lemon/johnson.h
author kpeter
Mon, 18 Feb 2008 03:32:06 +0000
changeset 2575 e866e288cba6
parent 2391 14a343be7a5a
permissions -rw-r--r--
Major improvements in NetworkSimplex.

Main changes:
- Use -potenital[] instead of potential[] to conform to the usual
terminology.
- Use function parameter instead of #define commands to select pivot rule.
- Use much faster implementation for the candidate list pivot rule.
It is about 5-20 times faster now.
- Add a new pivot rule called "Limited Search" that is a modified
version of "Block Search". It is about 25 percent faster on rather
sparse graphs.
- By default "Limited Search" is used for sparse graphs and
"Block Search" is used otherwise. This combined method is the most
efficient on every input class.
- Change the name of private members to start with "_".
- Change the name of function parameters not to start with "_".
- Remove unnecessary documentation for private members.
- Many doc improvements.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_JOHNSON_H
    20 #define LEMON_JOHNSON_H
    21 
    22 ///\ingroup shortest_path
    23 /// \file
    24 /// \brief Johnson algorithm.
    25 ///
    26 
    27 #include <lemon/list_graph.h>
    28 #include <lemon/graph_utils.h>
    29 #include <lemon/dijkstra.h>
    30 #include <lemon/bellman_ford.h>
    31 #include <lemon/bits/path_dump.h>
    32 #include <lemon/bits/invalid.h>
    33 #include <lemon/error.h>
    34 #include <lemon/maps.h>
    35 #include <lemon/matrix_maps.h>
    36 
    37 #include <limits>
    38 
    39 namespace lemon {
    40 
    41   /// \brief Default OperationTraits for the Johnson algorithm class.
    42   ///  
    43   /// It defines all computational operations and constants which are
    44   /// used in the Floyd-Warshall algorithm. The default implementation
    45   /// is based on the numeric_limits class. If the numeric type does not
    46   /// have infinity value then the maximum value is used as extremal
    47   /// infinity value.
    48   template <
    49     typename Value, 
    50     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    51   struct JohnsonDefaultOperationTraits {
    52     /// \brief Gives back the zero value of the type.
    53     static Value zero() {
    54       return static_cast<Value>(0);
    55     }
    56     /// \brief Gives back the positive infinity value of the type.
    57     static Value infinity() {
    58       return std::numeric_limits<Value>::infinity();
    59     }
    60     /// \brief Gives back the sum of the given two elements.
    61     static Value plus(const Value& left, const Value& right) {
    62       return left + right;
    63     }
    64     /// \brief Gives back true only if the first value less than the second.
    65     static bool less(const Value& left, const Value& right) {
    66       return left < right;
    67     }
    68   };
    69 
    70   template <typename Value>
    71   struct JohnsonDefaultOperationTraits<Value, false> {
    72     static Value zero() {
    73       return static_cast<Value>(0);
    74     }
    75     static Value infinity() {
    76       return std::numeric_limits<Value>::max();
    77     }
    78     static Value plus(const Value& left, const Value& right) {
    79       if (left == infinity() || right == infinity()) return infinity();
    80       return left + right;
    81     }
    82     static bool less(const Value& left, const Value& right) {
    83       return left < right;
    84     }
    85   };
    86   
    87   /// \brief Default traits class of Johnson class.
    88   ///
    89   /// Default traits class of Johnson class.
    90   /// \param _Graph Graph type.
    91   /// \param _LegthMap Type of length map.
    92   template<class _Graph, class _LengthMap>
    93   struct JohnsonDefaultTraits {
    94     /// The graph type the algorithm runs on. 
    95     typedef _Graph Graph;
    96 
    97     /// \brief The type of the map that stores the edge lengths.
    98     ///
    99     /// The type of the map that stores the edge lengths.
   100     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
   101     typedef _LengthMap LengthMap;
   102 
   103     // The type of the length of the edges.
