first node of \c g.
   321         ///
   322         ANodeIt(const BpUGraph&) { }
   323         /// Node -> ANodeIt conversion.
   324 
   325         /// Sets the iterator to the node of \c the graph pointed by 
   326 	/// the trivial iterator.
   327         /// This feature necessitates that each time we 
   328         /// iterate the edge-set, the iteration order is the same.
   329         ANodeIt(const BpUGraph&, const Node&) { }
   330         /// Next node.
   331 
   332         /// Assign the iterator to the next node.
   333         ///
   334         ANodeIt& operator++() { return *this; }
   335       };
   336 
   337       /// This iterator goes through each BNode.
   338 
   339       /// This iterator goes through each BNode.
   340       /// Its usage is quite simple, for example you can count the number
   341       /// of nodes in graph \c g of type \c Graph like this:
   342       ///\code
   343       /// int count=0;
   344       /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count;
   345       ///\endcode
   346       class BNodeIt : public Node {
   347       public:
   348         /// Default constructor
   349 
   350         /// @warning The default constructor sets the iterator
   351         /// to an undefined value.
   352         BNodeIt() { }
   353         /// Copy constructor.
   354         
   355         /// Copy constructor.
   356         ///
   357         BNodeIt(const BNodeIt& n) : Node(n) { }
   358         /// Invalid constructor \& conversion.
   359 
   360         /// Initialize the iterator to be invalid.
   361         /// \sa Invalid for more details.
   362         BNodeIt(Invalid) { }
   363         /// Sets the iterator to the first node.
   364 
   365         /// Sets the iterator to the first node of \c g.
   366         ///
   367         BNodeIt(const BpUGraph&) { }
   368         /// Node -> BNodeIt conversion.
   369 
   370         /// Sets the iterator to the node of \c the graph pointed by 
   371 	/// the trivial iterator.
   372         /// This feature necessitates that each time we 
   373         /// iterate the edge-set, the iteration order is the same.
   374         BNodeIt(const BpUGraph&, const Node&) { }
   375         /// Next node.
   376 
   377         /// Assign the iterator to the next node.
   378         ///
   379         BNodeIt& operator++() { return *this; }
   380       };
   381     
   382     
   383       /// The base type of the undirected edge iterators.
   384 
   385       /// The base type of the undirected edge iterators.
   386       ///
   387       class UEdge {
   388       public:
   389         /// Default constructor
   390 
   391         /// @warning The default constructor sets the iterator
   392         /// to an undefined value.
   393         UEdge() { }
   394         /// Copy constructor.
   395 
   396         /// Copy constructor.
   397         ///
   398         UEdge(const UEdge&) { }
   399         /// Initialize the iterator to be invalid.
   400 
   401         /// Initialize the iterator to be invalid.
   402         ///
   403         UEdge(Invalid) { }
   404         /// Equality operator
   405 
   406         /// Two iterators are equal if and only if they point to the
   407         /// same object or both are invalid.
   408         bool operator==(UEdge) const { return true; }
   409         /// Inequality operator
   410 
   411         /// \sa operator==(UEdge n)
   412         ///
   413         bool operator!=(UEdge) const { return true; }
   414 
   415 	/// Artificial ordering operator.
   416 	
   417 	/// To allow the use of graph descriptors as key type in std::map or
   418 	/// similar associative container we require this.
   419 	///
   420 	/// \note This operator only have to define some strict ordering of
   421 	/// the items; this order has nothing to do with the iteration
   422 	/// ordering of the items.
   423 	bool operator<(UEdge) const { return false; }
   424       };
   425 
   426       /// This iterator goes through each undirected edge.
   427 
   428       /// This iterator goes through each undirected edge of a graph.
   429       /// Its usage is quite simple, for example you can count the number
   430       /// of undirected edges in a graph \c g of type \c Graph as follows:
   431       ///\code
   432       /// int count=0;
   433       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
   434       ///\endcode
   435       class UEdgeIt : public UEdge {
   436       public:
   437         /// Default constructor
   438 
   439         /// @warning The default constructor sets the iterator
   440         /// to an undefined value.
