lemon/graph_adaptor.h
author deba
Sun, 30 Sep 2007 19:14:33 +0000
changeset 2480 eecaeab41472
parent 2408 467ca6d16556
child 2529 93de38566e6c
permissions -rw-r--r--
Planarity checking and embedding
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_ADAPTOR_H
    20 #define LEMON_GRAPH_ADAPTOR_H
    21 
    22 ///\ingroup graph_adaptors
    23 ///\file
    24 ///\brief Several graph adaptors.
    25 ///
    26 ///This file contains several useful graph adaptor functions.
    27 ///
    28 ///\author Marton Makai and Balazs Dezso
    29 
    30 #include <lemon/bits/invalid.h>
    31 #include <lemon/bits/variant.h>
    32 #include <lemon/maps.h>
    33 
    34 #include <lemon/bits/base_extender.h>
    35 #include <lemon/bits/graph_adaptor_extender.h>
    36 #include <lemon/bits/graph_extender.h>
    37 
    38 #include <lemon/tolerance.h>
    39 
    40 #include <algorithm>
    41 
    42 namespace lemon {
    43 
    44   ///\brief Base type for the Graph Adaptors
    45   ///
    46   ///Base type for the Graph Adaptors
    47   ///
    48   ///This is the base type for most of LEMON graph adaptors. 
    49   ///This class implements a trivial graph adaptor i.e. it only wraps the 
    50   ///functions and types of the graph. The purpose of this class is to 
    51   ///make easier implementing graph adaptors. E.g. if an adaptor is 
    52   ///considered which differs from the wrapped graph only in some of its 
    53   ///functions or types, then it can be derived from GraphAdaptor,
    54   ///and only the 
    55   ///differences should be implemented.
    56   ///
    57   ///author Marton Makai 
    58   template<typename _Graph>
    59   class GraphAdaptorBase {
    60   public:
    61     typedef _Graph Graph;
    62     typedef GraphAdaptorBase Adaptor;
    63     typedef Graph ParentGraph;
    64 
    65   protected:
    66     Graph* graph;
    67     GraphAdaptorBase() : graph(0) { }
    68     void setGraph(Graph& _graph) { graph=&_graph; }
    69 
    70   public:
    71     GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
    72 
    73     typedef typename Graph::Node Node;
    74     typedef typename Graph::Edge Edge;
    75    
    76     void first(Node& i) const { graph->first(i); }
    77     void first(Edge& i) const { graph->first(i); }
    78     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    79     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    80 
    81     void next(Node& i) const { graph->next(i); }
    82     void next(Edge& i) const { graph->next(i); }
    83     void nextIn(Edge& i) const { graph->nextIn(i); }
    84     void nextOut(Edge& i) const { graph->nextOut(i); }
    85 
    86     Node source(const Edge& e) const { return graph->source(e); }
    87     Node target(const Edge& e) const { return graph->target(e); }
    88 
    89     typedef NodeNumTagIndicator<Graph> NodeNumTag;
    90     int nodeNum() const { return graph->nodeNum(); }
    91     
    92     typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
    93     int edgeNum() const { return graph->edgeNum(); }
    94 
    95     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
    96     Edge findEdge(const Node& u, const Node& v, 
    97 		  const Edge& prev = INVALID) {
    98       return graph->findEdge(u, v, prev);
    99     }
   100   
   101     Node addNode() const { 
   102       return Node(graph->addNode()); 
   103     }
   104 
   105     Edge addEdge(const Node& u, const Node& v) const { 
   106       return Edge(graph->addEdge(u, v)); 
   107     }
   108 
   109     void erase(const Node& i) const { graph->erase(i); }
   110     void erase(const Edge& i) const { graph->erase(i); }
   111   
   112     void clear() const { graph->clear(); }
   113     
   114     int id(const Node& v) const { return graph->id(v); }
   115     int id(const Edge& e) const { return graph->id(e); }
   116 
   117     Node fromNodeId(int ix) const {
   118       return graph->fromNodeId(ix);
   119     }
   120 
   121     Edge fromEdgeId(int ix) const {
   122       return graph->fromEdgeId(ix);
   123     }
   124 
   125     int maxNodeId() const {
   126       return graph->maxNodeId();
   127     }
   128 
   129     int maxEdgeId() const {
   130       return graph->maxEdgeId();
   131     }
   132 
   133     typedef typename ItemSetTraits<Graph, Node>::ItemNotifier NodeNotifier;
   134 
   135     NodeNotifier& notifier(Node) const {
   136       return graph->notifier(Node());
   137     } 
   138 
   139     typedef typename ItemSetTraits<Graph, Edge>::ItemNotifier EdgeNotifier;
   140 
   141     EdgeNotifier& notifier(Edge) const {
   142       return graph->notifier(Edge());
   143     } 
   144     
   145     template <typename _Value>
   146     class NodeMap : public Graph::template NodeMap<_Value> {
   147     public:
   148 
   149       typedef typename Graph::template NodeMap<_Value> Parent;
   150 
   151       explicit NodeMap(const Adaptor& ga) 
   152 	: Parent(*ga.graph) {}
   153 
   154       NodeMap(const Adaptor& ga, const _Value& value)
   155 	: Parent(*ga.graph, value) { }
   156 
   157       NodeMap& operator=(const NodeMap& cmap) {
   158         return operator=<NodeMap>(cmap);
   159       }
   160 
   161       template <typename CMap>
   162       NodeMap& operator=(const CMap& cmap) {
   163         Parent::operator=(cmap);
   164         return *this;
   165       }
   166       
   167     };
   168 
   169     template <typename _Value>
   170     class EdgeMap : public Graph::template EdgeMap<_Value> {
   171     public:
   172       
   173       typedef typename Graph::template EdgeMap<_Value> Parent;
   174       
   175       explicit EdgeMap(const Adaptor& ga) 
   176 	: Parent(*ga.graph) {}
   177 
   178       EdgeMap(const Adaptor& ga, const _Value& value)
   179 	: Parent(*ga.graph, value) {}
   180 
   181       EdgeMap& operator=(const EdgeMap& cmap) {
   182         return operator=<EdgeMap>(cmap);
   183       }
   184 
   185       template <typename CMap>
   186       EdgeMap& operator=(const CMap& cmap) {
   187         Parent::operator=(cmap);
   188         return *this;
   189       }
   190 
   191     };
   192 
   193   };
   194 
   195   ///\ingroup graph_adaptors
   196   ///
   197   ///\brief Trivial Graph Adaptor
   198   /// 
   199   /// This class is an adaptor which does not change the adapted graph.
   200   /// It can be used only to test the graph adaptors.
   201   template <typename _Graph>
   202   class GraphAdaptor :
   203     public GraphAdaptorExtender<GraphAdaptorBase<_Graph> > { 
   204   public:
   205     typedef _Graph Graph;
   206     typedef GraphAdaptorExtender<GraphAdaptorBase<_Graph> > Parent;
   207   protected:
   208     GraphAdaptor() : Parent() { }
   209 
   210   public:
   211     explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); }
   212   };
   213 
   214   /// \brief Just gives back a graph adaptor
   215   ///
   216   /// Just gives back a graph adaptor which 
   217   /// should be provide original graph
   218   template<typename Graph>
   219   GraphAdaptor<const Graph>
   220   graphAdaptor(const Graph& graph) {
   221     return GraphAdaptor<const Graph>(graph);
   222   }
   223 
   224 
   225   template <typename _Graph>
   226   class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   227   public:
   228     typedef _Graph Graph;
   229     typedef GraphAdaptorBase<_Graph> Parent;
   230   protected:
   231     RevGraphAdaptorBase() : Parent() { }
   232   public:
   233     typedef typename Parent::Node Node;
   234     typedef typename Parent::Edge Edge;
   235 
   236     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   237     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   238 
   239     void nextIn(Edge& i) const { Parent::nextOut(i); }
   240     void nextOut(Edge& i) const { Parent::nextIn(i); }
   241 
   242     Node source(const Edge& e) const { return Parent::target(e); }
   243     Node target(const Edge& e) const { return Parent::source(e); }
   244 
   245     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   246     Edge findEdge(const Node& u, const Node& v, 
   247 		  const Edge& prev = INVALID) {
   248       return Parent::findEdge(v, u, prev);
   249     }
   250 
   251   };
   252     
   253 
   254   ///\ingroup graph_adaptors
   255   ///
   256   ///\brief A graph adaptor which reverses the orientation of the edges.
   257   ///
   258   /// If \c g is defined as
   259   ///\code
   260   /// ListGraph g;
   261   ///\endcode
   262   /// then
   263   ///\code
   264   /// RevGraphAdaptor<ListGraph> ga(g);
   265   ///\endcode
   266   /// implements the graph obtained from \c g by 
   267   /// reversing the orientation of its edges.
   268   ///
   269   /// A good example of using RevGraphAdaptor is to decide that the
   270   /// directed graph is wheter strongly connected or not. If from one
   271   /// node each node is reachable and from each node is reachable this
   272   /// node then and just then the graph is strongly connected. Instead of
   273   /// this condition we use a little bit different. From one node each node
   274   /// ahould be reachable in the graph and in the reversed graph. Now this
   275   /// condition can be checked with the Dfs algorithm class and the
   276   /// RevGraphAdaptor algorithm class.
