src/work/marci/bfs_iterator.h
author alpar
Sun, 09 May 2004 16:22:49 +0000
changeset 591 eb532eef6170
parent 448 510c53fd06cd
child 597 a6e2b02f496a
permissions -rw-r--r--
FullGraph class.
     1 // -*- c++ -*-
     2 #ifndef HUGO_BFS_ITERATOR_H
     3 #define HUGO_BFS_ITERATOR_H
     4 
     5 #include <queue>
     6 #include <stack>
     7 #include <utility>
     8 
     9 #include <hugo/invalid.h>
    10 
    11 namespace hugo {
    12 
    13   template <typename Graph, /*typename OutEdgeIt,*/ 
    14 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
    15   class BfsIterator {
    16   protected:
    17     typedef typename Graph::Node Node;
    18     typedef typename Graph::OutEdgeIt OutEdgeIt;
    19     const Graph* graph;
    20     std::queue<Node> bfs_queue;
    21     ReachedMap& reached;
    22     bool b_node_newly_reached;
    23     OutEdgeIt actual_edge;
    24     bool own_reached_map;
    25   public:
    26     BfsIterator(const Graph& _graph, ReachedMap& _reached) : 
    27       graph(&_graph), reached(_reached), 
    28       own_reached_map(false) { }
    29     BfsIterator(const Graph& _graph) : 
    30       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
    31       own_reached_map(true) { }
    32     ~BfsIterator() { if (own_reached_map) delete &reached; }
    33     /// This method markes s reached.
    34     /// If the queue is empty, then s is pushed in the bfs queue 
    35     /// and the first OutEdgeIt is processed.
    36     /// If the queue is not empty, then s is simply pushed.
    37     void pushAndSetReached(Node s) { 
    38       reached.set(s, true);
    39       if (bfs_queue.empty()) {
    40 	bfs_queue.push(s);
    41 	graph->first(actual_edge, s);
    42 	if (graph->valid(actual_edge)) { 
    43 	  Node w=graph->bNode(actual_edge);
    44 	  if (!reached[w]) {
    45 	    bfs_queue.push(w);
    46 	    reached.set(w, true);
    47 	    b_node_newly_reached=true;
    48 	  } else {
    49 	    b_node_newly_reached=false;
    50 	  }
    51 	} 
    52       } else {
    53 	bfs_queue.push(s);
    54       }
    55     }
    56     /// As \c BfsIterator<Graph, ReachedMap> works as an edge-iterator, 
    57     /// its \c operator++() iterates on the edges in a bfs order.
    58     BfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
    59     operator++() { 
    60       if (graph->valid(actual_edge)) { 
    61 	graph->next(actual_edge);
    62 	if (graph->valid(actual_edge)) {
    63 	  Node w=graph->bNode(actual_edge);
    64 	  if (!reached[w]) {
    65 	    bfs_queue.push(w);
    66 	    reached.set(w, true);
    67 	    b_node_newly_reached=true;
    68 	  } else {
    69 	    b_node_newly_reached=false;
    70 	  }
    71 	}
    72       } else {
    73 	bfs_queue.pop(); 
    74 	if (!bfs_queue.empty()) {
    75 	  graph->first(actual_edge, bfs_queue.front());
    76 	  if (graph->valid(actual_edge)) {
    77 	    Node w=graph->bNode(actual_edge);
    78 	    if (!reached[w]) {
    79 	      bfs_queue.push(w);
    80 	      reached.set(w, true);
    81 	      b_node_newly_reached=true;
    82 	    } else {
    83 	      b_node_newly_reached=false;
    84 	    }
    85 	  }
    86 	}
    87       }
    88       return *this;
    89     }
    90     bool finished() const { return bfs_queue.empty(); }
    91     /// The conversion operator makes for converting the bfs-iterator 
    92     /// to an \c out-edge-iterator.
    93     operator OutEdgeIt() const { return actual_edge; }
    94     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
    95     bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
    96     Node aNode() const { return bfs_queue.front(); }
    97     Node bNode() const { return graph->bNode(actual_edge); }
    98     const ReachedMap& getReachedMap() const { return reached; }
    99     const std::queue<Node>& getBfsQueue() const { return bfs_queue; }
   100   };  
   101 
   102   /// Bfs searches from s for the nodes wich are not marked in 
   103   /// \c reached_map
   104   /// Reached is a read-write bool-map, Pred is a write-nodemap 
   105   /// and dist is an rw-nodemap, have to be.
   106   template <typename Graph, 
   107 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   108 	    typename PredMap
   109 	    =typename Graph::template NodeMap<typename Graph::Edge>, 
   110 	    typename DistMap=typename Graph::template NodeMap<int> > 
   111   class Bfs : public BfsIterator<Graph, ReachedMap> {
   112     typedef BfsIterator<Graph, ReachedMap> Parent;
   113   protected:
   114     typedef typename Parent::Node Node;
   115     PredMap& pred;
   116     DistMap& dist;
   117   public:
   118     Bfs<Graph, ReachedMap, PredMap, DistMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : BfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred), dist(&_dist) { }
   119     /// s is marked to be reached and pushed in the bfs queue.
   120     /// If the queue is empty, then the first out-edge is processed.
   121     /// If s was not marked previously, then 
   122     /// in addition its pred is set to be INVALID, and dist to 0. 
   123     /// if s was marked previuosly, then it is simply pushed.