   104     typedef typename _LengthMap::Value Value;
   105 
   106     /// \brief Operation traits for bellman-ford algorithm.
   107     ///
   108     /// It defines the infinity type on the given Value type
   109     /// and the used operation.
   110     /// \see JohnsonDefaultOperationTraits
   111     typedef JohnsonDefaultOperationTraits<Value> OperationTraits;
   112 
   113     /// The cross reference type used by heap.
   114 
   115     /// The cross reference type used by heap.
   116     /// Usually it is \c Graph::NodeMap<int>.
   117     typedef typename Graph::template NodeMap<int> HeapCrossRef;
   118 
   119     ///Instantiates a HeapCrossRef.
   120 
   121     ///This function instantiates a \ref HeapCrossRef. 
   122     /// \param graph is the graph, to which we would like to define the 
   123     /// HeapCrossRef.
   124     static HeapCrossRef *createHeapCrossRef(const Graph& graph) {
   125       return new HeapCrossRef(graph);
   126     }
   127     
   128     ///The heap type used by Dijkstra algorithm.
   129 
   130     ///The heap type used by Dijkstra algorithm.
   131     ///
   132     ///\sa BinHeap
   133     ///\sa Dijkstra
   134     typedef BinHeap<typename LengthMap::Value,
   135 		    HeapCrossRef, std::less<Value> > Heap;
   136 
   137     ///Instantiates a Heap.
   138 
   139     ///This function instantiates a \ref Heap. 
   140     /// \param crossRef The cross reference for the heap.
   141     static Heap *createHeap(HeapCrossRef& crossRef) {
   142       return new Heap(crossRef);
   143     }
   144  
   145     /// \brief The type of the matrix map that stores the last edges of the 
   146     /// shortest paths.
   147     /// 
   148     /// The type of the map that stores the last edges of the shortest paths.
   149     /// It must be a matrix map with \c Graph::Edge value type.
   150     ///
   151     typedef DynamicMatrixMap<Graph, typename Graph::Node, 
   152 			     typename Graph::Edge> PredMap;
   153 
   154     /// \brief Instantiates a PredMap.
   155     /// 
   156     /// This function instantiates a \ref PredMap. 
   157     /// \param graph is the graph, to which we would like to define the PredMap.
   158     /// \todo The graph alone may be insufficient for the initialization
   159     static PredMap *createPredMap(const Graph& graph) {
   160       return new PredMap(graph);
   161     }
   162 
   163     /// \brief The type of the matrix map that stores the dists of the nodes.
   164     ///
   165     /// The type of the matrix map that stores the dists of the nodes.
   166     /// It must meet the \ref concepts::WriteMatrixMap "WriteMatrixMap" concept.
   167     ///
   168     typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
   169     
   170     /// \brief Instantiates a DistMap.
   171     ///
   172     /// This function instantiates a \ref DistMap. 
   173     /// \param graph is the graph, to which we would like to define the 
   174     /// \ref DistMap
   175     static DistMap *createDistMap(const _Graph& graph) {
   176       return new DistMap(graph);
   177     }
   178 
   179   };
   180 
   181   /// \brief %Johnson algorithm class.
   182   ///
   183   /// \ingroup shortest_path
   184   /// This class provides an efficient implementation of \c %Johnson 
   185   /// algorithm. The edge lengths are passed to the algorithm using a
   186   /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
   187   /// kind of length.
   188   ///
   189   /// The algorithm solves the shortest path problem for each pair
   190   /// of node when the edges can have negative length but the graph should
   191   /// not contain cycles with negative sum of length. If we can assume
   192   /// that all edge is non-negative in the graph then the dijkstra algorithm
   193   /// should be used from each node.
   194   ///
   195   /// The complexity of this algorithm is \f$ O(n^2\log(n)+n\log(n)e) \f$ or
   196   /// with fibonacci heap \f$ O(n^2\log(n)+ne) \f$. Usually the fibonacci heap
   197   /// implementation is slower than either binary heap implementation or the 
   198   /// Floyd-Warshall algorithm. 