   277   ///
   278   /// And look at the code:
   279   ///
   280   ///\code
   281   /// bool stronglyConnected(const Graph& graph) {
   282   ///   if (NodeIt(graph) == INVALID) return true;
   283   ///   Dfs<Graph> dfs(graph);
   284   ///   dfs.run(NodeIt(graph));
   285   ///   for (NodeIt it(graph); it != INVALID; ++it) {
   286   ///     if (!dfs.reached(it)) {
   287   ///       return false;
   288   ///     }
   289   ///   }
   290   ///   typedef RevGraphAdaptor<const Graph> RGraph;
   291   ///   RGraph rgraph(graph);
   292   ///   DfsVisit<RGraph> rdfs(rgraph);
   293   ///   rdfs.run(NodeIt(graph));
   294   ///   for (NodeIt it(graph); it != INVALID; ++it) {
   295   ///     if (!rdfs.reached(it)) {
   296   ///       return false;
   297   ///     }
   298   ///   }
   299   ///   return true;
   300   /// }
   301   ///\endcode
   302   template<typename _Graph>
   303   class RevGraphAdaptor : 
   304     public GraphAdaptorExtender<RevGraphAdaptorBase<_Graph> > {
   305   public:
   306     typedef _Graph Graph;
   307     typedef GraphAdaptorExtender<
   308       RevGraphAdaptorBase<_Graph> > Parent;
   309   protected:
   310     RevGraphAdaptor() { }
   311   public:
   312     explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
   313   };
   314 
   315   /// \brief Just gives back a reverse graph adaptor
   316   ///
   317   /// Just gives back a reverse graph adaptor
   318   template<typename Graph>
   319   RevGraphAdaptor<const Graph>
   320   revGraphAdaptor(const Graph& graph) {
   321     return RevGraphAdaptor<const Graph>(graph);
   322   }
   323 
   324   template <typename _Graph, typename NodeFilterMap, 
   325 	    typename EdgeFilterMap, bool checked = true>
   326   class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   327   public:
   328     typedef _Graph Graph;
   329     typedef SubGraphAdaptorBase Adaptor;
   330     typedef GraphAdaptorBase<_Graph> Parent;
   331   protected:
   332     NodeFilterMap* node_filter_map;
   333     EdgeFilterMap* edge_filter_map;
   334     SubGraphAdaptorBase() : Parent(), 
   335 			    node_filter_map(0), edge_filter_map(0) { }
   336 
   337     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   338       node_filter_map=&_node_filter_map;
   339     }
   340     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   341       edge_filter_map=&_edge_filter_map;
   342     }
   343 
   344   public:
   345 
   346     typedef typename Parent::Node Node;
   347     typedef typename Parent::Edge Edge;
   348 
   349     void first(Node& i) const { 
   350       Parent::first(i); 
   351       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   352     }
   353 
   354     void first(Edge& i) const { 
   355       Parent::first(i); 
   356       while (i!=INVALID && (!(*edge_filter_map)[i] 
   357 	     || !(*node_filter_map)[Parent::source(i)]
   358 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   359     }
   360 
   361     void firstIn(Edge& i, const Node& n) const { 
   362       Parent::firstIn(i, n); 
   363       while (i!=INVALID && (!(*edge_filter_map)[i] 
   364 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   365     }
   366 
   367     void firstOut(Edge& i, const Node& n) const { 
   368       Parent::firstOut(i, n); 
   369       while (i!=INVALID && (!(*edge_filter_map)[i] 
   370 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   371     }
   372 
   373     void next(Node& i) const { 
   374       Parent::next(i); 
   375       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   376     }
   377 
   378     void next(Edge& i) const { 
   379       Parent::next(i); 
   380       while (i!=INVALID && (!(*edge_filter_map)[i] 
   381 	     || !(*node_filter_map)[Parent::source(i)]
   382 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   383     }
   384 
   385     void nextIn(Edge& i) const { 
   386       Parent::nextIn(i); 
   387       while (i!=INVALID && (!(*edge_filter_map)[i] 
   388 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   389     }
   390 
   391     void nextOut(Edge& i) const { 
   392       Parent::nextOut(i); 
   393       while (i!=INVALID && (!(*edge_filter_map)[i] 
   394 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   395     }
   396 
   397     ///\e
   398 
   399     /// This function hides \c n in the graph, i.e. the iteration 
   400     /// jumps over it. This is done by simply setting the value of \c n  
   401     /// to be false in the corresponding node-map.
   402     void hide(const Node& n) const { node_filter_map->set(n, false); }
   403 
   404     ///\e
   405 
   406     /// This function hides \c e in the graph, i.e. the iteration 
   407     /// jumps over it. This is done by simply setting the value of \c e  
   408     /// to be false in the corresponding edge-map.
   409     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   410 
   411     ///\e
   412 
   413     /// The value of \c n is set to be true in the node-map which stores 
   414     /// hide information. If \c n was hidden previuosly, then it is shown 
   415     /// again
   416      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   417 
   418     ///\e
   419 
   420     /// The value of \c e is set to be true in the edge-map which stores 
   421     /// hide information. If \c e was hidden previuosly, then it is shown 
   422     /// again
   423     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   424 
   425     /// Returns true if \c n is hidden.
   426     
   427     ///\e
   428     ///
   429     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   430 
   431     /// Returns true if \c n is hidden.
   432     
   433     ///\e
   434     ///
   435     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   436 
   437     typedef False NodeNumTag;
   438     typedef False EdgeNumTag;
   439 
   440     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   441     Edge findEdge(const Node& source, const Node& target, 
   442 		  const Edge& prev = INVALID) {
   443       if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
   444         return INVALID;
   445       }
   446       Edge edge = Parent::findEdge(source, target, prev);
   447       while (edge != INVALID && !(*edge_filter_map)[edge]) {
   448         edge = Parent::findEdge(source, target, edge);
   449       }
   450       return edge;
   451     }
   452 
   453     template <typename _Value>
   454     class NodeMap 
   455       : public SubMapExtender<Adaptor, 
   456                               typename Parent::template NodeMap<_Value> > 
   457     {
   458     public:
   459       typedef Adaptor Graph;
   460       typedef SubMapExtender<Adaptor, typename Parent::
   461                              template NodeMap<_Value> > Parent;
   462     
   463       NodeMap(const Graph& g) 
   464 	: Parent(g) {}
   465       NodeMap(const Graph& g, const _Value& v) 
   466 	: Parent(g, v) {}
   467     
   468       NodeMap& operator=(const NodeMap& cmap) {
   469 	return operator=<NodeMap>(cmap);
   470       }
   471     
   472       template <typename CMap>
   473       NodeMap& operator=(const CMap& cmap) {
   474         Parent::operator=(cmap);
   475 	return *this;
   476       }
   477     };
   478 
   479     template <typename _Value>
   480     class EdgeMap 
   481       : public SubMapExtender<Adaptor, 
   482                               typename Parent::template EdgeMap<_Value> > 
   483     {
   484     public:
   485       typedef Adaptor Graph;
   486       typedef SubMapExtender<Adaptor, typename Parent::
   487                              template EdgeMap<_Value> > Parent;
   488     
   489       EdgeMap(const Graph& g) 
   490 	: Parent(g) {}
   491       EdgeMap(const Graph& g, const _Value& v) 
   492 	: Parent(g, v) {}
   493     
   494       EdgeMap& operator=(const EdgeMap& cmap) {
   495 	return operator=<EdgeMap>(cmap);
   496       }
   497     
   498       template <typename CMap>
   499       EdgeMap& operator=(const CMap& cmap) {
   500         Parent::operator=(cmap);
   501 	return *this;
   502       }
   503     };
   504 
   505   };
   506 
   507   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   508   class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
   509     : public GraphAdaptorBase<_Graph> {
   510   public:
   511     typedef _Graph Graph;
   512     typedef SubGraphAdaptorBase Adaptor;
   513     typedef GraphAdaptorBase<_Graph> Parent;
   514   protected:
   515     NodeFilterMap* node_filter_map;
   516     EdgeFilterMap* edge_filter_map;
   517     SubGraphAdaptorBase() : Parent(), 
   518 			    node_filter_map(0), edge_filter_map(0) { }
   519 
   520     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   521       node_filter_map=&_node_filter_map;
   522     }
   523     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   524       edge_filter_map=&_edge_filter_map;
   525     }
   526 
   527   public:
   528 
   529     typedef typename Parent::Node Node;
   530     typedef typename Parent::Edge Edge;
   531 
   532     void first(Node& i) const { 
   533       Parent::first(i); 
   534       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   535     }
   536 
   537     void first(Edge& i) const { 
   538       Parent::first(i); 
   539       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   540     }
   541 
   542     void firstIn(Edge& i, const Node& n) const { 
   543       Parent::firstIn(i, n); 
   544       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   545     }
   546 
   547     void firstOut(Edge& i, const Node& n) const { 
   548       Parent::firstOut(i, n); 
   549       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   550     }
   551 
   552     void next(Node& i) const { 
   553       Parent::next(i); 
   554       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   555     }
   556     void next(Edge& i) const { 
   557       Parent::next(i); 
   558       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   559     }
   560     void nextIn(Edge& i) const { 
   561       Parent::nextIn(i); 
   562       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   563     }
   564 
   565     void nextOut(Edge& i) const { 
   566       Parent::nextOut(i); 
   567       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   568     }
   569 
   570     ///\e
   571 
   572     /// This function hides \c n in the graph, i.e. the iteration 
   573     /// jumps over it. This is done by simply setting the value of \c n  
   574     /// to be false in the corresponding node-map.
   575     void hide(const Node& n) const { node_filter_map->set(n, false); }
   576 
   577     ///\e
   578 
   579     /// This function hides \c e in the graph, i.e. the iteration 
   580     /// jumps over it. This is done by simply setting the value of \c e  
   581     /// to be false in the corresponding edge-map.
   582     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   583 
   584     ///\e
   585 
   586     /// The value of \c n is set to be true in the node-map which stores 
   587     /// hide information. If \c n was hidden previuosly, then it is shown 
   588     /// again
   589      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   590 
   591     ///\e
   592 
   593     /// The value of \c e is set to be true in the edge-map which stores 
   594     /// hide information. If \c e was hidden previuosly, then it is shown 
   595     /// again
   596     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   597 
   598     /// Returns true if \c n is hidden.