   441         UEdgeIt() { }
   442         /// Copy constructor.
   443 
   444         /// Copy constructor.
   445         ///
   446         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
   447         /// Initialize the iterator to be invalid.
   448 
   449         /// Initialize the iterator to be invalid.
   450         ///
   451         UEdgeIt(Invalid) { }
   452         /// This constructor sets the iterator to the first undirected edge.
   453     
   454         /// This constructor sets the iterator to the first undirected edge.
   455         UEdgeIt(const BpUGraph&) { }
   456         /// UEdge -> UEdgeIt conversion
   457 
   458         /// Sets the iterator to the value of the trivial iterator.
   459         /// This feature necessitates that each time we
   460         /// iterate the undirected edge-set, the iteration order is the 
   461 	/// same.
   462         UEdgeIt(const BpUGraph&, const UEdge&) { } 
   463         /// Next undirected edge
   464         
   465         /// Assign the iterator to the next undirected edge.
   466         UEdgeIt& operator++() { return *this; }
   467       };
   468 
   469       /// \brief This iterator goes trough the incident undirected 
   470       /// edges of a node.
   471       ///
   472       /// This iterator goes trough the incident undirected edges
   473       /// of a certain node
   474       /// of a graph.
   475       /// Its usage is quite simple, for example you can compute the
   476       /// degree (i.e. count the number
   477       /// of incident edges of a node \c n
   478       /// in graph \c g of type \c Graph as follows.
   479       ///\code
   480       /// int count=0;
   481       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   482       ///\endcode
   483       class IncEdgeIt : public UEdge {
   484       public:
   485         /// Default constructor
   486 
   487         /// @warning The default constructor sets the iterator
   488         /// to an undefined value.
   489         IncEdgeIt() { }
   490         /// Copy constructor.
   491 
   492         /// Copy constructor.
   493         ///
   494         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
   495         /// Initialize the iterator to be invalid.
   496 
   497         /// Initialize the iterator to be invalid.
   498         ///
   499         IncEdgeIt(Invalid) { }
   500         /// This constructor sets the iterator to first incident edge.
   501     
   502         /// This constructor set the iterator to the first incident edge of
   503         /// the node.
   504         IncEdgeIt(const BpUGraph&, const Node&) { }
   505         /// UEdge -> IncEdgeIt conversion
   506 
   507         /// Sets the iterator to the value of the trivial iterator \c e.
   508         /// This feature necessitates that each time we 
   509         /// iterate the edge-set, the iteration order is the same.
   510         IncEdgeIt(const BpUGraph&, const UEdge&) { }
   511         /// Next incident edge
   512 
   513         /// Assign the iterator to the next incident edge
   514 	/// of the corresponding node.
   515         IncEdgeIt& operator++() { return *this; }
   516       };
   517 
   518       /// The directed edge type.
   519 
   520       /// The directed edge type. It can be converted to the
   521       /// undirected edge.
   522       class Edge : public UEdge {
   523       public:
   524         /// Default constructor
   525 
   526         /// @warning The default constructor sets the iterator
   527         /// to an undefined value.
   528         Edge() { }
   529         /// Copy constructor.
   530 
   531         /// Copy constructor.
   532         ///
   533         Edge(const Edge& e) : UEdge(e) { }
   534         /// Initialize the iterator to be invalid.
   535 
   536         /// Initialize the iterator to be invalid.
   537         ///
   538         Edge(Invalid) { }
   539         /// Equality operator
   540 
   541         /// Two iterators are equal if and only if they point to the
   542         /// same object or both are invalid.
   543         bool operator==(Edge) const { return true; }
   544         /// Inequality operator
   545 
   546         /// \sa operator==(Edge n)
   547         ///
   548         bool operator!=(Edge) const { return true; }
   549 
   550 	/// Artificial ordering operator.