   199   ///
   200   /// The type of the length is determined by the
   201   /// \ref concepts::ReadMap::Value "Value" of the length map.
   202   ///
   203   /// \param _Graph The graph type the algorithm runs on. The default value
   204   /// is \ref ListGraph. The value of _Graph is not used directly by
   205   /// Johnson, it is only passed to \ref JohnsonDefaultTraits.
   206   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   207   /// edges. It is read once for each edge, so the map may involve in
   208   /// relatively time consuming process to compute the edge length if
   209   /// it is necessary. The default map type is \ref
   210   /// concepts::Graph::EdgeMap "Graph::EdgeMap<int>".  The value
   211   /// of _LengthMap is not used directly by Johnson, it is only passed 
   212   /// to \ref JohnsonDefaultTraits.  \param _Traits Traits class to set
   213   /// various data types used by the algorithm.  The default traits
   214   /// class is \ref JohnsonDefaultTraits
   215   /// "JohnsonDefaultTraits<_Graph,_LengthMap>".  See \ref
   216   /// JohnsonDefaultTraits for the documentation of a Johnson traits
   217   /// class.
   218   ///
   219   /// \author Balazs Dezso
   220 
   221 #ifdef DOXYGEN
   222   template <typename _Graph, typename _LengthMap, typename _Traits>
   223 #else
   224   template <typename _Graph=ListGraph,
   225 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   226 	    typename _Traits=JohnsonDefaultTraits<_Graph,_LengthMap> >
   227 #endif
   228   class Johnson {
   229   public:
   230     
   231     /// \brief \ref Exception for uninitialized parameters.
   232     ///
   233     /// This error represents problems in the initialization
   234     /// of the parameters of the algorithms.
   235 
   236     class UninitializedParameter : public lemon::UninitializedParameter {
   237     public:
   238       virtual const char* what() const throw() {
   239 	return "lemon::Johnson::UninitializedParameter";
   240       }
   241     };
   242 
   243     typedef _Traits Traits;
   244     ///The type of the underlying graph.
   245     typedef typename _Traits::Graph Graph;
   246 
   247     typedef typename Graph::Node Node;
   248     typedef typename Graph::NodeIt NodeIt;
   249     typedef typename Graph::Edge Edge;
   250     typedef typename Graph::EdgeIt EdgeIt;
   251     
   252     /// \brief The type of the length of the edges.
   253     typedef typename _Traits::LengthMap::Value Value;
   254     /// \brief The type of the map that stores the edge lengths.
   255     typedef typename _Traits::LengthMap LengthMap;
   256     /// \brief The type of the map that stores the last
   257     /// edges of the shortest paths. The type of the PredMap
   258     /// is a matrix map for Edges
   259     typedef typename _Traits::PredMap PredMap;
   260     /// \brief The type of the map that stores the dists of the nodes.
   261     /// The type of the DistMap is a matrix map for Values
   262     typedef typename _Traits::DistMap DistMap;
   263     /// \brief The operation traits.
   264     typedef typename _Traits::OperationTraits OperationTraits;
   265     ///The cross reference type used for the current heap.
   266     typedef typename _Traits::HeapCrossRef HeapCrossRef;
   267     ///The heap type used by the dijkstra algorithm.
   268     typedef typename _Traits::Heap Heap;
   269   private:
   270     /// Pointer to the underlying graph.
   271     const Graph *graph;
   272     /// Pointer to the length map
   273     const LengthMap *length;
   274     ///Pointer to the map of predecessors edges.
   275     PredMap *_pred;
   276     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   277     bool local_pred;
   278     ///Pointer to the map of distances.
   279     DistMap *_dist;
   280     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   281     bool local_dist;
   282     ///Pointer to the heap cross references.