   599     
   600     ///\e
   601     ///
   602     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   603 
   604     /// Returns true if \c n is hidden.
   605     
   606     ///\e
   607     ///
   608     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   609 
   610     typedef False NodeNumTag;
   611     typedef False EdgeNumTag;
   612 
   613     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   614     Edge findEdge(const Node& source, const Node& target, 
   615 		  const Edge& prev = INVALID) {
   616       if (!(*node_filter_map)[source] || !(*node_filter_map)[target]) {
   617         return INVALID;
   618       }
   619       Edge edge = Parent::findEdge(source, target, prev);
   620       while (edge != INVALID && !(*edge_filter_map)[edge]) {
   621         edge = Parent::findEdge(source, target, edge);
   622       }
   623       return edge;
   624     }
   625 
   626     template <typename _Value>
   627     class NodeMap 
   628       : public SubMapExtender<Adaptor, 
   629                               typename Parent::template NodeMap<_Value> > 
   630     {
   631     public:
   632       typedef Adaptor Graph;
   633       typedef SubMapExtender<Adaptor, typename Parent::
   634                              template NodeMap<_Value> > Parent;
   635     
   636       NodeMap(const Graph& g) 
   637 	: Parent(g) {}
   638       NodeMap(const Graph& g, const _Value& v) 
   639 	: Parent(g, v) {}
   640     
   641       NodeMap& operator=(const NodeMap& cmap) {
   642 	return operator=<NodeMap>(cmap);
   643       }
   644     
   645       template <typename CMap>
   646       NodeMap& operator=(const CMap& cmap) {
   647         Parent::operator=(cmap);
   648 	return *this;
   649       }
   650     };
   651 
   652     template <typename _Value>
   653     class EdgeMap 
   654       : public SubMapExtender<Adaptor, 
   655                               typename Parent::template EdgeMap<_Value> > 
   656     {
   657     public:
   658       typedef Adaptor Graph;
   659       typedef SubMapExtender<Adaptor, typename Parent::
   660                              template EdgeMap<_Value> > Parent;
   661     
   662       EdgeMap(const Graph& g) 
   663 	: Parent(g) {}
   664       EdgeMap(const Graph& g, const _Value& v) 
   665 	: Parent(g, v) {}
   666     
   667       EdgeMap& operator=(const EdgeMap& cmap) {
   668 	return operator=<EdgeMap>(cmap);
   669       }
   670     
   671       template <typename CMap>
   672       EdgeMap& operator=(const CMap& cmap) {
   673         Parent::operator=(cmap);
   674 	return *this;
   675       }
   676     };
   677 
   678   };
   679 
   680   /// \ingroup graph_adaptors
   681   ///
   682   /// \brief A graph adaptor for hiding nodes and edges from a graph.
   683   /// 
   684   /// SubGraphAdaptor shows the graph with filtered node-set and 
   685   /// edge-set. If the \c checked parameter is true then it filters the edgeset
   686   /// to do not get invalid edges without source or target.
   687   /// Let \f$ G=(V, A) \f$ be a directed graph
   688   /// and suppose that the graph instance \c g of type ListGraph
   689   /// implements \f$ G \f$.
   690   /// Let moreover \f$ b_V \f$ and \f$ b_A \f$ be bool-valued functions resp.
   691   /// on the node-set and edge-set.
   692   /// SubGraphAdaptor<...>::NodeIt iterates 
   693   /// on the node-set \f$ \{v\in V : b_V(v)=true\} \f$ and 
   694   /// SubGraphAdaptor<...>::EdgeIt iterates 
   695   /// on the edge-set \f$ \{e\in A : b_A(e)=true\} \f$. Similarly, 
   696   /// SubGraphAdaptor<...>::OutEdgeIt and
   697   /// SubGraphAdaptor<...>::InEdgeIt iterates 
   698   /// only on edges leaving and entering a specific node which have true value.
   699   /// 
   700   /// If the \c checked template parameter is false then we have to note that 
   701   /// the node-iterator cares only the filter on the node-set, and the 
   702   /// edge-iterator cares only the filter on the edge-set.
   703   /// This way the edge-map
   704   /// should filter all edges which's source or target is filtered by the 
   705   /// node-filter.
   706   ///\code
   707   /// typedef ListGraph Graph;
   708   /// Graph g;
   709   /// typedef Graph::Node Node;
   710   /// typedef Graph::Edge Edge;
   711   /// Node u=g.addNode(); //node of id 0
   712   /// Node v=g.addNode(); //node of id 1
   713   /// Node e=g.addEdge(u, v); //edge of id 0
   714   /// Node f=g.addEdge(v, u); //edge of id 1
   715   /// Graph::NodeMap<bool> nm(g, true);
   716   /// nm.set(u, false);
   717   /// Graph::EdgeMap<bool> em(g, true);
   718   /// em.set(e, false);
   719   /// typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGA;
   720   /// SubGA ga(g, nm, em);
   721   /// for (SubGA::NodeIt n(ga); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   722   /// std::cout << ":-)" << std::endl;
   723   /// for (SubGA::EdgeIt e(ga); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   724   ///\endcode
   725   /// The output of the above code is the following.
   726   ///\code
   727   /// 1
   728   /// :-)
   729   /// 1
   730   ///\endcode
   731   /// Note that \c n is of type \c SubGA::NodeIt, but it can be converted to
   732   /// \c Graph::Node that is why \c g.id(n) can be applied.
   733   /// 
   734   /// For other examples see also the documentation of NodeSubGraphAdaptor and 
   735   /// EdgeSubGraphAdaptor.
   736   /// 
   737   /// \author Marton Makai
   738 
   739   template<typename _Graph, typename NodeFilterMap, 
   740 	   typename EdgeFilterMap, bool checked = true>
   741   class SubGraphAdaptor : 
   742     public GraphAdaptorExtender<
   743     SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
   744   public:
   745     typedef _Graph Graph;
   746     typedef GraphAdaptorExtender< SubGraphAdaptorBase<_Graph, NodeFilterMap, 
   747                                                       EdgeFilterMap, checked> >
   748     Parent;
   749 
   750   protected:
   751     SubGraphAdaptor() { }
   752   public:
   753 
   754     SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   755 		    EdgeFilterMap& _edge_filter_map) { 
   756       setGraph(_graph);
   757       setNodeFilterMap(_node_filter_map);
   758       setEdgeFilterMap(_edge_filter_map);
   759     }
   760 
   761   };
   762 
   763   /// \brief Just gives back a sub graph adaptor
   764   ///
   765   /// Just gives back a sub graph adaptor
   766   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   767   SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
   768   subGraphAdaptor(const Graph& graph, 
   769                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   770     return SubGraphAdaptor<const Graph, NodeFilterMap, EdgeFilterMap>
   771       (graph, nfm, efm);
   772   }
   773 
   774   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   775   SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
   776   subGraphAdaptor(const Graph& graph, 
   777                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   778     return SubGraphAdaptor<const Graph, const NodeFilterMap, EdgeFilterMap>
   779       (graph, nfm, efm);
   780   }
   781 
   782   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   783   SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
   784   subGraphAdaptor(const Graph& graph, 
   785                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   786     return SubGraphAdaptor<const Graph, NodeFilterMap, const EdgeFilterMap>
   787       (graph, nfm, efm);
   788   }
   789 
   790   template<typename Graph, typename NodeFilterMap, typename EdgeFilterMap>
   791   SubGraphAdaptor<const Graph, const NodeFilterMap, const EdgeFilterMap>
   792   subGraphAdaptor(const Graph& graph, 
   793                    NodeFilterMap& nfm, EdgeFilterMap& efm) {
   794     return SubGraphAdaptor<const Graph, const NodeFilterMap, 
   795       const EdgeFilterMap>(graph, nfm, efm);
   796   }
   797 
   798 
   799 
   800   ///\ingroup graph_adaptors
   801   ///
   802   ///\brief An adaptor for hiding nodes from a graph.
   803   ///
   804   ///An adaptor for hiding nodes from a graph.
   805   ///This adaptor specializes SubGraphAdaptor in the way that only
   806   ///the node-set 
   807   ///can be filtered. In usual case the checked parameter is true, we get the
   808   ///induced subgraph. But if the checked parameter is false then we can
   809   ///filter only isolated nodes.
   810   ///\author Marton Makai
   811   template<typename Graph, typename NodeFilterMap, bool checked = true>
   812   class NodeSubGraphAdaptor : 
   813     public SubGraphAdaptor<Graph, NodeFilterMap, 
   814 			   ConstMap<typename Graph::Edge,bool>, checked> {
   815   public:
   816 
   817     typedef SubGraphAdaptor<Graph, NodeFilterMap, 
   818 			    ConstMap<typename Graph::Edge,bool>, checked > 
   819     Parent;
   820 
   821   protected:
   822     ConstMap<typename Graph::Edge, bool> const_true_map;
   823 
   824     NodeSubGraphAdaptor() : const_true_map(true) {
   825       Parent::setEdgeFilterMap(const_true_map);
   826     }
   827 
   828   public:
   829 
   830     NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   831       Parent(), const_true_map(true) { 
   832       Parent::setGraph(_graph);
   833       Parent::setNodeFilterMap(_node_filter_map);
   834       Parent::setEdgeFilterMap(const_true_map);
   835     }
   836 
   837   };
   838 
   839 
   840   /// \brief Just gives back a node sub graph adaptor
   841   ///
   842   /// Just gives back a node sub graph adaptor
   843   template<typename Graph, typename NodeFilterMap>
   844   NodeSubGraphAdaptor<const Graph, NodeFilterMap>
   845   nodeSubGraphAdaptor(const Graph& graph, NodeFilterMap& nfm) {
   846     return NodeSubGraphAdaptor<const Graph, NodeFilterMap>(graph, nfm);
   847   }
   848 
   849   template<typename Graph, typename NodeFilterMap>
   850   NodeSubGraphAdaptor<const Graph, const NodeFilterMap>
   851   nodeSubGraphAdaptor(const Graph& graph, const NodeFilterMap& nfm) {
   852     return NodeSubGraphAdaptor<const Graph, const NodeFilterMap>(graph, nfm);
   853   }
   854 
   855   ///\ingroup graph_adaptors
   856   ///
   857   ///\brief An adaptor for hiding edges from a graph.
