'make doc' is now working also in case of external build.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_GRAPH_ADAPTOR_H
20 #define LEMON_GRAPH_ADAPTOR_H
22 ///\ingroup graph_adaptors
24 ///\brief Several graph adaptors.
26 ///This file contains several useful graph adaptor functions.
28 ///\author Marton Makai and Balazs Dezso
30 #include <lemon/bits/invalid.h>
31 #include <lemon/bits/variant.h>
32 #include <lemon/maps.h>
34 #include <lemon/bits/base_extender.h>
35 #include <lemon/bits/graph_adaptor_extender.h>
36 #include <lemon/bits/graph_extender.h>
38 #include <lemon/tolerance.h>
44 ///\brief Base type for the Graph Adaptors
46 ///Base type for the Graph Adaptors
48 ///This is the base type for most of LEMON graph adaptors.
49 ///This class implements a trivial graph adaptor i.e. it only wraps the
50 ///functions and types of the graph. The purpose of this class is to
51 ///make easier implementing graph adaptors. E.g. if an adaptor is
52 ///considered which differs from the wrapped graph only in some of its
53 ///functions or types, then it can be derived from GraphAdaptor,
55 ///differences should be implemented.
57 ///author Marton Makai
58 template<typename _Graph>
59 class GraphAdaptorBase {
62 typedef GraphAdaptorBase Adaptor;
63 typedef Graph ParentGraph;
67 GraphAdaptorBase() : graph(0) { }
68 void setGraph(Graph& _graph) { graph=&_graph; }
71 GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
73 typedef typename Graph::Node Node;
74 typedef typename Graph::Edge Edge;
76 void first(Node& i) const { graph->first(i); }
77 void first(Edge& i) const { graph->first(i); }
78 void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
79 void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
81 void next(Node& i) const { graph->next(i); }
82 void next(Edge& i) const { graph->next(i); }
83 void nextIn(Edge& i) const { graph->nextIn(i); }
84 void nextOut(Edge& i) const { graph->nextOut(i); }
86 Node source(const Edge& e) const { return graph->source(e); }
87 Node target(const Edge& e) const { return graph->target(e); }
89 typedef NodeNumTagIndicator<Graph> NodeNumTag;
90 int nodeNum() const { return graph->nodeNum(); }
92 typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
93 int edgeNum() const { return graph->edgeNum(); }
95 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
96 Edge findEdge(const Node& source, const Node& target,
97 const Edge& prev = INVALID) {
98 return graph->findEdge(source, target, prev);
101 Node addNode() const {
102 return Node(graph->addNode());
105 Edge addEdge(const Node& source, const Node& target) const {
106 return Edge(graph->addEdge(source, target));
109 void erase(const Node& i) const { graph->erase(i); }
110 void erase(const Edge& i) const { graph->erase(i); }
112 void clear() const { graph->clear(); }
114 int id(const Node& v) const { return graph->id(v); }
115 int id(const Edge& e) const { return graph->id(e); }
117 Node fromNodeId(int id) const {
118 return graph->fromNodeId(id);
121 Edge fromEdgeId(int id) const {
122 return graph->fromEdgeId(id);
125 int maxNodeId() const {
126 return graph->maxNodeId();
129 int maxEdgeId() const {
130 return graph->maxEdgeId();
133 typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
135 NodeNotifier& getNotifier(Node) const {
136 return graph->getNotifier(Node());
139 typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
141 EdgeNotifier& getNotifier(Edge) const {
142 return graph->getNotifier(Edge());
145 template <typename _Value>
146 class NodeMap : public Graph::template NodeMap<_Value> {
149 typedef typename Graph::template NodeMap<_Value> Parent;
151 explicit NodeMap(const Adaptor& ga)
152 : Parent(*ga.graph) {}
154 NodeMap(const Adaptor& ga, const _Value& value)
155 : Parent(*ga.graph, value) { }
157 NodeMap& operator=(const NodeMap& cmap) {
158 return operator=<NodeMap>(cmap);
161 template <typename CMap>
162 NodeMap& operator=(const CMap& cmap) {
163 Parent::operator=(cmap);
169 template <typename _Value>
170 class EdgeMap : public Graph::template EdgeMap<_Value> {
173 typedef typename Graph::template EdgeMap<_Value> Parent;
175 explicit EdgeMap(const Adaptor& ga)
176 : Parent(*ga.graph) {}
178 EdgeMap(const Adaptor& ga, const _Value& value)
179 : Parent(*ga.graph, value) {}
181 EdgeMap& operator=(const EdgeMap& cmap) {
182 return operator=<EdgeMap>(cmap);
185 template <typename CMap>
186 EdgeMap& operator=(const CMap& cmap) {
187 Parent::operator=(cmap);
195 ///\ingroup graph_adaptors
197 ///\brief Trivial Graph Adaptor
199 /// This class is an adaptor which does not change the adapted graph.
200 /// It can be used only to test the graph adaptors.
201 template <typename _Graph>
203 public GraphAdaptorExtender<GraphAdaptorBase<_Graph> > {
205 typedef _Graph Graph;
206 typedef GraphAdaptorExtender<GraphAdaptorBase<_Graph> > Parent;
208 GraphAdaptor() : Parent() { }
211 explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
214 /// \brief Just gives back a graph adaptor
216 /// Just gives back a graph adaptor which
217 /// should be provide original graph
218 template<typename Graph>
219 GraphAdaptor<const Graph>
220 graphAdaptor(const Graph& graph) {
221 return GraphAdaptor<const Graph>(graph);
225 template <typename _Graph>
226 class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
228 typedef _Graph Graph;
229 typedef GraphAdaptorBase<_Graph> Parent;
231 RevGraphAdaptorBase() : Parent() { }
233 typedef typename Parent::Node Node;
234 typedef typename Parent::Edge Edge;
236 void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
237 void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
239 void nextIn(Edge& i) const { Parent::nextOut(i); }
240 void nextOut(Edge& i) const { Parent::nextIn(i); }
242 Node source(const Edge& e) const { return Parent::target(e); }
243 Node target(const Edge& e) const { return Parent::source(e); }
245 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
246 Edge findEdge(const Node& source, const Node& target,
247 const Edge& prev = INVALID) {
248 return Parent::findEdge(target, source, prev);
254 ///\ingroup graph_adaptors
256 ///\brief A graph adaptor which reverses the orientation of the edges.
258 /// If \c g is defined as
264 /// RevGraphAdaptor<ListGraph> ga(g);
266 /// implements the graph obtained from \c g by
267 /// reversing the orientation of its edges.
269 /// A good example of using RevGraphAdaptor is to decide that the
270 /// directed graph is wheter strongly connected or not. If from one
271 /// node each node is reachable and from each node is reachable this
272 /// node then and just then the graph is strongly connected. Instead of
273 /// this condition we use a little bit different. From one node each node
274 /// ahould be reachable in the graph and in the reversed graph. Now this
275 /// condition can be checked with the Dfs algorithm class and the
276 /// RevGraphAdaptor algorithm class.
278 /// And look at the code:
281 /// bool stronglyConnected(const Graph& graph) {
282 /// if (NodeIt(graph) == INVALID) return true;
283 /// Dfs<Graph> dfs(graph);
284 /// dfs.run(NodeIt(graph));
285 /// for (NodeIt it(graph); it != INVALID; ++it) {
286 /// if (!dfs.reached(it)) {
290 /// typedef RevGraphAdaptor<const Graph> RGraph;
291 /// RGraph rgraph(graph);
292 /// DfsVisit<RGraph> rdfs(rgraph);
293 /// rdfs.run(NodeIt(graph));
294 /// for (NodeIt it(graph); it != INVALID; ++it) {
295 /// if (!rdfs.reached(it)) {
302 template<typename _Graph>
303 class RevGraphAdaptor :
304 public GraphAdaptorExtender<RevGraphAdaptorBase<_Graph> > {
306 typedef _Graph Graph;
307 typedef GraphAdaptorExtender<
308 RevGraphAdaptorBase<_Graph> > Parent;
310 RevGraphAdaptor() { }
312 explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
315 /// \brief Just gives back a reverse graph adaptor
317 /// Just gives back a reverse graph adaptor
318 template<typename Graph>
319 RevGraphAdaptor<const Graph>
320 revGraphAdaptor(const Graph& graph) {
321 return RevGraphAdaptor<const Graph>(graph);
324 template <typename _Graph, typename NodeFilterMap,
325 typename EdgeFilterMap, bool checked = true>
326 class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
328 typedef _Graph Graph;
329 typedef SubGraphAdaptorBase Adaptor;
330 typedef GraphAdaptorBase<_Graph> Parent;
332 NodeFilterMap* node_filter_map;
333 EdgeFilterMap* edge_filter_map;
334 SubGraphAdaptorBase() : Parent(),
335 node_filter_map(0), edge_filter_map(0) { }
337 void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
338 node_filter_map=&_node_filter_map;
340 void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
341 edge_filter_map=&_edge_filter_map;
346 typedef typename Parent::Node Node;
347 typedef typename Parent::Edge Edge;
349 void first(Node& i) const {
351 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
354 void first(Edge& i) const {
356 while (i!=INVALID && (!(*edge_filter_map)[i]
357 || !(*node_filter_map)[Parent::source(i)]
358 || !(*node_filter_map)[Parent::target(i)])) Parent::next(i);
361 void firstIn(Edge& i, const Node& n) const {
362 Parent::firstIn(i, n);
363 while (i!=INVALID && (!(*edge_filter_map)[i]
364 || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i);
367 void firstOut(Edge& i, const Node& n) const {
368 Parent::firstOut(i, n);
369 while (i!=INVALID && (!(*edge_filter_map)[i]
370 || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i);
373 void next(Node& i) const {
375 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
378 void next(Edge& i) const {
380 while (i!=INVALID && (!(*edge_filter_map)[i]
381 || !(*node_filter_map)[Parent::source(i)]
382 || !(*node_filter_map)[Parent::target(i)])) Parent::next(i);
385 void nextIn(Edge& i) const {
387 while (i!=INVALID && (!(*edge_filter_map)[i]
388 || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i);
391 void nextOut(Edge& i) const {
393 while (i!=INVALID && (!(*edge_filter_map)[i]
394 || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i);
399 /// This function hides \c n in the graph, i.e. the iteration
400 /// jumps over it. This is done by simply setting the value of \c n
401 /// to be false in the corresponding node-map.