   283     HeapCrossRef *_heap_cross_ref;
   284     ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
   285     bool local_heap_cross_ref;
   286     ///Pointer to the heap.
   287     Heap *_heap;
   288     ///Indicates if \ref _heap is locally allocated (\c true) or not.
   289     bool local_heap;
   290 
   291     /// Creates the maps if necessary.
   292     void create_maps() {
   293       if(!_pred) {
   294 	local_pred = true;
   295 	_pred = Traits::createPredMap(*graph);
   296       }
   297       if(!_dist) {
   298 	local_dist = true;
   299 	_dist = Traits::createDistMap(*graph);
   300       }
   301       if (!_heap_cross_ref) {
   302 	local_heap_cross_ref = true;
   303 	_heap_cross_ref = Traits::createHeapCrossRef(*graph);
   304       }
   305       if (!_heap) {
   306 	local_heap = true;
   307 	_heap = Traits::createHeap(*_heap_cross_ref);
   308       }
   309     }
   310 
   311   public :
   312 
   313     /// \name Named template parameters
   314 
   315     ///@{
   316 
   317     template <class T>
   318     struct DefPredMapTraits : public Traits {
   319       typedef T PredMap;
   320       static PredMap *createPredMap(const Graph& graph) {
   321 	throw UninitializedParameter();
   322       }
   323     };
   324 
   325     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   326     /// type
   327     /// \ref named-templ-param "Named parameter" for setting PredMap type
   328     ///
   329     template <class T>
   330     struct DefPredMap 
   331       : public Johnson< Graph, LengthMap, DefPredMapTraits<T> > {
   332       typedef Johnson< Graph, LengthMap, DefPredMapTraits<T> > Create;
   333     };
   334     
   335     template <class T>
   336     struct DefDistMapTraits : public Traits {
   337       typedef T DistMap;
   338       static DistMap *createDistMap(const Graph& graph) {
   339 	throw UninitializedParameter();
   340       }
   341     };
   342     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   343     /// type
   344     ///
   345     /// \ref named-templ-param "Named parameter" for setting DistMap type
   346     ///
   347     template <class T>
   348     struct DefDistMap 
   349       : public Johnson< Graph, LengthMap, DefDistMapTraits<T> > {
   350       typedef Johnson< Graph, LengthMap, DefDistMapTraits<T> > Create;
   351     };
   352     
   353     template <class T>
   354     struct DefOperationTraitsTraits : public Traits {
   355       typedef T OperationTraits;
   356     };
   357     
   358     /// \brief \ref named-templ-param "Named parameter" for setting 
   359     /// OperationTraits type
   360     ///
   361     /// \ref named-templ-param "Named parameter" for setting 
   362     /// OperationTraits type
   363     template <class T>
   364     struct DefOperationTraits
   365       : public Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   366       typedef Johnson< Graph, LengthMap, DefOperationTraitsTraits<T> > Create;
   367     };
   368 
   369     template <class H, class CR>
   370     struct DefHeapTraits : public Traits {
   371       typedef CR HeapCrossRef;
   372       typedef H Heap;
   373       static HeapCrossRef *createHeapCrossRef(const Graph &) {
   374 	throw UninitializedParameter();
   375       }
   376       static Heap *createHeap(HeapCrossRef &) 
   377       {
   378 	throw UninitializedParameter();
   379       }
   380     };
   381     ///\brief \ref named-templ-param "Named parameter" for setting heap and 
   382     ///cross reference type
   383     ///
   384     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   385     ///reference type
   386     ///
   387     template <class H, class CR = typename Graph::template NodeMap<int> >
   388     struct DefHeap
   389       : public Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > { 
   390       typedef Johnson< Graph, LengthMap, DefHeapTraits<H, CR> > Create;
   391     };
   392 
   393     template <class H, class CR>
   394     struct DefStandardHeapTraits : public Traits {
   395       typedef CR HeapCrossRef;
   396       typedef H Heap;
   397       static HeapCrossRef *createHeapCrossRef(const Graph &G) {
   398 	return new HeapCrossRef(G);
   399       }
   400       static Heap *createHeap(HeapCrossRef &R) 
   401       {
   402 	return new Heap(R);
   403       }
   404     };
   405     ///\brief \ref named-templ-param "Named parameter" for setting
   406     ///heap and cross reference type with automatic allocation
   407     ///
   408     ///\ref named-templ-param "Named parameter" for setting heap and cross 
   409     ///reference type. It can allocate the heap and the cross reference 
   410     ///object if the cross reference's constructor waits for the graph as 
   411     ///parameter and the heap's constructor waits for the cross reference.