   858   ///
   859   ///An adaptor for hiding edges from a graph.
   860   ///This adaptor specializes SubGraphAdaptor in the way that
   861   ///only the edge-set 
   862   ///can be filtered. The usefulness of this adaptor is demonstrated in the 
   863   ///problem of searching a maximum number of edge-disjoint shortest paths 
   864   ///between 
   865   ///two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   866   ///non-negative edge-lengths. Note that 
   867   ///the comprehension of the presented solution 
   868   ///need's some elementary knowledge from combinatorial optimization. 
   869   ///
   870   ///If a single shortest path is to be 
   871   ///searched between \c s and \c t, then this can be done easily by 
   872   ///applying the Dijkstra algorithm. What happens, if a maximum number of 
   873   ///edge-disjoint shortest paths is to be computed. It can be proved that an 
   874   ///edge can be in a shortest path if and only
   875   ///if it is tight with respect to 
   876   ///the potential function computed by Dijkstra.
   877   ///Moreover, any path containing 
   878   ///only such edges is a shortest one.
   879   ///Thus we have to compute a maximum number 
   880   ///of edge-disjoint paths between \c s and \c t in
   881   ///the graph which has edge-set 
   882   ///all the tight edges. The computation will be demonstrated
   883   ///on the following 
   884   ///graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   885   ///The full source code is available in \ref sub_graph_adaptor_demo.cc. 
   886   ///If you are interested in more demo programs, you can use 
   887   ///\ref dim_to_dot.cc to generate .dot files from dimacs files. 
   888   ///The .dot file of the following figure was generated by  
   889   ///the demo program \ref dim_to_dot.cc.
   890   ///
   891   ///\dot
   892   ///digraph lemon_dot_example {
   893   ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   894   ///n0 [ label="0 (s)" ];
   895   ///n1 [ label="1" ];
   896   ///n2 [ label="2" ];
   897   ///n3 [ label="3" ];
   898   ///n4 [ label="4" ];
   899   ///n5 [ label="5" ];
   900   ///n6 [ label="6 (t)" ];
   901   ///edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   902   ///n5 ->  n6 [ label="9, length:4" ];
   903   ///n4 ->  n6 [ label="8, length:2" ];
   904   ///n3 ->  n5 [ label="7, length:1" ];
   905   ///n2 ->  n5 [ label="6, length:3" ];
   906   ///n2 ->  n6 [ label="5, length:5" ];
   907   ///n2 ->  n4 [ label="4, length:2" ];
   908   ///n1 ->  n4 [ label="3, length:3" ];
   909   ///n0 ->  n3 [ label="2, length:1" ];
   910   ///n0 ->  n2 [ label="1, length:2" ];
   911   ///n0 ->  n1 [ label="0, length:3" ];
   912   ///}
   913   ///\enddot
   914   ///
   915   ///\code
   916   ///Graph g;
   917   ///Node s, t;
   918   ///LengthMap length(g);
   919   ///
   920   ///readDimacs(std::cin, g, length, s, t);
   921   ///
   922   ///cout << "edges with lengths (of form id, source--length->target): " << endl;
   923   ///for(EdgeIt e(g); e!=INVALID; ++e) 
   924   ///  cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   925   ///       << length[e] << "->" << g.id(g.target(e)) << endl;
   926   ///
   927   ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   928   ///\endcode
   929   ///Next, the potential function is computed with Dijkstra.
   930   ///\code
   931   ///typedef Dijkstra<Graph, LengthMap> Dijkstra;
   932   ///Dijkstra dijkstra(g, length);
   933   ///dijkstra.run(s);
   934   ///\endcode
   935   ///Next, we consrtruct a map which filters the edge-set to the tight edges.
   936   ///\code
   937   ///typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   938   ///  TightEdgeFilter;
   939   ///TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   940   ///
   941   ///typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGA;
   942   ///SubGA ga(g, tight_edge_filter);
   943   ///\endcode
   944   ///Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   945   ///with a max flow algorithm Preflow.
   946   ///\code
   947   ///ConstMap<Edge, int> const_1_map(1);
   948   ///Graph::EdgeMap<int> flow(g, 0);
   949   ///
   950   ///Preflow<SubGA, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   951   ///  preflow(ga, s, t, const_1_map, flow);
   952   ///preflow.run();
   953   ///\endcode
   954   ///Last, the output is:
   955   ///\code  
   956   ///cout << "maximum number of edge-disjoint shortest path: " 
   957   ///     << preflow.flowValue() << endl;
   958   ///cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   959   ///     << endl;
   960   ///for(EdgeIt e(g); e!=INVALID; ++e) 
   961   ///  if (flow[e])
   962   ///    cout << " " << g.id(g.source(e)) << "--"
   963   ///         << length[e] << "->" << g.id(g.target(e)) << endl;
   964   ///\endcode
   965   ///The program has the following (expected :-)) output:
   966   ///\code
   967   ///edges with lengths (of form id, source--length->target):
   968   /// 9, 5--4->6
   969   /// 8, 4--2->6
   970   /// 7, 3--1->5
   971   /// 6, 2--3->5
   972   /// 5, 2--5->6
   973   /// 4, 2--2->4
   974   /// 3, 1--3->4
   975   /// 2, 0--1->3
   976   /// 1, 0--2->2
   977   /// 0, 0--3->1
   978   ///s: 0 t: 6
   979   ///maximum number of edge-disjoint shortest path: 2
   980   ///edges of the maximum number of edge-disjoint shortest s-t paths:
   981   /// 9, 5--4->6
   982   /// 8, 4--2->6
   983   /// 7, 3--1->5
   984   /// 4, 2--2->4
   985   /// 2, 0--1->3
   986   /// 1, 0--2->2
   987   ///\endcode
   988   ///
   989   ///\author Marton Makai
   990   template<typename Graph, typename EdgeFilterMap>
   991   class EdgeSubGraphAdaptor : 
   992     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   993 			   EdgeFilterMap, false> {
   994   public:
   995     typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   996 			    EdgeFilterMap, false> Parent;
   997   protected:
   998     ConstMap<typename Graph::Node, bool> const_true_map;
   999 
  1000     EdgeSubGraphAdaptor() : const_true_map(true) {
  1001       Parent::setNodeFilterMap(const_true_map);
  1002     }
  1003 
  1004   public:
  1005 
  1006     EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
  1007       Parent(), const_true_map(true) { 
  1008       Parent::setGraph(_graph);
  1009       Parent::setNodeFilterMap(const_true_map);
  1010       Parent::setEdgeFilterMap(_edge_filter_map);
  1011     }
  1012 
  1013   };
  1014 
  1015   /// \brief Just gives back an edge sub graph adaptor
  1016   ///
  1017   /// Just gives back an edge sub graph adaptor
  1018   template<typename Graph, typename EdgeFilterMap>
  1019   EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>
  1020   edgeSubGraphAdaptor(const Graph& graph, EdgeFilterMap& efm) {
  1021     return EdgeSubGraphAdaptor<const Graph, EdgeFilterMap>(graph, efm);
  1022   }
  1023 
  1024   template<typename Graph, typename EdgeFilterMap>
  1025   EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>
  1026   edgeSubGraphAdaptor(const Graph& graph, const EdgeFilterMap& efm) {
  1027     return EdgeSubGraphAdaptor<const Graph, const EdgeFilterMap>(graph, efm);
  1028   }
  1029 
  1030   template <typename _Graph>
  1031   class UndirGraphAdaptorBase : 
  1032     public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
  1033   public:
  1034     typedef _Graph Graph;
  1035     typedef UndirGraphAdaptorBase Adaptor;
  1036     typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
  1037 
  1038   protected:
  1039 
  1040     UndirGraphAdaptorBase() : Parent() {}
  1041 
  1042   public:
  1043 
  1044     typedef typename Parent::UEdge UEdge;
  1045     typedef typename Parent::Edge Edge;
  1046 
  1047   private:
  1048     
  1049     template <typename _Value>
  1050     class EdgeMapBase {
  1051     private:
  1052       
  1053       typedef typename _Graph::template EdgeMap<_Value> MapImpl;
  1054       
  1055     public:
  1056 
  1057       typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
  1058 
  1059       typedef _Value Value;
  1060       typedef Edge Key;
  1061       
  1062       EdgeMapBase(const Adaptor& adaptor) :
  1063 	forward_map(*adaptor.graph), backward_map(*adaptor.graph) {}
  1064 
  1065       EdgeMapBase(const Adaptor& adaptor, const Value& v) 
  1066         : forward_map(*adaptor.graph, v), backward_map(*adaptor.graph, v) {}
  1067       
  1068       void set(const Edge& e, const Value& a) { 
  1069 	if (Parent::direction(e)) {
  1070 	  forward_map.set(e, a); 
  1071         } else { 
  1072 	  backward_map.set(e, a);
  1073         } 
  1074       }
  1075 
  1076       typename MapTraits<MapImpl>::ConstReturnValue operator[](Edge e) const { 
  1077 	if (Parent::direction(e)) {
  1078 	  return forward_map[e]; 
  1079 	} else { 
  1080 	  return backward_map[e]; 
  1081         }
  1082       }
  1083 
  1084       typename MapTraits<MapImpl>::ReturnValue operator[](Edge e) { 
  1085 	if (Parent::direction(e)) {
  1086 	  return forward_map[e]; 
  1087 	} else { 
  1088 	  return backward_map[e]; 
  1089         }
