FullGraph class.
7 #include <list_graph.h>
13 class string_int_map : public map<string,int> {
15 int get(const string &s) {
16 // Bocs, ez igy gaaaany, de nem volt kedvem utananezni, hogy
17 // hogy is mukodik ez a map :)
23 void set(const string &s, int i) {
29 // Egy olyan "map", ami nem tud semmit, csak a typedef-eket.
30 // Valami elegansabb megoldas kene a Kruskalban...
32 template <typename K, typename V>
41 typedef ListGraph::Node Node;
42 typedef ListGraph::Edge Edge;
43 typedef ListGraph::NodeIt NodeIt;
44 typedef ListGraph::EdgeIt EdgeIt;
55 Edge e1 = G.addEdge(s, v1);
56 Edge e2 = G.addEdge(s, v2);
57 Edge e3 = G.addEdge(v1, v2);
58 Edge e4 = G.addEdge(v2, v1);
59 Edge e5 = G.addEdge(v1, v3);
60 Edge e6 = G.addEdge(v3, v2);
61 Edge e7 = G.addEdge(v2, v4);
62 Edge e8 = G.addEdge(v4, v3);
63 Edge e9 = G.addEdge(v3, t);
64 Edge e10 = G.addEdge(v4, t);
66 typedef ListGraph::EdgeMap<double> ECostMap;
67 typedef ListGraph::EdgeMap<bool> EBoolMap;
69 ECostMap edge_cost_map(G, 2);
73 cout << "Uniform 2-es koltseggel: "
74 << Kruskal_EdgeCostMapIn_BoolMapOut(G, edge_cost_map, tree_map)
78 edge_cost_map.set(e1, -10);
79 edge_cost_map.set(e2, -9);
80 edge_cost_map.set(e3, -8);
81 edge_cost_map.set(e4, -7);
82 edge_cost_map.set(e5, -6);
83 edge_cost_map.set(e6, -5);
84 edge_cost_map.set(e7, -4);
85 edge_cost_map.set(e8, -3);
86 edge_cost_map.set(e9, -2);
87 edge_cost_map.set(e10, -1);
89 vector<Edge> tree_edge_vec;
91 cout << "Nemkonst koltseggel (-31): "
92 << Kruskal_EdgeCostMapIn_IteratorOut(G, edge_cost_map,
93 back_inserter(tree_edge_vec))
97 for(vector<Edge>::iterator e = tree_edge_vec.begin();
98 e != tree_edge_vec.end(); ++e, ++i) {
99 cout << i << ". el: " << *e << endl;
102 tree_edge_vec.clear();
103 // SequenceOutput< back_insert_iterator< vector<Edge> > >
104 // vec_filler(back_inserter(tree_edge_vec));
105 // cout << "Nemkonst koltseggel tarhatekonyabban: "
107 // KruskalMapVec<ECostMap>(G, edge_cost_map),
110 cout << "Nemkonst koltseggel tarhatekonyabban: "
112 KruskalMapVec<ECostMap>(G, edge_cost_map),
113 makeSequenceOutput(back_inserter(tree_edge_vec))
118 for(vector<Edge>::iterator e = tree_edge_vec.begin();
119 e != tree_edge_vec.end(); ++e, ++i) {
120 cout << i << ". el: " << *e << endl;
124 // typedef MinCostTreeKruskal<ListGraph, ECostMap, EBoolMap> MCTK;
126 // MCTK mctk(G, edge_cost_map, tree_map);
127 // double k0lts = mctk.run();
129 // cout << "Uniform 2-es koltseggel: " << k0lts << endl;
131 // // Max koltsegu fa szamitasa elore megrendezett koltseg vektorbol:
132 // typedef MinCostTreeKruskal<ListGraph, DummyMap<Edge,int>, EBoolMap> MCTK2;
133 // MCTK2 mctk2(G, DummyMap<Edge,int>(), tree_map);
134 // MCTK2::EdgeCostVector ecv;
135 // ecv.push_back(make_pair(e1, 10));
136 // ecv.push_back(make_pair(e2, 9));
137 // ecv.push_back(make_pair(e3, 8));
138 // ecv.push_back(make_pair(e4, 7));
139 // ecv.push_back(make_pair(e5, 6));
140 // ecv.push_back(make_pair(e6, 5));
141 // ecv.push_back(make_pair(e7, 4));
142 // ecv.push_back(make_pair(e8, 3));
143 // ecv.push_back(make_pair(e9, 2));
144 // ecv.push_back(make_pair(e10, 1));
146 // k0lts = mctk2.run(ecv);
147 // cout << "Max koltsegu fa elore megrendezett koltseg vektorbol: 31 = "