402 void hide(const Node& n) const { node_filter_map->set(n, false); }
406 /// This function hides \c e in the graph, i.e. the iteration
407 /// jumps over it. This is done by simply setting the value of \c e
408 /// to be false in the corresponding edge-map.
409 void hide(const Edge& e) const { edge_filter_map->set(e, false); }
413 /// The value of \c n is set to be true in the node-map which stores
414 /// hide information. If \c n was hidden previuosly, then it is shown
416 void unHide(const Node& n) const { node_filter_map->set(n, true); }
420 /// The value of \c e is set to be true in the edge-map which stores
421 /// hide information. If \c e was hidden previuosly, then it is shown
423 void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
425 /// Returns true if \c n is hidden.
429 bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
431 /// Returns true if \c n is hidden.
435 bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
437 typedef False NodeNumTag;
438 typedef False EdgeNumTag;
440 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
441 Edge findEdge(const Node& source, const Node& target,
442 const Edge& prev = INVALID) {
443 if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
446 Edge edge = Parent::findEdge(source, target, prev);
447 while (edge != INVALID && !(*edge_filter_map)[edge]) {
448 edge = Parent::findEdge(source, target, edge);
453 template <typename _Value>
455 : public SubMapExtender<Adaptor,
456 typename Parent::template NodeMap<_Value> >
459 typedef Adaptor Graph;
460 typedef SubMapExtender<Adaptor, typename Parent::
461 template NodeMap<_Value> > Parent;
463 NodeMap(const Graph& graph)
465 NodeMap(const Graph& graph, const _Value& value)
466 : Parent(graph, value) {}
468 NodeMap& operator=(const NodeMap& cmap) {
469 return operator=<NodeMap>(cmap);
472 template <typename CMap>
473 NodeMap& operator=(const CMap& cmap) {
474 Parent::operator=(cmap);
479 template <typename _Value>
481 : public SubMapExtender<Adaptor,
482 typename Parent::template EdgeMap<_Value> >
485 typedef Adaptor Graph;
486 typedef SubMapExtender<Adaptor, typename Parent::
487 template EdgeMap<_Value> > Parent;
489 EdgeMap(const Graph& graph)
491 EdgeMap(const Graph& graph, const _Value& value)
492 : Parent(graph, value) {}
494 EdgeMap& operator=(const EdgeMap& cmap) {
495 return operator=<EdgeMap>(cmap);
498 template <typename CMap>
499 EdgeMap& operator=(const CMap& cmap) {
500 Parent::operator=(cmap);
507 template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
508 class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false>
509 : public GraphAdaptorBase<_Graph> {
511 typedef _Graph Graph;
512 typedef SubGraphAdaptorBase Adaptor;
513 typedef GraphAdaptorBase<_Graph> Parent;
515 NodeFilterMap* node_filter_map;
516 EdgeFilterMap* edge_filter_map;
517 SubGraphAdaptorBase() : Parent(),
518 node_filter_map(0), edge_filter_map(0) { }
520 void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
521 node_filter_map=&_node_filter_map;
523 void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
524 edge_filter_map=&_edge_filter_map;
529 typedef typename Parent::Node Node;
530 typedef typename Parent::Edge Edge;
532 void first(Node& i) const {
534 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
537 void first(Edge& i) const {
539 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i);
542 void firstIn(Edge& i, const Node& n) const {
543 Parent::firstIn(i, n);
544 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i);
547 void firstOut(Edge& i, const Node& n) const {
548 Parent::firstOut(i, n);
549 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i);
552 void next(Node& i) const {
554 while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i);
556 void next(Edge& i) const {
558 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i);
560 void nextIn(Edge& i) const {
562 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i);
565 void nextOut(Edge& i) const {
567 while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i);
572 /// This function hides \c n in the graph, i.e. the iteration
573 /// jumps over it. This is done by simply setting the value of \c n
574 /// to be false in the corresponding node-map.
575 void hide(const Node& n) const { node_filter_map->set(n, false); }
579 /// This function hides \c e in the graph, i.e. the iteration
580 /// jumps over it. This is done by simply setting the value of \c e
581 /// to be false in the corresponding edge-map.
582 void hide(const Edge& e) const { edge_filter_map->set(e, false); }
586 /// The value of \c n is set to be true in the node-map which stores
587 /// hide information. If \c n was hidden previuosly, then it is shown
589 void unHide(const Node& n) const { node_filter_map->set(n, true); }
593 /// The value of \c e is set to be true in the edge-map which stores
594 /// hide information. If \c e was hidden previuosly, then it is shown
596 void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
598 /// Returns true if \c n is hidden.
602 bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
604 /// Returns true if \c n is hidden.
608 bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
610 typedef False NodeNumTag;
611 typedef False EdgeNumTag;
613 typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
614 Edge findEdge(const Node& source, const Node& target,
615 const Edge& prev = INVALID) {
616 if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
619 Edge edge = Parent::findEdge(source, target, prev);
620 while (edge != INVALID && !(*edge_filter_map)[edge]) {
621 edge = Parent::findEdge(source, target, edge);
626 template <typename _Value>
628 : public SubMapExtender<Adaptor,
629 typename Parent::template NodeMap<_Value> >
632 typedef Adaptor Graph;
633 typedef SubMapExtender<Adaptor, typename Parent::
634 template NodeMap<_Value> > Parent;
636 NodeMap(const Graph& graph)
638 NodeMap(const Graph& graph, const _Value& value)
639 : Parent(graph, value) {}
641 NodeMap& operator=(const NodeMap& cmap) {
642 return operator=<NodeMap>(cmap);
645 template <typename CMap>
646 NodeMap& operator=(const CMap& cmap) {
647 Parent::operator=(cmap);
652 template <typename _Value>
654 : public SubMapExtender<Adaptor,
655 typename Parent::template EdgeMap<_Value> >
658 typedef Adaptor Graph;
659 typedef SubMapExtender<Adaptor, typename Parent::
660 template EdgeMap<_Value> > Parent;
662 EdgeMap(const Graph& graph)
664 EdgeMap(const Graph& graph, const _Value& value)
665 : Parent(graph, value) {}
667 EdgeMap& operator=(const EdgeMap& cmap) {
668 return operator=<EdgeMap>(cmap);
671 template <typename CMap>
672 EdgeMap& operator=(const CMap& cmap) {
673 Parent::operator=(cmap);
680 /// \ingroup graph_adaptors
682 /// \brief A graph adaptor for hiding nodes and edges from a graph.
684 /// SubGraphAdaptor shows the graph with filtered node-set and
685 /// edge-set. If the \c checked parameter is true then it filters the edgeset
686 /// to do not get invalid edges without source or target.
687 /// Let \f$ G=(V, A) \f$ be a directed graph
688 /// and suppose that the graph instance \c g of type ListGraph
689 /// implements \f$ G \f$.
690 /// Let moreover \f$ b_V \f$ and \f$ b_A \f$ be bool-valued functions resp.
691 /// on the node-set and edge-set.
692 /// SubGraphAdaptor<...>::NodeIt iterates
693 /// on the node-set \f$ \{v\in V : b_V(v)=true\} \f$ and
694 /// SubGraphAdaptor<...>::EdgeIt iterates
695 /// on the edge-set \f$ \{e\in A : b_A(e)=true\} \f$. Similarly,
696 /// SubGraphAdaptor<...>::OutEdgeIt and
697 /// SubGraphAdaptor<...>::InEdgeIt iterates
698 /// only on edges leaving and entering a specific node which have true value.
700 /// If the \c checked template parameter is false then we have to note that
701 /// the node-iterator cares only the filter on the node-set, and the
702 /// edge-iterator cares only the filter on the edge-set.
703 /// This way the edge-map
704 /// should filter all edges which's source or target is filtered by the
707 /// typedef ListGraph Graph;
709 /// typedef Graph::Node Node;
710 /// typedef Graph::Edge Edge;
711 /// Node u=g.addNode(); //node of id 0
712 /// Node v=g.addNode(); //node of id 1
713 /// Node e=g.addEdge(u, v); //edge of id 0
714 /// Node f=g.addEdge(v, u); //edge of id 1
715 /// Graph::NodeMap<bool> nm(g, true);
716 /// nm.set(u, false);
717 /// Graph::EdgeMap<bool> em(g, true);
718 /// em.set(e, false);
719 /// typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGA;
720 /// SubGA ga(g, nm, em);
721 /// for (SubGA::NodeIt n(ga); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
722 /// std::cout << ":-)" << std::endl;
723 /// for (SubGA::EdgeIt e(ga); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
725 /// The output of the above code is the following.
731 /// Note that \c n is of type \c SubGA::NodeIt, but it can be converted to
732 /// \c Graph::Node that is why \c g.id(n) can be applied.