  1090       }
  1091 
  1092     protected:
  1093 
  1094       MapImpl forward_map, backward_map; 
  1095 
  1096     };
  1097 
  1098   public:
  1099 
  1100     template <typename _Value>
  1101     class EdgeMap 
  1102       : public SubMapExtender<Adaptor, EdgeMapBase<_Value> > 
  1103     {
  1104     public:
  1105       typedef Adaptor Graph;
  1106       typedef SubMapExtender<Adaptor, EdgeMapBase<_Value> > Parent;
  1107     
  1108       EdgeMap(const Graph& g) 
  1109 	: Parent(g) {}
  1110       EdgeMap(const Graph& g, const _Value& v) 
  1111 	: Parent(g, v) {}
  1112     
  1113       EdgeMap& operator=(const EdgeMap& cmap) {
  1114 	return operator=<EdgeMap>(cmap);
  1115       }
  1116     
  1117       template <typename CMap>
  1118       EdgeMap& operator=(const CMap& cmap) {
  1119         Parent::operator=(cmap);
  1120 	return *this;
  1121       }
  1122     };
  1123         
  1124     template <typename _Value>
  1125     class UEdgeMap : public Graph::template EdgeMap<_Value> {
  1126     public:
  1127       
  1128       typedef typename Graph::template EdgeMap<_Value> Parent;
  1129       
  1130       explicit UEdgeMap(const Adaptor& ga) 
  1131 	: Parent(*ga.graph) {}
  1132 
  1133       UEdgeMap(const Adaptor& ga, const _Value& value)
  1134 	: Parent(*ga.graph, value) {}
  1135 
  1136       UEdgeMap& operator=(const UEdgeMap& cmap) {
  1137         return operator=<UEdgeMap>(cmap);
  1138       }
  1139 
  1140       template <typename CMap>
  1141       UEdgeMap& operator=(const CMap& cmap) {
  1142         Parent::operator=(cmap);
  1143         return *this;
  1144       }
  1145 
  1146     };
  1147       
  1148   };
  1149 
  1150   template <typename _Graph, typename Enable = void>
  1151   class AlterableUndirGraphAdaptor 
  1152     : public UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > {
  1153   public:
  1154     typedef UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > Parent;
  1155     
  1156   protected:
  1157 
  1158     AlterableUndirGraphAdaptor() : Parent() {}
  1159 
  1160   public:
  1161 
  1162     typedef typename Parent::EdgeNotifier UEdgeNotifier;
  1163     typedef InvalidType EdgeNotifier;
  1164 
  1165   };
  1166 
  1167   template <typename _Graph>
  1168   class AlterableUndirGraphAdaptor<
  1169     _Graph, 
  1170     typename enable_if<typename _Graph::EdgeNotifier::Notifier>::type > 
  1171     : public UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > {
  1172   public:
  1173 
  1174     typedef UGraphAdaptorExtender<UndirGraphAdaptorBase<_Graph> > Parent;
  1175     typedef _Graph Graph;
  1176     typedef typename _Graph::Edge GraphEdge;
  1177     
  1178   protected:
  1179 
  1180     AlterableUndirGraphAdaptor() 
  1181       : Parent(), edge_notifier(*this), edge_notifier_proxy(*this) {}
  1182 
  1183     void setGraph(_Graph& g) {
  1184       Parent::setGraph(g);
  1185       edge_notifier_proxy.setNotifier(g.notifier(GraphEdge()));
  1186     }
  1187 
  1188   public:
  1189 
  1190     ~AlterableUndirGraphAdaptor() {
  1191       edge_notifier.clear();
  1192     }
  1193 
  1194     typedef typename Parent::UEdge UEdge;
  1195     typedef typename Parent::Edge Edge;
  1196 
  1197     typedef typename Parent::EdgeNotifier UEdgeNotifier;
  1198 
  1199     using Parent::notifier;
  1200 
  1201     typedef AlterationNotifier<AlterableUndirGraphAdaptor, 
  1202                                Edge> EdgeNotifier;
  1203     EdgeNotifier& notifier(Edge) const { return edge_notifier; }
  1204 
  1205   protected:
  1206 
  1207     class NotifierProxy : public Graph::EdgeNotifier::ObserverBase {
  1208     public:
  1209 
  1210       typedef typename Graph::EdgeNotifier::ObserverBase Parent;
  1211       typedef AlterableUndirGraphAdaptor AdaptorBase;
  1212       
  1213       NotifierProxy(const AdaptorBase& _adaptor)
  1214         : Parent(), adaptor(&_adaptor) {
  1215       }
  1216 
  1217       virtual ~NotifierProxy() {
  1218         if (Parent::attached()) {
  1219           Parent::detach();
  1220         }
  1221       }
  1222 
  1223       void setNotifier(typename Graph::EdgeNotifier& nf) {
  1224         Parent::attach(nf);
  1225       }
  1226 
  1227       
  1228     protected:
  1229 
  1230       virtual void add(const GraphEdge& ge) {
  1231         std::vector<Edge> edges;
  1232         edges.push_back(AdaptorBase::Parent::direct(ge, true));
  1233         edges.push_back(AdaptorBase::Parent::direct(ge, false));
  1234         adaptor->notifier(Edge()).add(edges);
  1235       }
  1236       virtual void add(const std::vector<GraphEdge>& ge) {
  1237         std::vector<Edge> edges;
  1238         for (int i = 0; i < int(ge.size()); ++i) { 
  1239           edges.push_back(AdaptorBase::Parent::direct(ge[i], true));
  1240           edges.push_back(AdaptorBase::Parent::direct(ge[i], false));
  1241         }
  1242         adaptor->notifier(Edge()).add(edges);
  1243       }
  1244       virtual void erase(const GraphEdge& ge) {
  1245         std::vector<Edge> edges;
  1246         edges.push_back(AdaptorBase::Parent::direct(ge, true));
  1247         edges.push_back(AdaptorBase::Parent::direct(ge, false));
  1248         adaptor->notifier(Edge()).erase(edges);
  1249       }
  1250       virtual void erase(const std::vector<GraphEdge>& ge) {
  1251         std::vector<Edge> edges;
  1252         for (int i = 0; i < int(ge.size()); ++i) { 
  1253           edges.push_back(AdaptorBase::Parent::direct(ge[i], true));
  1254           edges.push_back(AdaptorBase::Parent::direct(ge[i], false));
  1255         }
  1256         adaptor->notifier(Edge()).erase(edges);
  1257       }
  1258       virtual void build() {
  1259         adaptor->notifier(Edge()).build();
  1260       }
  1261       virtual void clear() {
  1262         adaptor->notifier(Edge()).clear();
  1263       }
  1264 
  1265       const AdaptorBase* adaptor;
  1266     };
  1267 
  1268 
  1269     mutable EdgeNotifier edge_notifier;
  1270     NotifierProxy edge_notifier_proxy;
  1271 
  1272   };
  1273 
  1274 
  1275   ///\ingroup graph_adaptors
  1276   ///
  1277   /// \brief An undirected graph is made from a directed graph by an adaptor
  1278   ///
  1279   /// This adaptor makes an undirected graph from a directed
  1280   /// graph. All edge of the underlying will be showed in the adaptor
  1281   /// as an undirected edge. Let's see an informal example about using
  1282   /// this adaptor:
  1283   ///
  1284   /// There is a network of the streets of a town. Of course there are
  1285   /// some one-way street in the town hence the network is a directed
  1286   /// one. There is a crazy driver who go oppositely in the one-way
  1287   /// street without moral sense. Of course he can pass this streets
  1288   /// slower than the regular way, in fact his speed is half of the
  1289   /// normal speed. How long should he drive to get from a source
  1290   /// point to the target? Let see the example code which calculate it:
  1291   ///
  1292   ///\code
  1293   /// typedef UndirGraphAdaptor<Graph> UGraph;
  1294   /// UGraph ugraph(graph);
  1295   ///
  1296   /// typedef SimpleMap<LengthMap> FLengthMap;
  1297   /// FLengthMap flength(length);
  1298   ///
  1299   /// typedef ScaleMap<LengthMap> RLengthMap;
  1300   /// RLengthMap rlength(length, 2.0);
  1301   ///
  1302   /// typedef UGraph::CombinedEdgeMap<FLengthMap, RLengthMap > ULengthMap;
  1303   /// ULengthMap ulength(flength, rlength);
  1304   /// 
  1305   /// Dijkstra<UGraph, ULengthMap> dijkstra(ugraph, ulength);
  1306   /// std::cout << "Driving time : " << dijkstra.run(src, trg) << std::endl;
  1307   ///\endcode
  1308   ///
  1309   /// The combined edge map makes the length map for the undirected
  1310   /// graph. It is created from a forward and reverse map. The forward
  1311   /// map is created from the original length map with a SimpleMap
  1312   /// adaptor which just makes a read-write map from the reference map
  1313   /// i.e. it forgets that it can be return reference to values. The
  1314   /// reverse map is just the scaled original map with the ScaleMap
  1315   /// adaptor. The combination solves that passing the reverse way
  1316   /// takes double time than the original. To get the driving time we
  1317   /// run the dijkstra algorithm on the undirected graph.
  1318   ///
  1319   /// \author Marton Makai and Balazs Dezso
  1320   template<typename _Graph>
  1321   class UndirGraphAdaptor : public AlterableUndirGraphAdaptor<_Graph> {
  1322   public:
  1323     typedef _Graph Graph;
  1324     typedef AlterableUndirGraphAdaptor<_Graph> Parent;
  1325   protected:
  1326     UndirGraphAdaptor() { }
  1327   public:
  1328 
  1329     /// \brief Constructor
  1330     ///
  1331     /// Constructor
  1332     UndirGraphAdaptor(_Graph& _graph) { 
  1333       setGraph(_graph);
  1334     }
  1335 
  1336     /// \brief EdgeMap combined from two original EdgeMap
  1337     ///
  1338     /// This class adapts two original graph EdgeMap to
  1339     /// get an edge map on the adaptor.