   412     template <class H, class CR = typename Graph::template NodeMap<int> >
   413     struct DefStandardHeap
   414       : public Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > { 
   415       typedef Johnson< Graph, LengthMap, DefStandardHeapTraits<H, CR> > 
   416       Create;
   417     };
   418     
   419     ///@}
   420 
   421   protected:
   422 
   423     Johnson() {}
   424 
   425   public:      
   426 
   427     typedef Johnson Create;
   428     
   429     /// \brief Constructor.
   430     ///
   431     /// \param _graph the graph the algorithm will run on.
   432     /// \param _length the length map used by the algorithm.
   433     Johnson(const Graph& _graph, const LengthMap& _length) :
   434       graph(&_graph), length(&_length),
   435       _pred(0), local_pred(false),
   436       _dist(0), local_dist(false),
   437       _heap_cross_ref(0), local_heap_cross_ref(false),
   438       _heap(0), local_heap(false) {}
   439     
   440     ///Destructor.
   441     ~Johnson() {
   442       if (local_pred) delete _pred;
   443       if (local_dist) delete _dist;
   444       if (local_heap_cross_ref) delete _heap_cross_ref;
   445       if (local_heap) delete _heap;
   446     }
   447 
   448     /// \brief Sets the length map.
   449     ///
   450     /// Sets the length map.
   451     /// \return \c (*this)
   452     Johnson &lengthMap(const LengthMap &m) {
   453       length = &m;
   454       return *this;
   455     }
   456 
   457     /// \brief Sets the map storing the predecessor edges.
   458     ///
   459     /// Sets the map storing the predecessor edges.
   460     /// If you don't use this function before calling \ref run(),
   461     /// it will allocate one. The destuctor deallocates this
   462     /// automatically allocated map, of course.
   463     /// \return \c (*this)
   464     Johnson &predMap(PredMap &m) {
   465       if(local_pred) {
   466 	delete _pred;
   467 	local_pred=false;
   468       }
   469       _pred = &m;
   470       return *this;
   471     }
   472 
   473     /// \brief Sets the map storing the distances calculated by the algorithm.
   474     ///
   475     /// Sets the map storing the distances calculated by the algorithm.
   476     /// If you don't use this function before calling \ref run(),
   477     /// it will allocate one. The destuctor deallocates this
   478     /// automatically allocated map, of course.
   479     /// \return \c (*this)
   480     Johnson &distMap(DistMap &m) {
   481       if(local_dist) {
   482 	delete _dist;
   483 	local_dist=false;
   484       }
   485       _dist = &m;
   486       return *this;
   487     }
   488 
   489   public:    
   490 
   491     ///\name Execution control
   492     /// The simplest way to execute the algorithm is to use
   493     /// one of the member functions called \c run(...).
   494     /// \n
   495     /// If you need more control on the execution,
   496     /// Finally \ref start() will perform the actual path
   497     /// computation.
   498 
   499     ///@{
   500 
   501     /// \brief Initializes the internal data structures.
   502     /// 
   503     /// Initializes the internal data structures.
   504     void init() {
   505       create_maps();
   506     }
   507 
   508     /// \brief Executes the algorithm with own potential map.
