top-sort, dimacs mods.
9 * Inicializalja a veletlenszamgeneratort.
10 * Figyelem, ez nem jo igazi random szamokhoz,
11 * erre ne bizzad a titkaidat!
15 unsigned int seed = getpid();
24 * Egy veletlen int-et ad vissza 0 es m-1 kozott.
28 return int( double(m) * rand() / (RAND_MAX + 1.0) );
32 /// Generates a random graph with n nodes and m edges.
33 /// Before generating the random graph, \c g.clear() is called.
34 template<typename Graph>
35 void randomGraph(Graph& g, int n, int m) {
37 std::vector<typename Graph::Node> nodes;
38 for (int i=0; i<n; ++i)
39 nodes.push_back(g.addNode());
40 for (int i=0; i<m; ++i)
41 g.addEdge(nodes[random(n)], nodes[random(n)]);
44 /// Generates a random bipartite graph with a and b nodes
45 /// in the color classes and m edges.
46 /// According to the bipartite graph concept, the resulting
47 /// graph is directed from the first class to the second one.
48 /// Before generating the random graph, \c g.clear() is called.
49 template<typename Graph>
50 void randomBipartiteGraph(Graph& g, int a, int b, int m) {
52 std::vector<typename Graph::Node> s_nodes;
53 std::vector<typename Graph::Node> t_nodes;
54 for (int i=0; i<a; ++i)
55 ///\bug g.addNode(g.S_CLASS) would be better.
56 s_nodes.push_back(g.addNode(false));
57 for (int i=0; i<b; ++i)
58 ///\bug g.addNode(g.T_CLASS) would be better.
59 t_nodes.push_back(g.addNode(true));
60 for (int i=0; i<m; ++i)
61 g.addEdge(s_nodes[random(a)], t_nodes[random(b)]);