lemon/csp.h
author deba
Mon, 19 Feb 2007 18:56:11 +0000
changeset 2370 ed6539025f27
child 2373 134639e6ea45
permissions -rw-r--r--
Some documentation changes
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CSP_H
    20 #define LEMON_CSP_H
    21 
    22 ///\ingroup flowalgs
    23 ///\file
    24 ///\brief Algorithm for the Resource Constrained Shortest Path problem.
    25 ///
    26 ///
    27 ///\todo dijkstraZero() solution should be revised.
    28 
    29 #include <lemon/list_graph.h>
    30 #include <lemon/graph_utils.h>
    31 #include <lemon/error.h>
    32 #include <lemon/maps.h>
    33 #include <lemon/tolerance.h>
    34 #include <lemon/dijkstra.h>
    35 #include <lemon/path.h>
    36 #include <lemon/counter.h>
    37 namespace lemon {
    38   
    39   ///Algorithms for the Resource Constrained Shortest Path Problem
    40   
    41   ///\e
    42   ///
    43   template<class Graph,
    44 	   class CM=typename Graph:: template EdgeMap<double>,
    45 	   class DM=CM>
    46   class ConstrainedShortestPath 
    47   {
    48   public:
    49     
    50     GRAPH_TYPEDEFS(typename Graph);
    51     
    52     typedef SimplePath<Graph> Path;
    53     
    54     Graph &_g;
    55     Tolerance<double> tol;
    56 
    57     CM &_cost;
    58     DM &_delay;
    59 
    60     class CoMap 
    61     {
    62       CM &_cost;
    63       DM &_delay;
    64       double _lambda;
    65     public:
    66       typedef typename CM::Key Key;
    67       typedef double Value;
    68       CoMap(CM &c,DM &d) :_cost(c), _delay(d), _lambda(0) {}
    69       double lambda() const { return _lambda; }
    70       void lambda(double l)  { _lambda=l; }
    71       Value operator[](Key &e) const 
    72       {
    73 	return _cost[e]+_lambda*_delay[e];
    74       }
    75     } _co_map;
    76     
    77     
    78     Dijkstra<Graph, CoMap> _dij;
    79     ///\e
    80     
    81     ///\e
    82     ///
    83     ConstrainedShortestPath(Graph &g, CM &cost, DM &delay)
    84       : _g(g), _cost(cost), _delay(delay),
    85 	_co_map(cost,delay), _dij(_g,_co_map) {}
    86     
    87 
    88     ///Compute the cost of a path
    89     double cost(const Path &p) 
    90     {
    91       double s=0;
    92       //      Path r;  
    93       for(typename Path::EdgeIt e(p);e!=INVALID;++e) s+=_cost[e];
    94       return s;
    95     }
    96 
    97     ///Compute the delay of a path
    98     double delay(const Path &p) 
    99     {
   100       double s=0;
   101       for(typename Path::EdgeIt e(p);e!=INVALID;++e) s+=_delay[e];
   102       return s;
   103     }
   104     
   105     ///Runs the LARAC algorithm
   106     
   107     ///This function runs a Lagrange relaxation based heuristic to find
   108     ///a delay constrained least cost path.
   109     ///\param s source node
   110     ///\param t target node
   111     ///\retval lo_bo a lower bound on the optimal solution
   112     ///\return the found path or an empty 
   113     Path larac(Node s, Node t, double delta, double &lo_bo) 
   114     {
   115       NoCounter cnt("LARAC iterations: ");
   116       double lambda=0;
   117       double cp,cq,dp,dq,cr,dr;
   118       Path p;
   119       Path q;
   120       Path r;
   121       {
   122 	Dijkstra<Graph,CM> dij(_g,_cost);
   123 	dij.run(s,t);
   124 	cnt++;
   125 	if(!dij.reached(t)) return Path();
   126 	p=dij.path(t);
   127 	cp=cost(p);
   128 	dp=delay(p);
   129       }
   130       if(delay(p)<=delta) return p;
   131       {
   132 	Dijkstra<Graph,DM> dij(_g,_delay);
   133 	dij.run(s,t);
   134 	cnt++;
   135 	q=dij.path(t);
   136 	cq=cost(q);
   137 	dq=delay(q);
   138       }
   139       if(delay(q)>delta) return Path();
   140       while (true) {
   141 	lambda=(cp-cq)/(dq-dp);
   142 	_co_map.lambda(lambda);
   143 	_dij.run(s,t);
   144 	cnt++;
   145 	r=_dij.path(t);
   146 	cr=cost(r);
   147 	dr=delay(r);
   148 	if(!tol.less(cr+lambda*dr,cp+lambda*dp)) {
   149 	  lo_bo=cq+lambda*(dq-delta);
   150 	  return q;
   151 	}
   152 	else if(tol.less(dr,delta)) 
   153 	  {
   154 	    q=r;
   155 	    cq=cr;
   156 	    dq=dr;
   157 	  }
   158 	else if(tol.less(delta,dr))
   159 	  {
   160 	    p=r;
   161 	    cp=cr;
   162 	    dp=dr;
   163 	  }
   164 	else return r;
   165       }
   166     }
   167   };
   168   
   169 
   170 } //END OF NAMESPACE LEMON
   171 
   172 #endif