734 /// For other examples see also the documentation of NodeSubGraphAdaptor and
735 /// EdgeSubGraphAdaptor.
737 /// \author Marton Makai
739 template<typename _Graph, typename NodeFilterMap,
740 typename EdgeFilterMap, bool checked = true>
741 class SubGraphAdaptor :
742 public GraphAdaptorExtender<
743 SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
745 typedef _Graph Graph;
746 typedef GraphAdaptorExtender< SubGraphAdaptorBase<_Graph, NodeFilterMap,
747 EdgeFilterMap, checked> >
751 SubGraphAdaptor() { }
754 SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map,
755 EdgeFilterMap& _edge_filter_map) {
757 setNodeFilterMap(_node_filter_map);
758 setEdgeFilterMap(_edge_filter_map);
763 /// \brief Just gives back a sub graph adaptor
765 /// Just gives back a sub graph adaptor
766 template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
767 SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
768 subGraphAdaptor(const Graph& graph,
769 NodeFilterMap& nfm, EdgeFilterMap& efm) {
770 return SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
774 template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
775 SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
776 subGraphAdaptor(const Graph& graph,
777 NodeFilterMap& nfm, EdgeFilterMap& efm) {
778 return SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
782 template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
783 SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
784 subGraphAdaptor(const Graph& graph,
785 NodeFilterMap& nfm, EdgeFilterMap& efm) {
786 return SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
790 template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
791 SubGraphAdaptor<const Graph, const NodeFilterMap, const EdgeFilterMap>
792 subGraphAdaptor(const Graph& graph,
793 NodeFilterMap& nfm, EdgeFilterMap& efm) {
794 return SubGraphAdaptor<const Graph, const NodeFilterMap,
795 const EdgeFilterMap>(graph, nfm, efm);
800 ///\ingroup graph_adaptors
802 ///\brief An adaptor for hiding nodes from a graph.
804 ///An adaptor for hiding nodes from a graph.
805 ///This adaptor specializes SubGraphAdaptor in the way that only
807 ///can be filtered. In usual case the checked parameter is true, we get the
808 ///induced subgraph. But if the checked parameter is false then we can only
809 ///filter only isolated nodes.
810 ///\author Marton Makai
811 template<typename Graph, typename NodeFilterMap, bool checked = true>
812 class NodeSubGraphAdaptor :
813 public SubGraphAdaptor<Graph, NodeFilterMap,
814 ConstMap<typename Graph::Edge,bool>, checked> {
817 typedef SubGraphAdaptor<Graph, NodeFilterMap,
818 ConstMap<typename Graph::Edge,bool>, checked >
822 ConstMap<typename Graph::Edge, bool> const_true_map;
824 NodeSubGraphAdaptor() : const_true_map(true) {
825 Parent::setEdgeFilterMap(const_true_map);
830 NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) :
831 Parent(), const_true_map(true) {
832 Parent::setGraph(_graph);
833 Parent::setNodeFilterMap(_node_filter_map);
834 Parent::setEdgeFilterMap(const_true_map);
840 /// \brief Just gives back a node sub graph adaptor
842 /// Just gives back a node sub graph adaptor
843 template<typename Graph, typename NodeFilterMap>
844 NodeSubGraphAdaptor<const Graph, NodeFilterMap>
845 nodeSubGraphAdaptor(const Graph& graph, NodeFilterMap& nfm) {
846 return NodeSubGraphAdaptor<const Graph, NodeFilterMap>(graph, nfm);
849 template<typename Graph, typename NodeFilterMap>
850 NodeSubGraphAdaptor<const Graph, const NodeFilterMap>
851 nodeSubGraphAdaptor(const Graph& graph, const NodeFilterMap& nfm) {
852 return NodeSubGraphAdaptor<const Graph, const NodeFilterMap>(graph, nfm);
855 ///\ingroup graph_adaptors
857 ///\brief An adaptor for hiding edges from a graph.
859 ///An adaptor for hiding edges from a graph.
860 ///This adaptor specializes SubGraphAdaptor in the way that
862 ///can be filtered. The usefulness of this adaptor is demonstrated in the
863 ///problem of searching a maximum number of edge-disjoint shortest paths
865 ///two nodes \c s and \c t. Shortest here means being shortest w.r.t.
866 ///non-negative edge-lengths. Note that
867 ///the comprehension of the presented solution
868 ///need's some elementary knowledge from combinatorial optimization.
870 ///If a single shortest path is to be
871 ///searched between \c s and \c t, then this can be done easily by
872 ///applying the Dijkstra algorithm. What happens, if a maximum number of
873 ///edge-disjoint shortest paths is to be computed. It can be proved that an
874 ///edge can be in a shortest path if and only
875 ///if it is tight with respect to
876 ///the potential function computed by Dijkstra.
877 ///Moreover, any path containing
878 ///only such edges is a shortest one.
879 ///Thus we have to compute a maximum number
880 ///of edge-disjoint paths between \c s and \c t in
881 ///the graph which has edge-set
882 ///all the tight edges. The computation will be demonstrated
884 ///graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim.
885 ///The full source code is available in \ref sub_graph_adaptor_demo.cc.
886 ///If you are interested in more demo programs, you can use
887 ///\ref dim_to_dot.cc to generate .dot files from dimacs files.
888 ///The .dot file of the following figure was generated by
889 ///the demo program \ref dim_to_dot.cc.
892 ///digraph lemon_dot_example {
893 ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
894 ///n0 [ label="0 (s)" ];
900 ///n6 [ label="6 (t)" ];
901 ///edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
902 ///n5 -> n6 [ label="9, length:4" ];
903 ///n4 -> n6 [ label="8, length:2" ];
904 ///n3 -> n5 [ label="7, length:1" ];
905 ///n2 -> n5 [ label="6, length:3" ];
906 ///n2 -> n6 [ label="5, length:5" ];
907 ///n2 -> n4 [ label="4, length:2" ];
908 ///n1 -> n4 [ label="3, length:3" ];
909 ///n0 -> n3 [ label="2, length:1" ];
910 ///n0 -> n2 [ label="1, length:2" ];
911 ///n0 -> n1 [ label="0, length:3" ];
918 ///LengthMap length(g);
920 ///readDimacs(std::cin, g, length, s, t);
922 ///cout << "edges with lengths (of form id, source--length->target): " << endl;
923 ///for(EdgeIt e(g); e!=INVALID; ++e)
924 /// cout << g.id(e) << ", " << g.id(g.source(e)) << "--"
925 /// << length[e] << "->" << g.id(g.target(e)) << endl;
927 ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
929 ///Next, the potential function is computed with Dijkstra.
931 ///typedef Dijkstra<Graph, LengthMap> Dijkstra;
932 ///Dijkstra dijkstra(g, length);
935 ///Next, we consrtruct a map which filters the edge-set to the tight edges.
937 ///typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap>
939 ///TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
941 ///typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGA;
942 ///SubGA ga(g, tight_edge_filter);
944 ///Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed
945 ///with a max flow algorithm Preflow.