   509     ///
   510     /// This method runs the %Johnson algorithm in order to compute 
   511     /// the shortest path to each node pairs. The potential map
   512     /// can be given for this algorithm which usually calculated
   513     /// by the Bellman-Ford algorithm. If the graph does not have
   514     /// negative length edge then this start function can be used
   515     /// with constMap<Node, int>(0) parameter to omit the running time of
   516     /// the Bellman-Ford. 
   517     /// The algorithm computes 
   518     /// - The shortest path tree for each node.
   519     /// - The distance between each node pairs.
   520     template <typename PotentialMap>
   521     void shiftedStart(const PotentialMap& potential) {      
   522       typename Graph::template EdgeMap<Value> shiftlen(*graph);
   523       for (EdgeIt it(*graph);  it != INVALID; ++it) {
   524       	shiftlen[it] = (*length)[it] 
   525 	  + potential[graph->source(it)] 
   526 	  - potential[graph->target(it)];
   527       }
   528       
   529       typename Dijkstra<Graph, typename Graph::template EdgeMap<Value> >::
   530 	template DefHeap<Heap, HeapCrossRef>::
   531 	Create dijkstra(*graph, shiftlen);
   532 
   533       dijkstra.heap(*_heap, *_heap_cross_ref);
   534       
   535       for (NodeIt it(*graph); it != INVALID; ++it) {
   536 	dijkstra.run(it);
   537 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   538 	  if (dijkstra.reached(jt)) {
   539 	    _dist->set(it, jt, dijkstra.dist(jt) + 
   540 		       potential[jt] - potential[it]);
   541 	    _pred->set(it, jt, dijkstra.predEdge(jt));
   542 	  } else {
   543 	    _dist->set(it, jt, OperationTraits::infinity());
   544 	    _pred->set(it, jt, INVALID);
   545 	  }
   546 	}
   547       }
   548     }
   549 
   550     /// \brief Executes the algorithm.
   551     ///
   552     /// This method runs the %Johnson algorithm in order to compute 
   553     /// the shortest path to each node pairs. The algorithm 
   554     /// computes 
   555     /// - The shortest path tree for each node.
   556     /// - The distance between each node pairs.
   557     void start() {
   558 
   559       typedef typename BellmanFord<Graph, LengthMap>::
   560       template DefOperationTraits<OperationTraits>::
   561       template DefPredMap<NullMap<Node, Edge> >::
   562       Create BellmanFordType;
   563       
   564       BellmanFordType bellmanford(*graph, *length);
   565 
   566       NullMap<Node, Edge> pm;
   567 
   568       bellmanford.predMap(pm);
   569       
   570       bellmanford.init(OperationTraits::zero());
   571       bellmanford.start();
   572 
   573       shiftedStart(bellmanford.distMap());
   574     }
   575 
   576     /// \brief Executes the algorithm and checks the negatvie cycles.
   577     ///
   578     /// This method runs the %Johnson algorithm in order to compute 
   579     /// the shortest path to each node pairs. If the graph contains
   580     /// negative cycle it gives back false. The algorithm 
   581     /// computes 
   582     /// - The shortest path tree for each node.
   583     /// - The distance between each node pairs.
   584     bool checkedStart() {
   585       
   586       typedef typename BellmanFord<Graph, LengthMap>::
   587       template DefOperationTraits<OperationTraits>::
   588       template DefPredMap<NullMap<Node, Edge> >::
   589       Create BellmanFordType;
   590 
   591       BellmanFordType bellmanford(*graph, *length);
   592 
   593       NullMap<Node, Edge> pm;
   594 
   595       bellmanford.predMap(pm);
   596       
   597       bellmanford.init(OperationTraits::zero());
   598       if (!bellmanford.checkedStart()) return false;
   599 
   600       shiftedStart(bellmanford.distMap());
   601       return true;
   602     }
   603 
   604     
   605     /// \brief Runs %Johnson algorithm.