  1340     template <typename _ForwardMap, typename _BackwardMap>
  1341     class CombinedEdgeMap {
  1342     public:
  1343       
  1344       typedef _ForwardMap ForwardMap;
  1345       typedef _BackwardMap BackwardMap;
  1346 
  1347       typedef typename MapTraits<ForwardMap>::ReferenceMapTag ReferenceMapTag;
  1348 
  1349       typedef typename ForwardMap::Value Value;
  1350       typedef typename Parent::Edge Key;
  1351 
  1352       /// \brief Constructor      
  1353       ///
  1354       /// Constructor      
  1355       CombinedEdgeMap() : forward_map(0), backward_map(0) {}
  1356 
  1357       /// \brief Constructor      
  1358       ///
  1359       /// Constructor      
  1360       CombinedEdgeMap(ForwardMap& _forward_map, BackwardMap& _backward_map) 
  1361         : forward_map(&_forward_map), backward_map(&_backward_map) {}
  1362       
  1363 
  1364       /// \brief Sets the value associated with a key.
  1365       ///
  1366       /// Sets the value associated with a key.
  1367       void set(const Key& e, const Value& a) { 
  1368 	if (Parent::direction(e)) {
  1369 	  forward_map->set(e, a); 
  1370         } else { 
  1371 	  backward_map->set(e, a);
  1372         } 
  1373       }
  1374 
  1375       /// \brief Returns the value associated with a key.
  1376       ///
  1377       /// Returns the value associated with a key.
  1378       typename MapTraits<ForwardMap>::ConstReturnValue 
  1379       operator[](const Key& e) const { 
  1380 	if (Parent::direction(e)) {
  1381 	  return (*forward_map)[e]; 
  1382 	} else { 
  1383 	  return (*backward_map)[e]; 
  1384         }
  1385       }
  1386 
  1387       /// \brief Returns the value associated with a key.
  1388       ///
  1389       /// Returns the value associated with a key.
  1390       typename MapTraits<ForwardMap>::ReturnValue 
  1391       operator[](const Key& e) { 
  1392 	if (Parent::direction(e)) {
  1393 	  return (*forward_map)[e]; 
  1394 	} else { 
  1395 	  return (*backward_map)[e]; 
  1396         }
  1397       }
  1398 
  1399       /// \brief Sets the forward map
  1400       ///
  1401       /// Sets the forward map
  1402       void setForwardMap(ForwardMap& _forward_map) {
  1403         forward_map = &_forward_map;
  1404       }
  1405 
  1406       /// \brief Sets the backward map
  1407       ///
  1408       /// Sets the backward map
  1409       void setBackwardMap(BackwardMap& _backward_map) {
  1410         backward_map = &_backward_map;
  1411       }
  1412 
  1413     protected:
  1414 
  1415       ForwardMap* forward_map;
  1416       BackwardMap* backward_map; 
  1417 
  1418     };
  1419 
  1420   };
  1421 
  1422   /// \brief Just gives back an undir graph adaptor
  1423   ///
  1424   /// Just gives back an undir graph adaptor
  1425   template<typename Graph>
  1426   UndirGraphAdaptor<const Graph>
  1427   undirGraphAdaptor(const Graph& graph) {
  1428     return UndirGraphAdaptor<const Graph>(graph);
  1429   }
  1430 
  1431   template<typename Graph, typename Number,  
  1432            typename CapacityMap, typename FlowMap, 
  1433            typename Tol = Tolerance<Number> >
  1434   class ResForwardFilter {
  1435     const CapacityMap* capacity;
  1436     const FlowMap* flow;
  1437     Tol tolerance;
  1438   public:
  1439     typedef typename Graph::Edge Key;
  1440     typedef bool Value;
  1441 
  1442     ResForwardFilter(const CapacityMap& _capacity, const FlowMap& _flow,
  1443                      const Tol& _tolerance = Tol()) 
  1444       : capacity(&_capacity), flow(&_flow), tolerance(_tolerance) { }
  1445 
  1446     ResForwardFilter(const Tol& _tolerance) 
  1447       : capacity(0), flow(0), tolerance(_tolerance)  { }
  1448 
  1449     void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
  1450     void setFlow(const FlowMap& _flow) { flow = &_flow; }
  1451 
  1452     bool operator[](const typename Graph::Edge& e) const {
  1453       return tolerance.positive((*capacity)[e] - (*flow)[e]);
  1454     }
  1455   };
  1456 
  1457   template<typename Graph, typename Number,
  1458 	   typename CapacityMap, typename FlowMap,
  1459            typename Tol = Tolerance<Number> >
  1460   class ResBackwardFilter {
  1461     const CapacityMap* capacity;
  1462     const FlowMap* flow;
  1463     Tol tolerance;
  1464   public:
  1465     typedef typename Graph::Edge Key;
  1466     typedef bool Value;
  1467 
  1468     ResBackwardFilter(const CapacityMap& _capacity, const FlowMap& _flow,
  1469                       const Tol& _tolerance = Tol())
  1470       : capacity(&_capacity), flow(&_flow), tolerance(_tolerance) { }
  1471     ResBackwardFilter(const Tol& _tolerance = Tol())
  1472       : capacity(0), flow(0), tolerance(_tolerance) { }
  1473     void setCapacity(const CapacityMap& _capacity) { capacity = &_capacity; }
  1474     void setFlow(const FlowMap& _flow) { flow = &_flow; }
  1475     bool operator[](const typename Graph::Edge& e) const {
  1476       return tolerance.positive((*flow)[e]);
  1477     }
  1478   };
  1479 
  1480   
  1481   ///\ingroup graph_adaptors
  1482   ///
  1483   ///\brief An adaptor for composing the residual
  1484   ///graph for directed flow and circulation problems.
  1485   ///
  1486   ///An adaptor for composing the residual graph for directed flow and
  1487   ///circulation problems.  Let \f$ G=(V, A) \f$ be a directed graph
  1488   ///and let \f$ F \f$ be a number type. Let moreover \f$ f,c:A\to F \f$,
  1489   ///be functions on the edge-set.
  1490   ///
  1491   ///In the appications of ResGraphAdaptor, \f$ f \f$ usually stands
  1492   ///for a flow and \f$ c \f$ for a capacity function.  Suppose that a
  1493   ///graph instange \c g of type \c ListGraph implements \f$ G \f$.
  1494   ///
  1495   ///\code 
  1496   ///  ListGraph g;
  1497   ///\endcode 
  1498   ///
  1499   ///Then ResGraphAdaptor implements the graph structure with node-set
  1500   /// \f$ V \f$ and edge-set \f$ A_{forward}\cup A_{backward} \f$,
  1501   ///where \f$ A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\} \f$ and 
  1502   /// \f$ A_{backward}=\{vu : uv\in A, f(uv)>0\} \f$, i.e. the so called
  1503   ///residual graph.  When we take the union 
  1504   /// \f$ A_{forward}\cup A_{backward} \f$, multilicities are counted, i.e. 
  1505   ///if an edge is in both \f$ A_{forward} \f$ and \f$ A_{backward} \f$, 
  1506   ///then in the adaptor it appears twice. The following code shows how 
  1507   ///such an instance can be constructed.
  1508   ///
  1509   ///\code 
  1510   ///  typedef ListGraph Graph; 
  1511   ///  Graph::EdgeMap<int> f(g);
  1512   ///  Graph::EdgeMap<int> c(g); 
  1513   ///  ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > ga(g); 
  1514   ///\endcode
  1515   ///\author Marton Makai
  1516   ///
  1517   template<typename Graph, typename Number, 
  1518 	   typename CapacityMap, typename FlowMap,
  1519            typename Tol = Tolerance<Number> >
  1520   class ResGraphAdaptor : 
  1521     public EdgeSubGraphAdaptor< 
  1522     UndirGraphAdaptor<const Graph>, 
  1523     typename UndirGraphAdaptor<const Graph>::template CombinedEdgeMap<
  1524     ResForwardFilter<const Graph, Number, CapacityMap, FlowMap>,  
  1525     ResBackwardFilter<const Graph, Number, CapacityMap, FlowMap> > > {
  1526   public:
  1527 
  1528     typedef UndirGraphAdaptor<const Graph> UGraph;
  1529 
  1530     typedef ResForwardFilter<const Graph, Number, CapacityMap, FlowMap> 
  1531     ForwardFilter;
  1532 
  1533     typedef ResBackwardFilter<const Graph, Number, CapacityMap, FlowMap> 
  1534     BackwardFilter;
  1535 
  1536     typedef typename UGraph::
  1537     template CombinedEdgeMap<ForwardFilter, BackwardFilter>
  1538     EdgeFilter;
  1539 
  1540     typedef EdgeSubGraphAdaptor<UGraph, EdgeFilter> Parent;
  1541 
  1542   protected:
  1543 
  1544     const CapacityMap* capacity;
  1545     FlowMap* flow;
  1546 
  1547     UGraph ugraph;
  1548     ForwardFilter forward_filter;
  1549     BackwardFilter backward_filter;
  1550     EdgeFilter edge_filter;
  1551 
  1552     void setCapacityMap(const CapacityMap& _capacity) {
  1553       capacity=&_capacity;
  1554       forward_filter.setCapacity(_capacity);
  1555       backward_filter.setCapacity(_capacity);
  1556     }
  1557 
  1558     void setFlowMap(FlowMap& _flow) {
  1559       flow=&_flow;
  1560       forward_filter.setFlow(_flow);
  1561       backward_filter.setFlow(_flow);
  1562     }
  1563 
  1564   public:
  1565 
  1566     /// \brief Constructor of the residual graph.