947 ///ConstMap<Edge, int> const_1_map(1);
948 ///Graph::EdgeMap<int> flow(g, 0);
950 ///Preflow<SubGA, int, ConstMap<Edge, int>, Graph::EdgeMap<int> >
951 /// preflow(ga, s, t, const_1_map, flow);
954 ///Last, the output is:
956 ///cout << "maximum number of edge-disjoint shortest path: "
957 /// << preflow.flowValue() << endl;
958 ///cout << "edges of the maximum number of edge-disjoint shortest s-t paths: "
960 ///for(EdgeIt e(g); e!=INVALID; ++e)
962 /// cout << " " << g.id(g.source(e)) << "--"
963 /// << length[e] << "->" << g.id(g.target(e)) << endl;
965 ///The program has the following (expected :-)) output:
967 ///edges with lengths (of form id, source--length->target):
979 ///maximum number of edge-disjoint shortest path: 2
980 ///edges of the maximum number of edge-disjoint shortest s-t paths:
989 ///\author Marton Makai
990 template<typename Graph, typename EdgeFilterMap>
991 class EdgeSubGraphAdaptor :
992 public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>,
993 EdgeFilterMap, false> {
995 typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>,
996 EdgeFilterMap, false> Parent;
998 ConstMap<typename Graph::Node, bool> const_true_map;
1000 EdgeSubGraphAdaptor() : const_true_map(true) {
1001 Parent::setNodeFilterMap(const_true_map);
1006 EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) :
1007 Parent(), const_true_map(true) {
1008 Parent::setGraph(_graph);
1009 Parent::setNodeFilterMap(const_true_map);
1010 Parent::setEdgeFilterMap(_edge_filter_map);
1015 /// \brief Just gives back an edge sub graph adaptor
1017 /// Just gives back an edge sub graph adaptor
1018 template<typename Graph, typename EdgeFilterMap>
1019 EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>
1020 edgeSubGraphAdaptor(const Graph& graph, EdgeFilterMap& efm) {
1021 return EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>(graph, efm);
1024 template<typename Graph, typename EdgeFilterMap>
1025 EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>
1026 edgeSubGraphAdaptor(const Graph& graph, const EdgeFilterMap& efm) {
1027 return EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>(graph, efm);
1030 template <typename _Graph>
1031 class UndirGraphAdaptorBase :
1032 public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
1034 typedef _Graph Graph;
1035 typedef UndirGraphAdaptorBase Adaptor;
1036 typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
1040 UndirGraphAdaptorBase() : Parent() {}
1044 typedef typename Parent::UEdge UEdge;
1045 typedef typename Parent::Edge Edge;
1049 template <typename _Value>
1053 typedef typename _Graph::template EdgeMap<_Value> MapImpl;
1057 typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
1059 typedef _Value Value;
1062 EdgeMapBase(const Adaptor& adaptor) :
1063 forward_map(*adaptor.graph), backward_map(*adaptor.graph) {}
1065 EdgeMapBase(const Adaptor& adaptor, const Value& v)
1066 : forward_map(*adaptor.graph, v), backward_map(*adaptor.graph, v) {}
1068 void set(const Edge& e, const Value& a) {
1069 if (Parent::direction(e)) {
1070 forward_map.set(e, a);
1072 backward_map.set(e, a);
1076 typename MapTraits<MapImpl>::ConstReturnValue operator[](Edge e) const {
1077 if (Parent::direction(e)) {
1078 return forward_map[e];
1080 return backward_map[e];
1084 typename MapTraits<MapImpl>::ReturnValue operator[](Edge e) {
1085 if (Parent::direction(e)) {
1086 return forward_map[e];
1088 return backward_map[e];
1094 MapImpl forward_map, backward_map;
1100 template <typename _Value>
1102 : public SubMapExtender<Adaptor, EdgeMapBase<_Value> >
1105 typedef Adaptor Graph;
1106 typedef SubMapExtender<Adaptor, EdgeMapBase<_Value> > Parent;
1108 EdgeMap(const Graph& graph)
1110 EdgeMap(const Graph& graph, const _Value& value)
1111 : Parent(graph, value) {}
1113 EdgeMap& operator=(const EdgeMap& cmap) {
1114 return operator=<EdgeMap>(cmap);
1117 template <typename CMap>
1118 EdgeMap& operator=(const CMap& cmap) {
1119 Parent::operator=(cmap);
1124 template <typename _Value>
1125 class UEdgeMap : public Graph::template EdgeMap<_Value> {
1128 typedef typename Graph::template EdgeMap<_Value> Parent;
1130 explicit UEdgeMap(const Adaptor& ga)
1131 : Parent(*ga.graph) {}
1133 UEdgeMap(const Adaptor& ga, const _Value& value)
1134 : Parent(*ga.graph, value) {}
1136 UEdgeMap& operator=(const UEdgeMap& cmap) {
1137 return operator=<UEdgeMap>(cmap);
1140 template <typename CMap>
1141 UEdgeMap& operator=(const CMap& cmap) {
1142 Parent::operator=(cmap);
1150 template <typename _Graph, typename Enable = void>
1151 class AlterableUndirGraphAdaptor
1152 : public UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > {
1154 typedef UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > Parent;
1158 AlterableUndirGraphAdaptor() : Parent() {}
1162 typedef typename Parent::EdgeNotifier UEdgeNotifier;
1163 typedef InvalidType EdgeNotifier;
1167 template <typename _Graph>
1168 class AlterableUndirGraphAdaptor<
1170 typename enable_if<typename _Graph::EdgeNotifier::Notifier>::type >
1171 : public UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > {
1174 typedef UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > Parent;
1175 typedef _Graph Graph;
1176 typedef typename _Graph::Edge GraphEdge;
1180 AlterableUndirGraphAdaptor()
1181 : Parent(), edge_notifier(*this), edge_notifier_proxy(*this) {}
1183 void setGraph(_Graph& graph) {
1184 Parent::setGraph(graph);
1185 edge_notifier_proxy.setNotifier(graph.getNotifier(GraphEdge()));
1190 ~AlterableUndirGraphAdaptor() {
1191 edge_notifier.clear();
1194 typedef typename Parent::UEdge UEdge;
1195 typedef typename Parent::Edge Edge;
1197 typedef typename Parent::EdgeNotifier UEdgeNotifier;
1199 using Parent::getNotifier;
1201 typedef AlterationNotifier<AlterableUndirGraphAdaptor,
1203 EdgeNotifier& getNotifier(Edge) const { return edge_notifier; }
1207 class NotifierProxy : public Graph::EdgeNotifier::ObserverBase {
1210 typedef typename Graph::EdgeNotifier::ObserverBase Parent;
1211 typedef AlterableUndirGraphAdaptor AdaptorBase;
1213 NotifierProxy(const AdaptorBase& _adaptor)
1214 : Parent(), adaptor(&_adaptor) {
1217 virtual ~NotifierProxy() {
1218 if (Parent::attached()) {
1223 void setNotifier(typename Graph::EdgeNotifier& notifier) {
1224 Parent::attach(notifier);
1230 virtual void add(const GraphEdge& ge) {
1231 std::vector<Edge> edges;
1232 edges.push_back(AdaptorBase::Parent::direct(ge, true));
1233 edges.push_back(AdaptorBase::Parent::direct(ge, false));
1234 adaptor->getNotifier(Edge()).add(edges);
1236 virtual void add(const std::vector<GraphEdge>& ge) {
1237 std::vector<Edge> edges;
1238 for (int i = 0; i < (int)ge.size(); ++i) {
1239 edges.push_back(AdaptorBase::Parent::direct(ge[i], true));
1240 edges.push_back(AdaptorBase::Parent::direct(ge[i], false));
1242 adaptor->getNotifier(Edge()).add(edges);
1244 virtual void erase(const GraphEdge& ge) {
1245 std::vector<Edge> edges;
1246 edges.push_back(AdaptorBase::Parent::direct(ge, true));
1247 edges.push_back(AdaptorBase::Parent::direct(ge, false));
1248 adaptor->getNotifier(Edge()).erase(edges);
1250 virtual void erase(const std::vector<GraphEdge>& ge) {
1251 std::vector<Edge> edges;
1252 for (int i = 0; i < (int)ge.size(); ++i) {
1253 edges.push_back(AdaptorBase::Parent::direct(ge[i], true));
1254 edges.push_back(AdaptorBase::Parent::direct(ge[i], false));
1256 adaptor->getNotifier(Edge()).erase(edges);
1258 virtual void build() {
1259 adaptor->getNotifier(Edge()).build();
1261 virtual void clear() {
1262 adaptor->getNotifier(Edge()).clear();
1265 const AdaptorBase* adaptor;
1269 mutable EdgeNotifier edge_notifier;
1270 NotifierProxy edge_notifier_proxy;
1275 ///\ingroup graph_adaptors
1277 /// \brief An undirected graph is made from a directed graph by an adaptor
1279 /// Undocumented, untested!!!
1280 /// If somebody knows nice demo application, let's polulate it.
1282 /// \author Marton Makai
1283 template<typename _Graph>
1284 class UndirGraphAdaptor : public AlterableUndirGraphAdaptor<_Graph> {
1286 typedef _Graph Graph;
1287 typedef AlterableUndirGraphAdaptor<_Graph> Parent;
1289 UndirGraphAdaptor() { }
1291 UndirGraphAdaptor(_Graph& _graph) {
1295 template <typename _ForwardMap, typename _BackwardMap>
1296 class CombinedEdgeMap {
1299 typedef _ForwardMap ForwardMap;
1300 typedef _BackwardMap BackwardMap;
1302 typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
1304 typedef typename ForwardMap::Value Value;
1305 typedef typename Parent::Edge Key;
1307 CombinedEdgeMap() : forward_map(0), backward_map(0) {}
1309 CombinedEdgeMap(ForwardMap& _forward_map, BackwardMap& _backward_map)
1310 : forward_map(&_forward_map), backward_map(&_backward_map) {}
1312 void set(const Key& e, const Value& a) {
1313 if (Parent::direction(e)) {
1314 forward_map->set(e, a);
1316 backward_map->set(e, a);
1320 typename MapTraits<ForwardMap>::ConstReturnValue
1321 operator[](const Key& e) const {
1322 if (Parent::direction(e)) {
1323 return (*forward_map)[e];
1325 return (*backward_map)[e];
1329 typename MapTraits<ForwardMap>::ReturnValue
1330 operator[](const Key& e) {
1331 if (Parent::direction(e)) {
1332 return (*forward_map)[e];
1334 return (*backward_map)[e];
1338 void setForwardMap(ForwardMap& _forward_map) {
1339 forward_map = &_forward_map;
1342 void setBackwardMap(BackwardMap& _backward_map) {
1343 backward_map = &_backward_map;
1348 ForwardMap* forward_map;
1349 BackwardMap* backward_map;
1355 /// \brief Just gives back an undir graph adaptor
1357 /// Just gives back an undir graph adaptor
1358 template<typename Graph>
1359 UndirGraphAdaptor<const Graph>
1360 undirGraphAdaptor(const Graph& graph) {
1361 return UndirGraphAdaptor<const Graph>(graph);
1364 template<typename Graph, typename Number,
1365 typename CapacityMap, typename FlowMap,
1366 typename Tolerance = Tolerance<Number> >
1367 class ResForwardFilter {
1368 const CapacityMap* capacity;
1369 const FlowMap* flow;
1370 Tolerance tolerance;
1372 typedef typename Graph::Edge Key;
1375 ResForwardFilter(const CapacityMap& _capacity, const FlowMap& _flow,
1376 const Tolerance& _tolerance = Tolerance())
1377 : capacity(&_capacity), flow(&_flow), tolerance(_tolerance) { }
1379 ResForwardFilter(const Tolerance& _tolerance)
1380 : capacity(0), flow(0), tolerance(_tolerance) { }
1382 void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
1383 void setFlow(const FlowMap& _flow) { flow = &_flow; }
1385 bool operator[](const typename Graph::Edge& e) const {
1386 return tolerance.less((*flow)[e], (*capacity)[e]);
1390 template<typename Graph, typename Number,
1391 typename CapacityMap, typename FlowMap,
1392 typename Tolerance = Tolerance<Number> >
1393 class ResBackwardFilter {
1394 const CapacityMap* capacity;
1395 const FlowMap* flow;
1396 Tolerance tolerance;
1398 typedef typename Graph::Edge Key;
1401 ResBackwardFilter(const CapacityMap& _capacity, const FlowMap& _flow,
1402 const Tolerance& _tolerance = Tolerance())
1403 : capacity(&_capacity), flow(&_flow), tolerance(_tolerance) { }
1404 ResBackwardFilter(const Tolerance& _tolerance = Tolerance())
1405 : capacity(0), flow(0), tolerance(_tolerance) { }
1406 void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
1407 void setFlow(const FlowMap& _flow) { flow = &_flow; }
1408 bool operator[](const typename Graph::Edge& e) const {
1409 return tolerance.less(0, Number((*flow)[e]));
1414 ///\ingroup graph_adaptors
1416 ///\brief An adaptor for composing the residual
1417 ///graph for directed flow and circulation problems.