   551 	
   552 	/// To allow the use of graph descriptors as key type in std::map or
   553 	/// similar associative container we require this.
   554 	///
   555 	/// \note This operator only have to define some strict ordering of
   556 	/// the items; this order has nothing to do with the iteration
   557 	/// ordering of the items.
   558 	bool operator<(Edge) const { return false; }
   559 	
   560       }; 
   561       /// This iterator goes through each directed edge.
   562 
   563       /// This iterator goes through each edge of a graph.
   564       /// Its usage is quite simple, for example you can count the number
   565       /// of edges in a graph \c g of type \c Graph as follows:
   566       ///\code
   567       /// int count=0;
   568       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
   569       ///\endcode
   570       class EdgeIt : public Edge {
   571       public:
   572         /// Default constructor
   573 
   574         /// @warning The default constructor sets the iterator
   575         /// to an undefined value.
   576         EdgeIt() { }
   577         /// Copy constructor.
   578 
   579         /// Copy constructor.
   580         ///
   581         EdgeIt(const EdgeIt& e) : Edge(e) { }
   582         /// Initialize the iterator to be invalid.
   583 
   584         /// Initialize the iterator to be invalid.
   585         ///
   586         EdgeIt(Invalid) { }
   587         /// This constructor sets the iterator to the first edge.
   588     
   589         /// This constructor sets the iterator to the first edge of \c g.
   590         ///@param g the graph
   591         EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); }
   592         /// Edge -> EdgeIt conversion
   593 
   594         /// Sets the iterator to the value of the trivial iterator \c e.
   595         /// This feature necessitates that each time we 
   596         /// iterate the edge-set, the iteration order is the same.
   597         EdgeIt(const BpUGraph&, const Edge&) { } 
   598         ///Next edge
   599         
   600         /// Assign the iterator to the next edge.
   601         EdgeIt& operator++() { return *this; }
   602       };
   603    
   604       /// This iterator goes trough the outgoing directed edges of a node.
   605 
   606       /// This iterator goes trough the \e outgoing edges of a certain node
   607       /// of a graph.
   608       /// Its usage is quite simple, for example you can count the number
   609       /// of outgoing edges of a node \c n
   610       /// in graph \c g of type \c Graph as follows.
   611       ///\code
   612       /// int count=0;
   613       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   614       ///\endcode
   615     
   616       class OutEdgeIt : public Edge {
   617       public:
   618         /// Default constructor
   619 
   620         /// @warning The default constructor sets the iterator
   621         /// to an undefined value.
   622         OutEdgeIt() { }
   623         /// Copy constructor.
   624 
   625         /// Copy constructor.
   626         ///
   627         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
   628         /// Initialize the iterator to be invalid.
   629 
   630         /// Initialize the iterator to be invalid.
   631         ///
   632         OutEdgeIt(Invalid) { }
   633         /// This constructor sets the iterator to the first outgoing edge.
   634     
   635         /// This constructor sets the iterator to the first outgoing edge of
   636         /// the node.
   637         ///@param n the node
   638         ///@param g the graph
   639         OutEdgeIt(const BpUGraph& n, const Node& g) {
   640 	  ignore_unused_variable_warning(n);
   641 	  ignore_unused_variable_warning(g);
   642 	}
   643         /// Edge -> OutEdgeIt conversion
   644 
   645         /// Sets the iterator to the value of the trivial iterator.
   646 	/// This feature necessitates that each time we 
   647         /// iterate the edge-set, the iteration order is the same.
   648         OutEdgeIt(const BpUGraph&, const Edge&) { }
   649         ///Next outgoing edge
   650         
   651         /// Assign the iterator to the next 
   652         /// outgoing edge of the corresponding node.
   653         OutEdgeIt& operator++() { return *this; }
   654       };
   655 
   656       /// This iterator goes trough the incoming directed edges of a node.
   657 
   658       /// This iterator goes trough the \e incoming edges of a certain node
   659       /// of a graph.