  1567     ///
  1568     /// Constructor of the residual graph. The parameters are the graph type,
  1569     /// the flow map, the capacity map and a tolerance object.
  1570     ResGraphAdaptor(const Graph& _graph, const CapacityMap& _capacity, 
  1571                     FlowMap& _flow, const Tol& _tolerance = Tol()) 
  1572       : Parent(), capacity(&_capacity), flow(&_flow), ugraph(_graph),
  1573         forward_filter(_capacity, _flow, _tolerance), 
  1574         backward_filter(_capacity, _flow, _tolerance),
  1575         edge_filter(forward_filter, backward_filter)
  1576     {
  1577       Parent::setGraph(ugraph);
  1578       Parent::setEdgeFilterMap(edge_filter);
  1579     }
  1580 
  1581     typedef typename Parent::Edge Edge;
  1582 
  1583     /// \brief Gives back the residual capacity of the edge.
  1584     ///
  1585     /// Gives back the residual capacity of the edge.
  1586     Number rescap(const Edge& edge) const {
  1587       if (UGraph::direction(edge)) {
  1588         return (*capacity)[edge]-(*flow)[edge]; 
  1589       } else {
  1590         return (*flow)[edge];
  1591       }
  1592     } 
  1593 
  1594     /// \brief Augment on the given edge in the residual graph.
  1595     ///
  1596     /// Augment on the given edge in the residual graph. It increase
  1597     /// or decrease the flow on the original edge depend on the direction
  1598     /// of the residual edge.
  1599     void augment(const Edge& e, Number a) const {
  1600       if (UGraph::direction(e)) {
  1601         flow->set(e, (*flow)[e] + a);
  1602       } else {  
  1603         flow->set(e, (*flow)[e] - a);
  1604       }
  1605     }
  1606 
  1607     /// \brief Returns the direction of the edge.
  1608     ///
  1609     /// Returns true when the edge is same oriented as the original edge.
  1610     static bool forward(const Edge& e) {
  1611       return UGraph::direction(e);
  1612     }
  1613 
  1614     /// \brief Returns the direction of the edge.
  1615     ///
  1616     /// Returns true when the edge is opposite oriented as the original edge.
  1617     static bool backward(const Edge& e) {
  1618       return !UGraph::direction(e);
  1619     }
  1620 
  1621     /// \brief Gives back the forward oriented residual edge.
  1622     ///
  1623     /// Gives back the forward oriented residual edge.
  1624     static Edge forward(const typename Graph::Edge& e) {
  1625       return UGraph::direct(e, true);
  1626     }
  1627 
  1628     /// \brief Gives back the backward oriented residual edge.
  1629     ///
  1630     /// Gives back the backward oriented residual edge.
  1631     static Edge backward(const typename Graph::Edge& e) {
  1632       return UGraph::direct(e, false);
  1633     }
  1634 
  1635     /// \brief Residual capacity map.
  1636     ///
  1637     /// In generic residual graphs the residual capacity can be obtained 
  1638     /// as a map. 
  1639     class ResCap {
  1640     protected:
  1641       const ResGraphAdaptor* res_graph;
  1642     public:
  1643       typedef Number Value;
  1644       typedef Edge Key;
  1645       ResCap(const ResGraphAdaptor& _res_graph) 
  1646         : res_graph(&_res_graph) {}
  1647       
  1648       Number operator[](const Edge& e) const {
  1649         return res_graph->rescap(e);
  1650       }
  1651       
  1652     };
  1653 
  1654   };
  1655 
  1656 
  1657 
  1658   template <typename _Graph, typename FirstOutEdgesMap>
  1659   class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
  1660   public:
  1661     typedef _Graph Graph;
  1662     typedef GraphAdaptorBase<_Graph> Parent;
  1663   protected:
  1664     FirstOutEdgesMap* first_out_edges;
  1665     ErasingFirstGraphAdaptorBase() : Parent(), 
  1666 				     first_out_edges(0) { }
  1667 
  1668     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1669       first_out_edges=&_first_out_edges;
  1670     }
  1671 
  1672   public:
  1673 
  1674     typedef typename Parent::Node Node;
  1675     typedef typename Parent::Edge Edge;
  1676 
  1677     void firstOut(Edge& i, const Node& n) const { 
  1678       i=(*first_out_edges)[n];
  1679     }
  1680 
  1681     void erase(const Edge& e) const {
  1682       Node n=source(e);
  1683       Edge f=e;
  1684       Parent::nextOut(f);
  1685       first_out_edges->set(n, f);
  1686     }    
  1687   };
  1688 
  1689 
  1690   ///\ingroup graph_adaptors
  1691   ///
  1692   ///\brief For blocking flows.
  1693   ///
  1694   ///This graph adaptor is used for on-the-fly 
  1695   ///Dinits blocking flow computations.
  1696   ///For each node, an out-edge is stored which is used when the 
  1697   ///\code
  1698   ///OutEdgeIt& first(OutEdgeIt&, const Node&)
  1699   ///\endcode
  1700   ///is called. 
  1701   ///
  1702   ///\author Marton Makai
  1703   ///
  1704   template <typename _Graph, typename FirstOutEdgesMap>
  1705   class ErasingFirstGraphAdaptor : 
  1706     public GraphAdaptorExtender<
  1707     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1708   public:
  1709     typedef _Graph Graph;
  1710     typedef GraphAdaptorExtender<
  1711       ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
  1712     ErasingFirstGraphAdaptor(Graph& _graph, 
  1713 			     FirstOutEdgesMap& _first_out_edges) { 
  1714       setGraph(_graph);
  1715       setFirstOutEdgesMap(_first_out_edges);
  1716     } 
  1717 
  1718   };
  1719 
  1720   /// \brief Base class for split graph adaptor
  1721   ///
  1722   /// Base class of split graph adaptor. In most case you do not need to
  1723   /// use it directly but the documented member functions of this class can 
  1724   /// be used with the SplitGraphAdaptor class.
  1725   /// \sa SplitGraphAdaptor
  1726   template <typename _Graph>
  1727   class SplitGraphAdaptorBase 
  1728     : public GraphAdaptorBase<const _Graph> {
  1729   public:
  1730 
  1731     typedef _Graph Graph;
  1732 
  1733     typedef GraphAdaptorBase<const _Graph> Parent;
  1734 
  1735     typedef typename Graph::Node GraphNode;
  1736     typedef typename Graph::Edge GraphEdge;
  1737 
  1738     class Node;
  1739     class Edge;
  1740 
  1741     template <typename T> class NodeMap;
  1742     template <typename T> class EdgeMap;
  1743     
  1744 
  1745     class Node : public GraphNode {
  1746       friend class SplitGraphAdaptorBase;
  1747       template <typename T> friend class NodeMap;
  1748     private:
  1749 
  1750       bool in_node;
  1751       Node(GraphNode _node, bool _in_node)
  1752 	: GraphNode(_node), in_node(_in_node) {}
  1753       
  1754     public:
  1755 
  1756       Node() {}
  1757       Node(Invalid) : GraphNode(INVALID), in_node(true) {}
  1758 
  1759       bool operator==(const Node& node) const {
  1760 	return GraphNode::operator==(node) && in_node == node.in_node;
  1761       }
  1762       
  1763       bool operator!=(const Node& node) const {
  1764 	return !(*this == node);
  1765       }
  1766       
  1767       bool operator<(const Node& node) const {
  1768 	return GraphNode::operator<(node) || 
  1769 	  (GraphNode::operator==(node) && in_node < node.in_node);
  1770       }
  1771     };
  1772 
  1773     class Edge {
  1774       friend class SplitGraphAdaptorBase;
  1775       template <typename T> friend class EdgeMap;
  1776     private:
  1777       typedef BiVariant<GraphEdge, GraphNode> EdgeImpl;
  1778 
  1779       explicit Edge(const GraphEdge& edge) : item(edge) {}
  1780       explicit Edge(const GraphNode& node) : item(node) {}
  1781       
  1782       EdgeImpl item;
  1783 
  1784     public:
  1785       Edge() {}
  1786       Edge(Invalid) : item(GraphEdge(INVALID)) {}
  1787 
  1788       bool operator==(const Edge& edge) const {
  1789         if (item.firstState()) {
  1790           if (edge.item.firstState()) {
  1791             return item.first() == edge.item.first();
  1792           }
  1793         } else {
  1794           if (edge.item.secondState()) {
  1795             return item.second() == edge.item.second();
  1796           }
  1797         }
  1798         return false;
  1799       }
  1800       
  1801       bool operator!=(const Edge& edge) const {
  1802 	return !(*this == edge);
  1803       }
  1804       
  1805       bool operator<(const Edge& edge) const {
  1806         if (item.firstState()) {
  1807           if (edge.item.firstState()) {
  1808             return item.first() < edge.item.first();
  1809           }
  1810           return false;
  1811         } else {
  1812           if (edge.item.secondState()) {
  1813             return item.second() < edge.item.second();
  1814           }
  1815           return true;
  1816         }
  1817       }
  1818 
  1819       operator GraphEdge() const { return item.first(); }
  1820       operator GraphNode() const { return item.second(); }
  1821 
  1822     };
  1823 
  1824     void first(Node& n) const {
  1825       Parent::first(n);
  1826       n.in_node = true;
  1827     }
  1828 
  1829     void next(Node& n) const {
  1830       if (n.in_node) {
  1831 	n.in_node = false;
  1832       } else {
  1833 	n.in_node = true;
  1834 	Parent::next(n);
  1835       }
  1836     }
  1837 
  1838     void first(Edge& e) const {
  1839       e.item.setSecond();
  1840       Parent::first(e.item.second());
  1841       if (e.item.second() == INVALID) {