1419 ///An adaptor for composing the residual graph for directed flow and
1420 ///circulation problems. Let \f$ G=(V, A) \f$ be a directed graph
1421 ///and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F \f$,
1422 ///be functions on the edge-set.
1424 ///In the appications of ResGraphAdaptor, \f$ f \f$ usually stands
1425 ///for a flow and \f$ c \f$ for a capacity function. Suppose that a
1426 ///graph instange \c g of type \c ListGraph implements \f$ G \f$.
1432 ///Then RevGraphAdaptor implements the graph structure with node-set
1433 /// \f$ V \f$ and edge-set \f$ A_{forward}\cup A_{backward} \f$,
1434 ///where \f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$ and
1435 /// \f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$, i.e. the so called
1436 ///residual graph. When we take the union
1437 /// \f$ A_{forward}\cup A_{backward} \f$, multilicities are counted, i.e.
1438 ///if an edge is in both \f$ A_{forward} \f$ and \f$ A_{backward} \f$,
1439 ///then in the adaptor it appears twice. The following code shows how
1440 ///such an instance can be constructed.
1443 /// typedef ListGraph Graph;
1444 /// Graph::EdgeMap<int> f(g);
1445 /// Graph::EdgeMap<int> c(g);
1446 /// ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > ga(g);
1448 ///\author Marton Makai
1450 template<typename Graph, typename Number,
1451 typename CapacityMap, typename FlowMap,
1452 typename Tolerance = Tolerance<Number> >
1453 class ResGraphAdaptor :
1454 public EdgeSubGraphAdaptor<
1455 UndirGraphAdaptor<const Graph>,
1456 typename UndirGraphAdaptor<const Graph>::template CombinedEdgeMap<
1457 ResForwardFilter<const Graph, Number, CapacityMap, FlowMap>,
1458 ResBackwardFilter<const Graph, Number, CapacityMap, FlowMap> > > {
1461 typedef UndirGraphAdaptor<const Graph> UGraph;
1463 typedef ResForwardFilter<const Graph, Number, CapacityMap, FlowMap>
1466 typedef ResBackwardFilter<const Graph, Number, CapacityMap, FlowMap>
1469 typedef typename UGraph::
1470 template CombinedEdgeMap<ForwardFilter, BackwardFilter>
1473 typedef EdgeSubGraphAdaptor<UGraph, EdgeFilter> Parent;
1477 const CapacityMap* capacity;
1481 ForwardFilter forward_filter;
1482 BackwardFilter backward_filter;
1483 EdgeFilter edge_filter;
1485 void setCapacityMap(const CapacityMap& _capacity) {
1486 capacity=&_capacity;
1487 forward_filter.setCapacity(_capacity);
1488 backward_filter.setCapacity(_capacity);
1491 void setFlowMap(FlowMap& _flow) {
1493 forward_filter.setFlow(_flow);
1494 backward_filter.setFlow(_flow);
1499 /// \brief Constructor of the residual graph.
1501 /// Constructor of the residual graph. The parameters are the graph type,
1502 /// the flow map, the capacity map and a tolerance object.
1503 ResGraphAdaptor(const Graph& _graph, const CapacityMap& _capacity,
1504 FlowMap& _flow, const Tolerance& _tolerance = Tolerance())
1505 : Parent(), capacity(&_capacity), flow(&_flow), ugraph(_graph),
1506 forward_filter(_capacity, _flow, _tolerance),
1507 backward_filter(_capacity, _flow, _tolerance),
1508 edge_filter(forward_filter, backward_filter)
1510 Parent::setGraph(ugraph);
1511 Parent::setEdgeFilterMap(edge_filter);
1514 typedef typename Parent::Edge Edge;
1516 /// \brief Gives back the residual capacity of the edge.
1518 /// Gives back the residual capacity of the edge.
1519 Number rescap(const Edge& edge) const {
1520 if (UGraph::direction(edge)) {
1521 return (*capacity)[edge]-(*flow)[edge];
1523 return (*flow)[edge];
1527 /// \brief Augment on the given edge in the residual graph.
1529 /// Augment on the given edge in the residual graph. It increase
1530 /// or decrease the flow on the original edge depend on the direction
1531 /// of the residual edge.
1532 void augment(const Edge& e, Number a) const {
1533 if (UGraph::direction(e)) {
1534 flow->set(e, (*flow)[e] + a);
1536 flow->set(e, (*flow)[e] - a);
1540 /// \brief Returns the direction of the edge.
1542 /// Returns true when the edge is same oriented as the original edge.
1543 static bool forward(const Edge& e) {
1544 return UGraph::direction(e);
1547 /// \brief Returns the direction of the edge.
1549 /// Returns true when the edge is opposite oriented as the original edge.
1550 static bool backward(const Edge& e) {
1551 return !UGraph::direction(e);
1554 /// \brief Gives back the forward oriented residual edge.
1556 /// Gives back the forward oriented residual edge.
1557 static Edge forward(const typename Graph::Edge& e) {
1558 return UGraph::direct(e, true);
1561 /// \brief Gives back the backward oriented residual edge.
1563 /// Gives back the backward oriented residual edge.
1564 static Edge backward(const typename Graph::Edge& e) {
1565 return UGraph::direct(e, false);
1568 /// \brief Residual capacity map.
1570 /// In generic residual graphs the residual capacity can be obtained
1574 const ResGraphAdaptor* res_graph;
1576 typedef Number Value;
1578 ResCap(const ResGraphAdaptor& _res_graph)
1579 : res_graph(&_res_graph) {}
1581 Number operator[](const Edge& e) const {
1582 return res_graph->rescap(e);
1591 template <typename _Graph, typename FirstOutEdgesMap>
1592 class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
1594 typedef _Graph Graph;
1595 typedef GraphAdaptorBase<_Graph> Parent;
1597 FirstOutEdgesMap* first_out_edges;
1598 ErasingFirstGraphAdaptorBase() : Parent(),
1599 first_out_edges(0) { }
1601 void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
1602 first_out_edges=&_first_out_edges;
1607 typedef typename Parent::Node Node;
1608 typedef typename Parent::Edge Edge;
1610 void firstOut(Edge& i, const Node& n) const {
1611 i=(*first_out_edges)[n];
1614 void erase(const Edge& e) const {
1618 first_out_edges->set(n, f);
1623 ///\ingroup graph_adaptors
1625 ///\brief For blocking flows.
1627 ///This graph adaptor is used for on-the-fly
1628 ///Dinits blocking flow computations.
1629 ///For each node, an out-edge is stored which is used when the
1631 ///OutEdgeIt& first(OutEdgeIt&, const Node&)
1635 ///\author Marton Makai
1637 template <typename _Graph, typename FirstOutEdgesMap>
1638 class ErasingFirstGraphAdaptor :
1639 public GraphAdaptorExtender<
1640 ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
1642 typedef _Graph Graph;
1643 typedef GraphAdaptorExtender<
1644 ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
1645 ErasingFirstGraphAdaptor(Graph& _graph,
1646 FirstOutEdgesMap& _first_out_edges) {
1648 setFirstOutEdgesMap(_first_out_edges);
1653 /// \brief Base class for split graph adaptor
1655 /// Base class of split graph adaptor. In most case you do not need to
1656 /// use it directly but the documented member functions of this class can
1657 /// be used with the SplitGraphAdaptor class.