   660       /// Its usage is quite simple, for example you can count the number
   661       /// of outgoing edges of a node \c n
   662       /// in graph \c g of type \c Graph as follows.
   663       ///\code
   664       /// int count=0;
   665       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
   666       ///\endcode
   667 
   668       class InEdgeIt : public Edge {
   669       public:
   670         /// Default constructor
   671 
   672         /// @warning The default constructor sets the iterator
   673         /// to an undefined value.
   674         InEdgeIt() { }
   675         /// Copy constructor.
   676 
   677         /// Copy constructor.
   678         ///
   679         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
   680         /// Initialize the iterator to be invalid.
   681 
   682         /// Initialize the iterator to be invalid.
   683         ///
   684         InEdgeIt(Invalid) { }
   685         /// This constructor sets the iterator to first incoming edge.
   686     
   687         /// This constructor set the iterator to the first incoming edge of
   688         /// the node.
   689         ///@param n the node
   690         ///@param g the graph
   691         InEdgeIt(const BpUGraph& g, const Node& n) { 
   692 	  ignore_unused_variable_warning(n);
   693 	  ignore_unused_variable_warning(g);
   694 	}
   695         /// Edge -> InEdgeIt conversion
   696 
   697         /// Sets the iterator to the value of the trivial iterator \c e.
   698         /// This feature necessitates that each time we 
   699         /// iterate the edge-set, the iteration order is the same.
   700         InEdgeIt(const BpUGraph&, const Edge&) { }
   701         /// Next incoming edge
   702 
   703         /// Assign the iterator to the next inedge of the corresponding node.
   704         ///
   705         InEdgeIt& operator++() { return *this; }
   706       };
   707 
   708       /// \brief Read write map of the nodes to type \c T.
   709       /// 
   710       /// ReadWrite map of the nodes to type \c T.
   711       /// \sa Reference
   712       /// \todo Wrong documentation
   713       template<class T> 
   714       class NodeMap : public ReadWriteMap< Node, T >
   715       {
   716       public:
   717 
   718         ///\e
   719         NodeMap(const BpUGraph&) { }
   720         ///\e
   721         NodeMap(const BpUGraph&, T) { }
   722 
   723         ///Copy constructor
   724         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   725         ///Assignment operator
   726         NodeMap& operator=(const NodeMap&) { return *this; }
   727         ///Assignment operator
   728         template <typename CMap>
   729         NodeMap& operator=(const CMap&) { 
   730           checkConcept<ReadMap<Node, T>, CMap>();
   731           return *this; 
   732         }
   733       };
   734 
   735       /// \brief Read write map of the ANodes to type \c T.
   736       /// 
   737       /// ReadWrite map of the ANodes to type \c T.
   738       /// \sa Reference
   739       /// \todo Wrong documentation
   740       template<class T> 
   741       class ANodeMap : public ReadWriteMap< Node, T >
   742       {
   743       public:
   744 
   745         ///\e
   746         ANodeMap(const BpUGraph&) { }
   747         ///\e
   748         ANodeMap(const BpUGraph&, T) { }
   749 
   750         ///Copy constructor
   751         ANodeMap(const ANodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   752         ///Assignment operator
   753         ANodeMap& operator=(const ANodeMap&) { return *this; }
   754         ///Assignment operator
   755         template <typename CMap>
   756         ANodeMap& operator=(const CMap&) { 
   757           checkConcept<ReadMap<Node, T>, CMap>();
   758           return *this; 
   759         }
   760       };
   761 
   762       /// \brief Read write map of the BNodes to type \c T.
   763       /// 
   764       /// ReadWrite map of the BNodes to type \c T.