   606     ///    
   607     /// This method runs the %Johnson algorithm from a each node
   608     /// in order to compute the shortest path to each node pairs. 
   609     /// The algorithm computes
   610     /// - The shortest path tree for each node.
   611     /// - The distance between each node pairs.
   612     ///
   613     /// \note d.run(s) is just a shortcut of the following code.
   614     ///\code
   615     ///  d.init();
   616     ///  d.start();
   617     ///\endcode
   618     void run() {
   619       init();
   620       start();
   621     }
   622     
   623     ///@}
   624 
   625     /// \name Query Functions
   626     /// The result of the %Johnson algorithm can be obtained using these
   627     /// functions.\n
   628     /// Before the use of these functions,
   629     /// either run() or start() must be called.
   630     
   631     ///@{
   632 
   633     typedef PredMatrixMapPath<Graph, PredMap> Path;
   634 
   635     ///Gives back the shortest path.
   636     
   637     ///Gives back the shortest path.
   638     ///\pre The \c t should be reachable from the \c t.
   639     Path path(Node s, Node t) 
   640     {
   641       return Path(*graph, *_pred, s, t);
   642     }
   643 	  
   644     /// \brief The distance between two nodes.
   645     ///
   646     /// Returns the distance between two nodes.
   647     /// \pre \ref run() must be called before using this function.
   648     /// \warning If node \c v in unreachable from the root the return value
   649     /// of this funcion is undefined.
   650     Value dist(Node source, Node target) const { 
   651       return (*_dist)(source, target); 
   652     }
   653 
   654     /// \brief Returns the 'previous edge' of the shortest path tree.
   655     ///
   656     /// For the node \c node it returns the 'previous edge' of the shortest 
   657     /// path tree to direction of the node \c root 
   658     /// i.e. it returns the last edge of a shortest path from the node \c root 
   659     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   660     /// or if \c node=root. The shortest path tree used here is equal to the 
   661     /// shortest path tree used in \ref predNode(). 
   662     /// \pre \ref run() must be called before using this function.
   663     Edge predEdge(Node root, Node node) const { 
   664       return (*_pred)(root, node); 
   665     }
   666 
   667     /// \brief Returns the 'previous node' of the shortest path tree.
   668     ///
   669     /// For a node \c node it returns the 'previous node' of the shortest path 
   670     /// tree to direction of the node \c root, i.e. it returns the last but 
   671     /// one node from a shortest path from the \c root to \c node. It is 
   672     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   673     /// The shortest path tree used here is equal to the 
   674     /// shortest path tree used in \ref predEdge().  
   675     /// \pre \ref run() must be called before using this function.
   676     Node predNode(Node root, Node node) const { 
   677       return (*_pred)(root, node) == INVALID ? 
   678       INVALID : graph->source((*_pred)(root, node)); 
   679     }
   680     
   681     /// \brief Returns a reference to the matrix node map of distances.
   682     ///
   683     /// Returns a reference to the matrix node map of distances. 
   684     ///
   685     /// \pre \ref run() must be called before using this function.
   686     const DistMap &distMap() const { return *_dist;}
   687  
   688     /// \brief Returns a reference to the shortest path tree map.
   689     ///
   690     /// Returns a reference to the matrix node map of the edges of the
   691     /// shortest path tree.
   692     /// \pre \ref run() must be called before using this function.
   693     const PredMap &predMap() const { return *_pred;}
   694  
   695     /// \brief Checks if a node is reachable from the root.
   696     ///
   697     /// Returns \c true if \c v is reachable from the root.
   698     /// \pre \ref run() must be called before using this function.
   699     ///
   700     bool connected(Node source, Node target) { 
   701       return (*_dist)(source, target) != OperationTraits::infinity(); 
   702     }
   703     
   704     ///@}
   705   };
   706  
   707 } //END OF NAMESPACE LEMON
   708 
   709 #endif