1658 /// \sa SplitGraphAdaptor
1659 template <typename _Graph>
1660 class SplitGraphAdaptorBase
1661 : public GraphAdaptorBase<const _Graph> {
1664 typedef _Graph Graph;
1666 typedef GraphAdaptorBase<const _Graph> Parent;
1668 typedef typename Graph::Node GraphNode;
1669 typedef typename Graph::Edge GraphEdge;
1674 template <typename T> class NodeMap;
1675 template <typename T> class EdgeMap;
1678 class Node : public GraphNode {
1679 friend class SplitGraphAdaptorBase;
1680 template <typename T> friend class NodeMap;
1684 Node(GraphNode _node, bool _in_node)
1685 : GraphNode(_node), in_node(_in_node) {}
1690 Node(Invalid) : GraphNode(INVALID), in_node(true) {}
1692 bool operator==(const Node& node) const {
1693 return GraphNode::operator==(node) && in_node == node.in_node;
1696 bool operator!=(const Node& node) const {
1697 return !(*this == node);
1700 bool operator<(const Node& node) const {
1701 return GraphNode::operator<(node) ||
1702 (GraphNode::operator==(node) && in_node < node.in_node);
1707 friend class SplitGraphAdaptorBase;
1708 template <typename T> friend class EdgeMap;
1710 typedef BiVariant<GraphEdge, GraphNode> EdgeImpl;
1712 explicit Edge(const GraphEdge& edge) : item(edge) {}
1713 explicit Edge(const GraphNode& node) : item(node) {}
1719 Edge(Invalid) : item(GraphEdge(INVALID)) {}
1721 bool operator==(const Edge& edge) const {
1722 if (item.firstState()) {
1723 if (edge.item.firstState()) {
1724 return item.first() == edge.item.first();
1727 if (edge.item.secondState()) {
1728 return item.second() == edge.item.second();
1734 bool operator!=(const Edge& edge) const {
1735 return !(*this == edge);
1738 bool operator<(const Edge& edge) const {
1739 if (item.firstState()) {
1740 if (edge.item.firstState()) {
1741 return item.first() < edge.item.first();
1745 if (edge.item.secondState()) {
1746 return item.second() < edge.item.second();
1752 operator GraphEdge() const { return item.first(); }
1753 operator GraphNode() const { return item.second(); }
1757 void first(Node& node) const {
1758 Parent::first(node);
1759 node.in_node = true;
1762 void next(Node& node) const {
1764 node.in_node = false;
1766 node.in_node = true;
1771 void first(Edge& edge) const {
1772 edge.item.setSecond();
1773 Parent::first(edge.item.second());
1774 if (edge.item.second() == INVALID) {
1775 edge.item.setFirst();
1776 Parent::first(edge.item.first());
1780 void next(Edge& edge) const {
1781 if (edge.item.secondState()) {
1782 Parent::next(edge.item.second());
1783 if (edge.item.second() == INVALID) {
1784 edge.item.setFirst();
1785 Parent::first(edge.item.first());
1788 Parent::next(edge.item.first());
1792 void firstOut(Edge& edge, const Node& node) const {
1794 edge.item.setSecond(node);
1796 edge.item.setFirst();
1797 Parent::firstOut(edge.item.first(), node);
1801 void nextOut(Edge& edge) const {
1802 if (!edge.item.firstState()) {
1803 edge.item.setFirst(INVALID);
1805 Parent::nextOut(edge.item.first());
1809 void firstIn(Edge& edge, const Node& node) const {
1810 if (!node.in_node) {
1811 edge.item.setSecond(node);
1813 edge.item.setFirst();
1814 Parent::firstIn(edge.item.first(), node);
1818 void nextIn(Edge& edge) const {
1819 if (!edge.item.firstState()) {
1820 edge.item.setFirst(INVALID);
1822 Parent::nextIn(edge.item.first());
1826 Node source(const Edge& edge) const {
1827 if (edge.item.firstState()) {
1828 return Node(Parent::source(edge.item.first()), false);
1830 return Node(edge.item.second(), true);
1834 Node target(const Edge& edge) const {
1835 if (edge.item.firstState()) {
1836 return Node(Parent::target(edge.item.first()), true);
1838 return Node(edge.item.second(), false);
1842 int id(const Node& node) const {
1843 return (Parent::id(node) << 1) | (node.in_node ? 0 : 1);
1845 Node nodeFromId(int id) const {
1846 return Node(Parent::nodeFromId(id >> 1), (id & 1) == 0);
1848 int maxNodeId() const {
1849 return 2 * Parent::maxNodeId() + 1;
1852 int id(const Edge& edge) const {
1853 if (edge.item.firstState()) {
1854 return Parent::id(edge.item.first()) << 1;
1856 return (Parent::id(edge.item.second()) << 1) | 1;
1859 Edge edgeFromId(int id) const {
1860 if ((id & 1) == 0) {
1861 return Edge(Parent::edgeFromId(id >> 1));
1863 return Edge(Parent::nodeFromId(id >> 1));
1866 int maxEdgeId() const {
1867 return std::max(Parent::maxNodeId() << 1,
1868 (Parent::maxEdgeId() << 1) | 1);
1871 /// \brief Returns true when the node is in-node.
1873 /// Returns true when the node is in-node.
1874 static bool inNode(const Node& node) {
1875 return node.in_node;
1878 /// \brief Returns true when the node is out-node.
1880 /// Returns true when the node is out-node.
1881 static bool outNode(const Node& node) {
1882 return !node.in_node;
1885 /// \brief Returns true when the edge is edge in the original graph.
1887 /// Returns true when the edge is edge in the original graph.
1888 static bool origEdge(const Edge& edge) {
1889 return edge.item.firstState();
1892 /// \brief Returns true when the edge binds an in-node and an out-node.
1894 /// Returns true when the edge binds an in-node and an out-node.
1895 static bool bindEdge(const Edge& edge) {
1896 return edge.item.secondState();
1899 /// \brief Gives back the in-node created from the \c node.
1901 /// Gives back the in-node created from the \c node.
1902 static Node inNode(const GraphNode& node) {
1903 return Node(node, true);
1906 /// \brief Gives back the out-node created from the \c node.
1908 /// Gives back the out-node created from the \c node.
1909 static Node outNode(const GraphNode& node) {
1910 return Node(node, false);
1913 /// \brief Gives back the edge binds the two part of the node.
1915 /// Gives back the edge binds the two part of the node.
1916 static Edge edge(const GraphNode& node) {
1920 /// \brief Gives back the edge of the original edge.
1922 /// Gives back the edge of the original edge.
1923 static Edge edge(const GraphEdge& edge) {
1927 typedef True NodeNumTag;
1929 int nodeNum() const {
1930 return 2 * countNodes(*Parent::graph);
1933 typedef True EdgeNumTag;
1935 int edgeNum() const {
1936 return countEdges(*Parent::graph) + countNodes(*Parent::graph);
1939 typedef True FindEdgeTag;
1941 Edge findEdge(const Node& source, const Node& target,
1942 const Edge& prev = INVALID) const {
1943 if (inNode(source)) {
1944 if (outNode(target)) {
1945 if ((GraphNode&)source == (GraphNode&)target && prev == INVALID) {
1946 return Edge(source);
1950 if (inNode(target)) {
1951 return Edge(findEdge(*Parent::graph, source, target, prev));
1957 template <typename T>
1958 class NodeMap : public MapBase<Node, T> {
1959 typedef typename Parent::template NodeMap<T> NodeImpl;
1961 NodeMap(const SplitGraphAdaptorBase& _graph)
1962 : inNodeMap(_graph), outNodeMap(_graph) {}
1963 NodeMap(const SplitGraphAdaptorBase& _graph, const T& t)
1964 : inNodeMap(_graph, t), outNodeMap(_graph, t) {}
1966 void set(const Node& key, const T& val) {
1967 if (SplitGraphAdaptorBase::inNode(key)) { inNodeMap.set(key, val); }
1968 else {outNodeMap.set(key, val); }
1971 typename MapTraits<NodeImpl>::ReturnValue
1972 operator[](const Node& key) {
1973 if (SplitGraphAdaptorBase::inNode(key)) { return inNodeMap[key]; }
1974 else { return outNodeMap[key]; }
1977 typename MapTraits<NodeImpl>::ConstReturnValue
1978 operator[](const Node& key) const {
1979 if (SplitGraphAdaptorBase::inNode(key)) { return inNodeMap[key]; }
1980 else { return outNodeMap[key]; }
1984 NodeImpl inNodeMap, outNodeMap;
1987 template <typename T>
1988 class EdgeMap : public MapBase<Edge, T> {
1989 typedef typename Parent::template EdgeMap<T> EdgeMapImpl;
1990 typedef typename Parent::template NodeMap<T> NodeMapImpl;
1993 EdgeMap(const SplitGraphAdaptorBase& _graph)
1994 : edge_map(_graph), node_map(_graph) {}
1995 EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t)
1996 : edge_map(_graph, t), node_map(_graph, t) {}
1998 void set(const Edge& key, const T& val) {
1999 if (SplitGraphAdaptorBase::origEdge(key)) {
2000 edge_map.set(key.item.first(), val);
2002 node_map.set(key.item.second(), val);
2006 typename MapTraits<EdgeMapImpl>::ReturnValue
2007 operator[](const Edge& key) {
2008 if (SplitGraphAdaptorBase::origEdge(key)) {
2009 return edge_map[key.item.first()];
2011 return node_map[key.item.second()];
2015 typename MapTraits<EdgeMapImpl>::ConstReturnValue
2016 operator[](const Edge& key) const {
2017 if (SplitGraphAdaptorBase::origEdge(key)) {
2018 return edge_map[key.item.first()];
2020 return node_map[key.item.second()];
2025 typename Parent::template EdgeMap<T> edge_map;
2026 typename Parent::template NodeMap<T> node_map;
2032 template <typename _Graph, typename NodeEnable = void,
2033 typename EdgeEnable = void>
2034 class AlterableSplitGraphAdaptor
2035 : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
2038 typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
2039 typedef _Graph Graph;
2041 typedef typename Graph::Node GraphNode;
2042 typedef typename Graph::Node GraphEdge;
2046 AlterableSplitGraphAdaptor() : Parent() {}
2050 typedef InvalidType NodeNotifier;
2051 typedef InvalidType EdgeNotifier;
2055 template <typename _Graph, typename EdgeEnable>
2056 class AlterableSplitGraphAdaptor<