   765       /// \sa Reference
   766       /// \todo Wrong documentation
   767       template<class T> 
   768       class BNodeMap : public ReadWriteMap< Node, T >
   769       {
   770       public:
   771 
   772         ///\e
   773         BNodeMap(const BpUGraph&) { }
   774         ///\e
   775         BNodeMap(const BpUGraph&, T) { }
   776 
   777         ///Copy constructor
   778         BNodeMap(const BNodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
   779         ///Assignment operator
   780         BNodeMap& operator=(const BNodeMap&) { return *this; }
   781         ///Assignment operator
   782         template <typename CMap>
   783         BNodeMap& operator=(const CMap&) { 
   784           checkConcept<ReadMap<Node, T>, CMap>();
   785           return *this; 
   786         }
   787       };
   788 
   789       /// \brief Read write map of the directed edges to type \c T.
   790       ///
   791       /// Reference map of the directed edges to type \c T.
   792       /// \sa Reference
   793       /// \todo Wrong documentation
   794       template<class T> 
   795       class EdgeMap : public ReadWriteMap<Edge,T>
   796       {
   797       public:
   798 
   799         ///\e
   800         EdgeMap(const BpUGraph&) { }
   801         ///\e
   802         EdgeMap(const BpUGraph&, T) { }
   803         ///Copy constructor
   804         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
   805         ///Assignment operator
   806         EdgeMap& operator=(const EdgeMap&) { return *this; }
   807         ///Assignment operator
   808         template <typename CMap>
   809         EdgeMap& operator=(const CMap&) { 
   810           checkConcept<ReadMap<Edge, T>, CMap>();
   811           return *this; 
   812         }
   813       };
   814 
   815       /// Read write map of the undirected edges to type \c T.
   816 
   817       /// Reference map of the edges to type \c T.
   818       /// \sa Reference
   819       /// \todo Wrong documentation
   820       template<class T> 
   821       class UEdgeMap : public ReadWriteMap<UEdge,T>
   822       {
   823       public:
   824 
   825         ///\e
   826         UEdgeMap(const BpUGraph&) { }
   827         ///\e
   828         UEdgeMap(const BpUGraph&, T) { }
   829         ///Copy constructor
   830         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
   831         ///Assignment operator
   832         UEdgeMap &operator=(const UEdgeMap&) { return *this; }
   833         ///Assignment operator
   834         template <typename CMap>
   835         UEdgeMap& operator=(const CMap&) { 
   836           checkConcept<ReadMap<UEdge, T>, CMap>();
   837           return *this; 
   838         }
   839       };
   840 
   841       /// \brief Direct the given undirected edge.
   842       ///
   843       /// Direct the given undirected edge. The returned edge source
   844       /// will be the given node.
   845       Edge direct(const UEdge&, const Node&) const {
   846 	return INVALID;
   847       }
   848 
   849       /// \brief Direct the given undirected edge.
   850       ///
   851       /// Direct the given undirected edge. The returned edge
   852       /// represents the given undirected edge and the direction comes
   853       /// from the given bool.  The source of the undirected edge and
   854       /// the directed edge is the same when the given bool is true.
   855       Edge direct(const UEdge&, bool) const {
   856 	return INVALID;
   857       }
   858 
   859       /// \brief Returns true when the given node is an ANode.
   860       ///
   861       /// Returns true when the given node is an ANode.
   862       bool aNode(Node) const { return true;}
   863 
   864       /// \brief Returns true when the given node is an BNode.
   865       ///
   866       /// Returns true when the given node is an BNode.
   867       bool bNode(Node) const { return true;}
   868 
   869       /// \brief Returns the edge's end node which is in the ANode set.
   870       ///
   871       /// Returns the edge's end node which is in the ANode set.
   872       Node aNode(UEdge) const { return INVALID;}
   873 
   874       /// \brief Returns the edge's end node which is in the BNode set.
   875       ///
   876       /// Returns the edge's end node which is in the BNode set.
   877       Node bNode(UEdge) const { return INVALID;}
   878 
   879       /// \brief Returns true if the edge has default orientation.
   880       ///
   881       /// Returns whether the given directed edge is same orientation as
   882       /// the corresponding undirected edge's default orientation.
   883       bool direction(Edge) const { return true; }
   884 
   885       /// \brief Returns the opposite directed edge.
   886       ///
   887       /// Returns the opposite directed edge.