   124     void push(Node s) { 
   125       if (this->reached[s]) {
   126 	Parent::pushAndSetReached(s);
   127       } else {
   128 	Parent::pushAndSetReached(s);
   129 	pred.set(s, INVALID);
   130 	dist.set(s, 0);
   131       }
   132     }
   133     /// A bfs is processed from s.
   134     void run(Node s) {
   135       push(s);
   136       while (!this->finished()) this->operator++();
   137     }
   138     Bfs<Graph, ReachedMap, PredMap, DistMap> operator++() {
   139       Parent::operator++();
   140       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   141       {
   142 	pred.set(this->bNode(), this->actual_edge);
   143 	dist.set(this->bNode(), dist[this->aNode()]);
   144       }
   145       return *this;
   146     }
   147     const PredMap& getPredMap() const { return pred; }
   148     const DistMap& getDistMap() const { return dist; }
   149   };
   150 
   151   template <typename Graph, /*typename OutEdgeIt,*/ 
   152 	    typename ReachedMap/*=typename Graph::NodeMap<bool>*/ >
   153   class DfsIterator {
   154   protected:
   155     typedef typename Graph::Node Node;
   156     typedef typename Graph::OutEdgeIt OutEdgeIt;
   157     const Graph* graph;
   158     std::stack<OutEdgeIt> dfs_stack;
   159     bool b_node_newly_reached;
   160     OutEdgeIt actual_edge;
   161     Node actual_node;
   162     ReachedMap& reached;
   163     bool own_reached_map;
   164   public:
   165     DfsIterator(const Graph& _graph, ReachedMap& _reached) : 
   166       graph(&_graph), reached(_reached), 
   167       own_reached_map(false) { }
   168     DfsIterator(const Graph& _graph) : 
   169       graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), 
   170       own_reached_map(true) { }
   171     ~DfsIterator() { if (own_reached_map) delete &reached; }
   172     void pushAndSetReached(Node s) { 
   173       actual_node=s;
   174       reached.set(s, true);
   175       OutEdgeIt e;
   176       graph->first(e, s);
   177       dfs_stack.push(e); 
   178     }
   179     DfsIterator<Graph, /*OutEdgeIt,*/ ReachedMap>& 
   180     operator++() { 
   181       actual_edge=dfs_stack.top();
   182       //actual_node=G.aNode(actual_edge);
   183       if (graph->valid(actual_edge)/*.valid()*/) { 
   184 	Node w=graph->bNode(actual_edge);
   185 	actual_node=w;
   186 	if (!reached[w]) {
   187 	  OutEdgeIt e;
   188 	  graph->first(e, w);
   189 	  dfs_stack.push(e);
   190 	  reached.set(w, true);
   191 	  b_node_newly_reached=true;
   192 	} else {
   193 	  actual_node=graph->aNode(actual_edge);
   194 	  graph->next(dfs_stack.top());
   195 	  b_node_newly_reached=false;
   196 	}
   197       } else {
   198 	//actual_node=G.aNode(dfs_stack.top());
   199 	dfs_stack.pop();
   200       }
   201       return *this;
   202     }
   203     bool finished() const { return dfs_stack.empty(); }
   204     operator OutEdgeIt() const { return actual_edge; }
   205     bool isBNodeNewlyReached() const { return b_node_newly_reached; }
   206     bool isANodeExamined() const { return !(graph->valid(actual_edge)); }
   207     Node aNode() const { return actual_node; /*FIXME*/}
   208     Node bNode() const { return graph->bNode(actual_edge); }
   209     const ReachedMap& getReachedMap() const { return reached; }
   210     const std::stack<OutEdgeIt>& getDfsStack() const { return dfs_stack; }
   211   };
   212 
   213   /// Dfs searches from s for the nodes wich are not marked in 
   214   /// \c reached_map
   215   /// Reached is a read-write bool-map, Pred is a write-nodemap, have to be.
   216   template <typename Graph, 
   217 	    typename ReachedMap=typename Graph::template NodeMap<bool>, 
   218 	    typename PredMap
   219 	    =typename Graph::template NodeMap<typename Graph::Edge> > 
   220   class Dfs : public DfsIterator<Graph, ReachedMap> {
   221     typedef DfsIterator<Graph, ReachedMap> Parent;
   222   protected:
   223     typedef typename Parent::Node Node;
   224     PredMap& pred;
   225   public:
   226     Dfs<Graph, ReachedMap, PredMap>(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator<Graph, ReachedMap>(_graph, _reached), pred(&_pred) { }
   227     /// s is marked to be reached and pushed in the bfs queue.
   228     /// If the queue is empty, then the first out-edge is processed.
   229     /// If s was not marked previously, then 
   230     /// in addition its pred is set to be INVALID. 
   231     /// if s was marked previuosly, then it is simply pushed.
   232     void push(Node s) { 
   233       if (this->reached[s]) {
   234 	Parent::pushAndSetReached(s);
   235       } else {
   236 	Parent::pushAndSetReached(s);
   237 	pred.set(s, INVALID);
   238       }
   239     }
   240     /// A bfs is processed from s.
   241     void run(Node s) {
   242       push(s);
   243       while (!this->finished()) this->operator++();
   244     }
   245     Dfs<Graph, ReachedMap, PredMap> operator++() {
   246       Parent::operator++();
   247       if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) 
   248       {
   249 	pred.set(this->bNode(), this->actual_edge);
   250       }
   251       return *this;
   252     }
   253     const PredMap& getPredMap() const { return pred; }
   254   };
   255 
   256 
   257 } // namespace hugo
   258 
   259 #endif //HUGO_BFS_ITERATOR_H