2058 typename enable_if<typename _Graph::NodeNotifier::Notifier>::type,
2060 : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
2063 typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
2064 typedef _Graph Graph;
2066 typedef typename Graph::Node GraphNode;
2067 typedef typename Graph::Edge GraphEdge;
2069 typedef typename Parent::Node Node;
2070 typedef typename Parent::Edge Edge;
2074 AlterableSplitGraphAdaptor()
2075 : Parent(), node_notifier(*this), node_notifier_proxy(*this) {}
2077 void setGraph(_Graph& graph) {
2078 Parent::setGraph(graph);
2079 node_notifier_proxy.setNotifier(graph.getNotifier(GraphNode()));
2084 ~AlterableSplitGraphAdaptor() {
2085 node_notifier.clear();
2088 typedef AlterationNotifier<AlterableSplitGraphAdaptor, Node> NodeNotifier;
2089 typedef InvalidType EdgeNotifier;
2091 NodeNotifier& getNotifier(Node) const { return node_notifier; }
2095 class NodeNotifierProxy : public Graph::NodeNotifier::ObserverBase {
2098 typedef typename Graph::NodeNotifier::ObserverBase Parent;
2099 typedef AlterableSplitGraphAdaptor AdaptorBase;
2101 NodeNotifierProxy(const AdaptorBase& _adaptor)
2102 : Parent(), adaptor(&_adaptor) {
2105 virtual ~NodeNotifierProxy() {
2106 if (Parent::attached()) {
2111 void setNotifier(typename Graph::NodeNotifier& graph_notifier) {
2112 Parent::attach(graph_notifier);
2118 virtual void add(const GraphNode& gn) {
2119 std::vector<Node> nodes;
2120 nodes.push_back(AdaptorBase::Parent::inNode(gn));
2121 nodes.push_back(AdaptorBase::Parent::outNode(gn));
2122 adaptor->getNotifier(Node()).add(nodes);
2125 virtual void add(const std::vector<GraphNode>& gn) {
2126 std::vector<Node> nodes;
2127 for (int i = 0; i < (int)gn.size(); ++i) {
2128 nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
2129 nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
2131 adaptor->getNotifier(Node()).add(nodes);
2134 virtual void erase(const GraphNode& gn) {
2135 std::vector<Node> nodes;
2136 nodes.push_back(AdaptorBase::Parent::inNode(gn));
2137 nodes.push_back(AdaptorBase::Parent::outNode(gn));
2138 adaptor->getNotifier(Node()).erase(nodes);
2141 virtual void erase(const std::vector<GraphNode>& gn) {
2142 std::vector<Node> nodes;
2143 for (int i = 0; i < (int)gn.size(); ++i) {
2144 nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
2145 nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
2147 adaptor->getNotifier(Node()).erase(nodes);
2149 virtual void build() {
2150 adaptor->getNotifier(Node()).build();
2152 virtual void clear() {
2153 adaptor->getNotifier(Node()).clear();
2156 const AdaptorBase* adaptor;
2160 mutable NodeNotifier node_notifier;
2162 NodeNotifierProxy node_notifier_proxy;
2166 template <typename _Graph>
2167 class AlterableSplitGraphAdaptor<
2169 typename enable_if<typename _Graph::NodeNotifier::Notifier>::type,
2170 typename enable_if<typename _Graph::EdgeNotifier::Notifier>::type>
2171 : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
2174 typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
2175 typedef _Graph Graph;
2177 typedef typename Graph::Node GraphNode;
2178 typedef typename Graph::Edge GraphEdge;
2180 typedef typename Parent::Node Node;
2181 typedef typename Parent::Edge Edge;
2185 AlterableSplitGraphAdaptor()
2186 : Parent(), node_notifier(*this), edge_notifier(*this),
2187 node_notifier_proxy(*this), edge_notifier_proxy(*this) {}
2189 void setGraph(_Graph& graph) {
2190 Parent::setGraph(graph);
2191 node_notifier_proxy.setNotifier(graph.getNotifier(GraphNode()));
2192 edge_notifier_proxy.setNotifier(graph.getNotifier(GraphEdge()));
2197 ~AlterableSplitGraphAdaptor() {
2198 node_notifier.clear();
2199 edge_notifier.clear();
2202 typedef AlterationNotifier<AlterableSplitGraphAdaptor, Node> NodeNotifier;
2203 typedef AlterationNotifier<AlterableSplitGraphAdaptor, Edge> EdgeNotifier;
2205 NodeNotifier& getNotifier(Node) const { return node_notifier; }
2206 EdgeNotifier& getNotifier(Edge) const { return edge_notifier; }
2210 class NodeNotifierProxy : public Graph::NodeNotifier::ObserverBase {
2213 typedef typename Graph::NodeNotifier::ObserverBase Parent;
2214 typedef AlterableSplitGraphAdaptor AdaptorBase;
2216 NodeNotifierProxy(const AdaptorBase& _adaptor)
2217 : Parent(), adaptor(&_adaptor) {
2220 virtual ~NodeNotifierProxy() {
2221 if (Parent::attached()) {
2226 void setNotifier(typename Graph::NodeNotifier& graph_notifier) {
2227 Parent::attach(graph_notifier);
2233 virtual void add(const GraphNode& gn) {
2234 std::vector<Node> nodes;
2235 nodes.push_back(AdaptorBase::Parent::inNode(gn));
2236 nodes.push_back(AdaptorBase::Parent::outNode(gn));
2237 adaptor->getNotifier(Node()).add(nodes);
2238 adaptor->getNotifier(Edge()).add(AdaptorBase::Parent::edge(gn));
2240 virtual void add(const std::vector<GraphNode>& gn) {
2241 std::vector<Node> nodes;
2242 std::vector<Edge> edges;
2243 for (int i = 0; i < (int)gn.size(); ++i) {
2244 edges.push_back(AdaptorBase::Parent::edge(gn[i]));
2245 nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
2246 nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
2248 adaptor->getNotifier(Node()).add(nodes);
2249 adaptor->getNotifier(Edge()).add(edges);
2251 virtual void erase(const GraphNode& gn) {
2252 adaptor->getNotifier(Edge()).erase(AdaptorBase::Parent::edge(gn));
2253 std::vector<Node> nodes;
2254 nodes.push_back(AdaptorBase::Parent::inNode(gn));
2255 nodes.push_back(AdaptorBase::Parent::outNode(gn));
2256 adaptor->getNotifier(Node()).erase(nodes);
2258 virtual void erase(const std::vector<GraphNode>& gn) {
2259 std::vector<Node> nodes;
2260 std::vector<Edge> edges;
2261 for (int i = 0; i < (int)gn.size(); ++i) {
2262 edges.push_back(AdaptorBase::Parent::edge(gn[i]));
2263 nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
2264 nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
2266 adaptor->getNotifier(Edge()).erase(edges);
2267 adaptor->getNotifier(Node()).erase(nodes);
2269 virtual void build() {
2270 std::vector<Edge> edges;
2271 const typename Parent::Notifier* notifier = Parent::getNotifier();
2273 for (notifier->first(it); it != INVALID; notifier->next(it)) {
2274 edges.push_back(AdaptorBase::Parent::edge(it));
2276 adaptor->getNotifier(Node()).build();
2277 adaptor->getNotifier(Edge()).add(edges);
2279 virtual void clear() {
2280 std::vector<Edge> edges;
2281 const typename Parent::Notifier* notifier = Parent::getNotifier();
2283 for (notifier->first(it); it != INVALID; notifier->next(it)) {
2284 edges.push_back(AdaptorBase::Parent::edge(it));
2286 adaptor->getNotifier(Edge()).erase(edges);
2287 adaptor->getNotifier(Node()).clear();
2290 const AdaptorBase* adaptor;
2293 class EdgeNotifierProxy : public Graph::EdgeNotifier::ObserverBase {
2296 typedef typename Graph::EdgeNotifier::ObserverBase Parent;
2297 typedef AlterableSplitGraphAdaptor AdaptorBase;
2299 EdgeNotifierProxy(const AdaptorBase& _adaptor)
2300 : Parent(), adaptor(&_adaptor) {
2303 virtual ~EdgeNotifierProxy() {
2304 if (Parent::attached()) {
2309 void setNotifier(typename Graph::EdgeNotifier& graph_notifier) {
2310 Parent::attach(graph_notifier);
2316 virtual void add(const GraphEdge& ge) {
2317 adaptor->getNotifier(Edge()).add(AdaptorBase::edge(ge));
2319 virtual void add(const std::vector<GraphEdge>& ge) {
2320 std::vector<Edge> edges;
2321 for (int i = 0; i < (int)ge.size(); ++i) {
2322 edges.push_back(AdaptorBase::edge(ge[i]));
2324 adaptor->getNotifier(Edge()).add(edges);
2326 virtual void erase(const GraphEdge& ge) {
2327 adaptor->getNotifier(Edge()).erase(AdaptorBase::edge(ge));
2329 virtual void erase(const std::vector<GraphEdge>& ge) {
2330 std::vector<Edge> edges;
2331 for (int i = 0; i < (int)ge.size(); ++i) {
2332 edges.push_back(AdaptorBase::edge(ge[i]));
2334 adaptor->getNotifier(Edge()).erase(edges);
2336 virtual void build() {
2337 std::vector<Edge> edges;
2338 const typename Parent::Notifier* notifier = Parent::getNotifier();
2340 for (notifier->first(it); it != INVALID; notifier->next(it)) {
2341 edges.push_back(AdaptorBase::Parent::edge(it));
2343 adaptor->getNotifier(Edge()).add(edges);
2345 virtual void clear() {
2346 std::vector<Edge> edges;
2347 const typename Parent::Notifier* notifier = Parent::getNotifier();
2349 for (notifier->first(it); it != INVALID; notifier->next(it)) {
2350 edges.push_back(AdaptorBase::Parent::edge(it));
2352 adaptor->getNotifier(Edge()).erase(edges);
2355 const AdaptorBase* adaptor;
2359 mutable NodeNotifier node_notifier;
2360 mutable EdgeNotifier edge_notifier;
2362 NodeNotifierProxy node_notifier_proxy;
2363 EdgeNotifierProxy edge_notifier_proxy;
2367 /// \ingroup graph_adaptors
2369 /// \brief Split graph adaptor class
2371 /// This is an graph adaptor which splits all node into an in-node
2372 /// and an out-node. Formaly, the adaptor replaces each \f$ u \f$
2373 /// node in the graph with two node, \f$ u_{in} \f$ node and
2374 /// \f$ u_{out} \f$ node. If there is an \f$ (v, u) \f$ edge in the
2375 /// original graph the new target of the edge will be \f$ u_{in} \f$ and
2376 /// similarly the source of the original \f$ (u, v) \f$ edge will be
2377 /// \f$ u_{out} \f$. The adaptor will add for each node in the
2378 /// original graph an additional edge which will connect
2379 /// \f$ (u_{in}, u_{out}) \f$.