   888       Edge oppositeEdge(Edge) const { return INVALID; }
   889 
   890       /// \brief Opposite node on an edge
   891       ///
   892       /// \return the opposite of the given Node on the given UEdge
   893       Node oppositeNode(Node, UEdge) const { return INVALID; }
   894 
   895       /// \brief First node of the undirected edge.
   896       ///
   897       /// \return the first node of the given UEdge.
   898       ///
   899       /// Naturally undirected edges don't have direction and thus
   900       /// don't have source and target node. But we use these two methods
   901       /// to query the two endnodes of the edge. The direction of the edge
   902       /// which arises this way is called the inherent direction of the
   903       /// undirected edge, and is used to define the "default" direction
   904       /// of the directed versions of the edges.
   905       /// \sa direction
   906       Node source(UEdge) const { return INVALID; }
   907 
   908       /// \brief Second node of the undirected edge.
   909       Node target(UEdge) const { return INVALID; }
   910 
   911       /// \brief Source node of the directed edge.
   912       Node source(Edge) const { return INVALID; }
   913 
   914       /// \brief Target node of the directed edge.
   915       Node target(Edge) const { return INVALID; }
   916 
   917       /// \brief Base node of the iterator
   918       ///
   919       /// Returns the base node (the source in this case) of the iterator
   920       Node baseNode(OutEdgeIt e) const {
   921 	return source(e);
   922       }
   923 
   924       /// \brief Running node of the iterator
   925       ///
   926       /// Returns the running node (the target in this case) of the
   927       /// iterator
   928       Node runningNode(OutEdgeIt e) const {
   929 	return target(e);
   930       }
   931 
   932       /// \brief Base node of the iterator
   933       ///
   934       /// Returns the base node (the target in this case) of the iterator
   935       Node baseNode(InEdgeIt e) const {
   936 	return target(e);
   937       }
   938       /// \brief Running node of the iterator
   939       ///
   940       /// Returns the running node (the source in this case) of the
   941       /// iterator
   942       Node runningNode(InEdgeIt e) const {
   943 	return source(e);
   944       }
   945 
   946       /// \brief Base node of the iterator
   947       ///
   948       /// Returns the base node of the iterator
   949       Node baseNode(IncEdgeIt) const {
   950 	return INVALID;
   951       }
   952       
   953       /// \brief Running node of the iterator
   954       ///
   955       /// Returns the running node of the iterator
   956       Node runningNode(IncEdgeIt) const {
   957 	return INVALID;
   958       }
   959 
   960       void first(Node&) const {}
   961       void next(Node&) const {}
   962 
   963       void first(Edge&) const {}
   964       void next(Edge&) const {}
   965 
   966       void first(UEdge&) const {}
   967       void next(UEdge&) const {}
   968 
   969       void firstANode(Node&) const {}
   970       void nextANode(Node&) const {}
   971 
   972       void firstBNode(Node&) const {}
   973       void nextBNode(Node&) const {}
   974 
   975       void firstIn(Edge&, const Node&) const {}
   976       void nextIn(Edge&) const {}
   977 
   978       void firstOut(Edge&, const Node&) const {}
   979       void nextOut(Edge&) const {}
   980 
   981       void firstInc(UEdge &, bool &, const Node &) const {}
   982       void nextInc(UEdge &, bool &) const {}
   983 
   984       void firstFromANode(UEdge&, const Node&) const {}
   985       void nextFromANode(UEdge&) const {}
   986 
   987       void firstFromBNode(UEdge&, const Node&) const {}
   988       void nextFromBNode(UEdge&) const {}
   989 
   990       template <typename Graph>
   991       struct Constraints {
   992 	void constraints() {
   993 	  checkConcept<IterableBpUGraphComponent<>, Graph>();
   994 	  checkConcept<MappableBpUGraphComponent<>, Graph>();
   995 	}
   996       };
   997 
   998     };
   999 
  1000   }
  1001 
  1002 }
  1003 
  1004 #endif