2381 /// The aim of this class is to run algorithm with node costs if the
2382 /// algorithm can use directly just edge costs. In this case we should use
2383 /// a \c SplitGraphAdaptor and set the node cost of the graph to the
2384 /// bind edge in the adapted graph.
2386 /// By example a maximum flow algoritm can compute how many edge
2387 /// disjoint paths are in the graph. But we would like to know how
2388 /// many node disjoint paths are in the graph. First we have to
2389 /// adapt the graph with the \c SplitGraphAdaptor. Then run the flow
2390 /// algorithm on the adapted graph. The bottleneck of the flow will
2391 /// be the bind edges which bounds the flow with the count of the
2392 /// node disjoint paths.
2396 /// typedef SplitGraphAdaptor<SmartGraph> SGraph;
2398 /// SGraph sgraph(graph);
2400 /// typedef ConstMap<SGraph::Edge, int> SCapacity;
2401 /// SCapacity scapacity(1);
2403 /// SGraph::EdgeMap<int> sflow(sgraph);
2405 /// Preflow<SGraph, int, SCapacity>
2406 /// spreflow(sgraph, SGraph::outNode(source),SGraph::inNode(target),
2407 /// scapacity, sflow);
2413 /// The result of the mamixum flow on the original graph
2414 /// shows the next figure:
2416 /// \image html edge_disjoint.png
2417 /// \image latex edge_disjoint.eps "Edge disjoint paths" width=\textwidth
2419 /// And the maximum flow on the adapted graph:
2421 /// \image html node_disjoint.png
2422 /// \image latex node_disjoint.eps "Node disjoint paths" width=\textwidth
2424 /// The second solution contains just 3 disjoint paths while the first 4.
2425 /// The full code can be found in the \ref disjoint_paths_demo.cc demo file.
2427 /// This graph adaptor is fully conform to the
2428 /// \ref concept::Graph "Graph" concept and
2429 /// contains some additional member functions and types. The
2430 /// documentation of some member functions may be found just in the
2431 /// SplitGraphAdaptorBase class.
2433 /// \sa SplitGraphAdaptorBase
2434 template <typename _Graph>
2435 class SplitGraphAdaptor : public AlterableSplitGraphAdaptor<_Graph> {
2437 typedef AlterableSplitGraphAdaptor<_Graph> Parent;
2439 typedef typename Parent::Node Node;
2440 typedef typename Parent::Edge Edge;
2442 /// \brief Constructor of the adaptor.
2444 /// Constructor of the adaptor.
2445 SplitGraphAdaptor(_Graph& graph) {
2446 Parent::setGraph(graph);
2449 /// \brief NodeMap combined from two original NodeMap
2451 /// This class adapt two of the original graph NodeMap to
2452 /// get a node map on the adapted graph.
2453 template <typename InNodeMap, typename OutNodeMap>
2454 class CombinedNodeMap {
2458 typedef typename InNodeMap::Value Value;
2460 /// \brief Constructor
2463 CombinedNodeMap(InNodeMap& _inNodeMap, OutNodeMap& _outNodeMap)
2464 : inNodeMap(_inNodeMap), outNodeMap(_outNodeMap) {}
2466 /// \brief The subscript operator.
2468 /// The subscript operator.
2469 Value& operator[](const Key& key) {
2470 if (Parent::inNode(key)) {
2471 return inNodeMap[key];
2473 return outNodeMap[key];
2477 /// \brief The const subscript operator.
2479 /// The const subscript operator.
2480 Value operator[](const Key& key) const {
2481 if (Parent::inNode(key)) {
2482 return inNodeMap[key];
2484 return outNodeMap[key];
2488 /// \brief The setter function of the map.
2490 /// The setter function of the map.
2491 void set(const Key& key, const Value& value) {
2492 if (Parent::inNode(key)) {
2493 inNodeMap.set(key, value);
2495 outNodeMap.set(key, value);
2501 InNodeMap& inNodeMap;
2502 OutNodeMap& outNodeMap;
2507 /// \brief Just gives back a combined node map.
2509 /// Just gives back a combined node map.
2510 template <typename InNodeMap, typename OutNodeMap>
2511 static CombinedNodeMap<InNodeMap, OutNodeMap>
2512 combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
2513 return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
2516 template <typename InNodeMap, typename OutNodeMap>
2517 static CombinedNodeMap<const InNodeMap, OutNodeMap>
2518 combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
2519 return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
2522 template <typename InNodeMap, typename OutNodeMap>
2523 static CombinedNodeMap<InNodeMap, const OutNodeMap>
2524 combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
2525 return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
2528 template <typename InNodeMap, typename OutNodeMap>
2529 static CombinedNodeMap<const InNodeMap, const OutNodeMap>
2530 combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
2531 return CombinedNodeMap<const InNodeMap,
2532 const OutNodeMap>(in_map, out_map);
2535 /// \brief EdgeMap combined from an original EdgeMap and NodeMap
2537 /// This class adapt an original graph EdgeMap and NodeMap to
2538 /// get an edge map on the adapted graph.
2539 template <typename GraphEdgeMap, typename GraphNodeMap>
2540 class CombinedEdgeMap
2541 : public MapBase<Edge, typename GraphEdgeMap::Value> {
2543 typedef MapBase<Edge, typename GraphEdgeMap::Value> Parent;
2545 typedef typename Parent::Key Key;
2546 typedef typename Parent::Value Value;
2548 /// \brief Constructor
2551 CombinedEdgeMap(GraphEdgeMap& _edge_map, GraphNodeMap& _node_map)
2552 : edge_map(_edge_map), node_map(_node_map) {}
2554 /// \brief The subscript operator.
2556 /// The subscript operator.
2557 void set(const Edge& edge, const Value& val) {
2558 if (Parent::origEdge(edge)) {
2559 edge_map.set(edge, val);
2561 node_map.set(edge, val);
2565 /// \brief The const subscript operator.
2567 /// The const subscript operator.
2568 Value operator[](const Key& edge) const {
2569 if (Parent::origEdge(edge)) {
2570 return edge_map[edge];
2572 return node_map[edge];
2576 /// \brief The const subscript operator.
2578 /// The const subscript operator.
2579 Value& operator[](const Key& edge) {
2580 if (Parent::origEdge(edge)) {
2581 return edge_map[edge];
2583 return node_map[edge];
2588 GraphEdgeMap& edge_map;
2589 GraphNodeMap& node_map;
2592 /// \brief Just gives back a combined edge map.
2594 /// Just gives back a combined edge map.
2595 template <typename GraphEdgeMap, typename GraphNodeMap>
2596 static CombinedEdgeMap<GraphEdgeMap, GraphNodeMap>
2597 combinedEdgeMap(GraphEdgeMap& edge_map, GraphNodeMap& node_map) {
2598 return CombinedEdgeMap<GraphEdgeMap, GraphNodeMap>(edge_map, node_map);
2601 template <typename GraphEdgeMap, typename GraphNodeMap>
2602 static CombinedEdgeMap<const GraphEdgeMap, GraphNodeMap>
2603 combinedEdgeMap(const GraphEdgeMap& edge_map, GraphNodeMap& node_map) {
2604 return CombinedEdgeMap<const GraphEdgeMap,
2605 GraphNodeMap>(edge_map, node_map);
2608 template <typename GraphEdgeMap, typename GraphNodeMap>
2609 static CombinedEdgeMap<GraphEdgeMap, const GraphNodeMap>
2610 combinedEdgeMap(GraphEdgeMap& edge_map, const GraphNodeMap& node_map) {
2611 return CombinedEdgeMap<GraphEdgeMap,
2612 const GraphNodeMap>(edge_map, node_map);
2615 template <typename GraphEdgeMap, typename GraphNodeMap>
2616 static CombinedEdgeMap<const GraphEdgeMap, const GraphNodeMap>
2617 combinedEdgeMap(const GraphEdgeMap& edge_map,
2618 const GraphNodeMap& node_map) {
2619 return CombinedEdgeMap<const GraphEdgeMap,
2620 const GraphNodeMap>(edge_map, node_map);
2625 /// \brief Just gives back a split graph adaptor
2627 /// Just gives back a split graph adaptor
2628 template<typename Graph>
2629 SplitGraphAdaptor<Graph>
2630 splitGraphAdaptor(const Graph& graph) {
2631 return SplitGraphAdaptor<Graph>(graph);
2637 #endif //LEMON_GRAPH_ADAPTOR_H