  1842         e.item.setFirst();
  1843 	Parent::first(e.item.first());
  1844       }
  1845     }
  1846 
  1847     void next(Edge& e) const {
  1848       if (e.item.secondState()) {
  1849 	Parent::next(e.item.second());
  1850         if (e.item.second() == INVALID) {
  1851           e.item.setFirst();
  1852           Parent::first(e.item.first());
  1853         }
  1854       } else {
  1855 	Parent::next(e.item.first());
  1856       }      
  1857     }
  1858 
  1859     void firstOut(Edge& e, const Node& n) const {
  1860       if (n.in_node) {
  1861         e.item.setSecond(n);
  1862       } else {
  1863         e.item.setFirst();
  1864 	Parent::firstOut(e.item.first(), n);
  1865       }
  1866     }
  1867 
  1868     void nextOut(Edge& e) const {
  1869       if (!e.item.firstState()) {
  1870 	e.item.setFirst(INVALID);
  1871       } else {
  1872 	Parent::nextOut(e.item.first());
  1873       }      
  1874     }
  1875 
  1876     void firstIn(Edge& e, const Node& n) const {
  1877       if (!n.in_node) {
  1878         e.item.setSecond(n);        
  1879       } else {
  1880         e.item.setFirst();
  1881 	Parent::firstIn(e.item.first(), n);
  1882       }
  1883     }
  1884 
  1885     void nextIn(Edge& e) const {
  1886       if (!e.item.firstState()) {
  1887 	e.item.setFirst(INVALID);
  1888       } else {
  1889 	Parent::nextIn(e.item.first());
  1890       }
  1891     }
  1892 
  1893     Node source(const Edge& e) const {
  1894       if (e.item.firstState()) {
  1895 	return Node(Parent::source(e.item.first()), false);
  1896       } else {
  1897 	return Node(e.item.second(), true);
  1898       }
  1899     }
  1900 
  1901     Node target(const Edge& e) const {
  1902       if (e.item.firstState()) {
  1903 	return Node(Parent::target(e.item.first()), true);
  1904       } else {
  1905 	return Node(e.item.second(), false);
  1906       }
  1907     }
  1908 
  1909     int id(const Node& n) const {
  1910       return (Parent::id(n) << 1) | (n.in_node ? 0 : 1);
  1911     }
  1912     Node nodeFromId(int ix) const {
  1913       return Node(Parent::nodeFromId(ix >> 1), (ix & 1) == 0);
  1914     }
  1915     int maxNodeId() const {
  1916       return 2 * Parent::maxNodeId() + 1;
  1917     }
  1918 
  1919     int id(const Edge& e) const {
  1920       if (e.item.firstState()) {
  1921         return Parent::id(e.item.first()) << 1;
  1922       } else {
  1923         return (Parent::id(e.item.second()) << 1) | 1;
  1924       }
  1925     }
  1926     Edge edgeFromId(int ix) const {
  1927       if ((ix & 1) == 0) {
  1928         return Edge(Parent::edgeFromId(ix >> 1));
  1929       } else {
  1930         return Edge(Parent::nodeFromId(ix >> 1));
  1931       }
  1932     }
  1933     int maxEdgeId() const {
  1934       return std::max(Parent::maxNodeId() << 1, 
  1935                       (Parent::maxEdgeId() << 1) | 1);
  1936     }
  1937 
  1938     /// \brief Returns true when the node is in-node.
  1939     ///
  1940     /// Returns true when the node is in-node.
  1941     static bool inNode(const Node& n) {
  1942       return n.in_node;
  1943     }
  1944 
  1945     /// \brief Returns true when the node is out-node.
  1946     ///
  1947     /// Returns true when the node is out-node.
  1948     static bool outNode(const Node& n) {
  1949       return !n.in_node;
  1950     }
  1951 
  1952     /// \brief Returns true when the edge is edge in the original graph.
  1953     ///
  1954     /// Returns true when the edge is edge in the original graph.
  1955     static bool origEdge(const Edge& e) {
  1956       return e.item.firstState();
  1957     }
  1958 
  1959     /// \brief Returns true when the edge binds an in-node and an out-node.
  1960     ///
  1961     /// Returns true when the edge binds an in-node and an out-node.
  1962     static bool bindEdge(const Edge& e) {
  1963       return e.item.secondState();
  1964     }
  1965 
  1966     /// \brief Gives back the in-node created from the \c node.
  1967     ///
  1968     /// Gives back the in-node created from the \c node.
  1969     static Node inNode(const GraphNode& n) {
  1970       return Node(n, true);
  1971     }
  1972 
  1973     /// \brief Gives back the out-node created from the \c node.
  1974     ///
  1975     /// Gives back the out-node created from the \c node.
  1976     static Node outNode(const GraphNode& n) {
  1977       return Node(n, false);
  1978     }
  1979 
  1980     /// \brief Gives back the edge binds the two part of the node.
  1981     /// 
  1982     /// Gives back the edge binds the two part of the node.
  1983     static Edge edge(const GraphNode& n) {
  1984       return Edge(n);
  1985     }
  1986 
  1987     /// \brief Gives back the edge of the original edge.
  1988     /// 
  1989     /// Gives back the edge of the original edge.
  1990     static Edge edge(const GraphEdge& e) {
  1991       return Edge(e);
  1992     }
  1993 
  1994     typedef True NodeNumTag;
  1995 
  1996     int nodeNum() const {
  1997       return  2 * countNodes(*Parent::graph);
  1998     }
  1999 
  2000     typedef True EdgeNumTag;
  2001     
  2002     int edgeNum() const {
  2003       return countEdges(*Parent::graph) + countNodes(*Parent::graph);
  2004     }
  2005 
  2006     typedef True FindEdgeTag;
  2007 
  2008     Edge findEdge(const Node& u, const Node& v, 
  2009 		  const Edge& prev = INVALID) const {
  2010       if (inNode(u)) {
  2011         if (outNode(v)) {
  2012           if (static_cast<const GraphNode&>(u) == 
  2013               static_cast<const GraphNode&>(v) && prev == INVALID) {
  2014             return Edge(u);
  2015           }
  2016         }
  2017       } else {
  2018         if (inNode(v)) {
  2019           return Edge(findEdge(*Parent::graph, u, v, prev));
  2020         }
  2021       }
  2022       return INVALID;
  2023     }
  2024     
  2025     template <typename T>
  2026     class NodeMap : public MapBase<Node, T> {
  2027       typedef typename Parent::template NodeMap<T> NodeImpl;
  2028     public:
  2029       NodeMap(const SplitGraphAdaptorBase& _graph) 
  2030 	: inNodeMap(_graph), outNodeMap(_graph) {}
  2031       NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  2032 	: inNodeMap(_graph, t), outNodeMap(_graph, t) {}
  2033       
  2034       void set(const Node& key, const T& val) {
  2035 	if (SplitGraphAdaptorBase::inNode(key)) { inNodeMap.set(key, val); }
  2036 	else {outNodeMap.set(key, val); }
  2037       }
  2038       
  2039       typename MapTraits<NodeImpl>::ReturnValue 
  2040       operator[](const Node& key) {
  2041 	if (SplitGraphAdaptorBase::inNode(key)) { return inNodeMap[key]; }
  2042 	else { return outNodeMap[key]; }
  2043       }
  2044 
  2045       typename MapTraits<NodeImpl>::ConstReturnValue
  2046       operator[](const Node& key) const {
  2047 	if (SplitGraphAdaptorBase::inNode(key)) { return inNodeMap[key]; }
  2048 	else { return outNodeMap[key]; }
  2049       }
  2050 
  2051     private:
  2052       NodeImpl inNodeMap, outNodeMap;
  2053     };
  2054 
  2055     template <typename T>
  2056     class EdgeMap : public MapBase<Edge, T> {
  2057       typedef typename Parent::template EdgeMap<T> EdgeMapImpl;
  2058       typedef typename Parent::template NodeMap<T> NodeMapImpl;
  2059     public:
  2060 
  2061       EdgeMap(const SplitGraphAdaptorBase& _graph) 
  2062 	: edge_map(_graph), node_map(_graph) {}
  2063       EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  2064 	: edge_map(_graph, t), node_map(_graph, t) {}
  2065       
  2066       void set(const Edge& key, const T& val) {
  2067 	if (SplitGraphAdaptorBase::origEdge(key)) { 
  2068           edge_map.set(key.item.first(), val); 
  2069         } else {
  2070           node_map.set(key.item.second(), val); 
  2071         }
  2072       }
  2073       
  2074       typename MapTraits<EdgeMapImpl>::ReturnValue
  2075       operator[](const Edge& key) {
  2076 	if (SplitGraphAdaptorBase::origEdge(key)) { 
  2077           return edge_map[key.item.first()];
  2078         } else {
  2079           return node_map[key.item.second()];
  2080         }
  2081       }
  2082 
  2083       typename MapTraits<EdgeMapImpl>::ConstReturnValue
  2084       operator[](const Edge& key) const {
  2085 	if (SplitGraphAdaptorBase::origEdge(key)) { 
  2086           return edge_map[key.item.first()];
  2087         } else {
  2088           return node_map[key.item.second()];
  2089         }
  2090       }
  2091 
  2092     private:
  2093       typename Parent::template EdgeMap<T> edge_map;
  2094       typename Parent::template NodeMap<T> node_map;
  2095     };
  2096 
  2097 
  2098   };
  2099 
  2100   template <typename _Graph, typename NodeEnable = void, 
  2101             typename EdgeEnable = void>
  2102   class AlterableSplitGraphAdaptor 
  2103     : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
  2104   public:
  2105 
  2106     typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  2107     typedef _Graph Graph;
  2108 
  2109     typedef typename Graph::Node GraphNode;
  2110     typedef typename Graph::Node GraphEdge;
  2111 
  2112   protected:
  2113 
  2114     AlterableSplitGraphAdaptor() : Parent() {}
  2115 
  2116   public:
  2117     
  2118     typedef InvalidType NodeNotifier;
  2119     typedef InvalidType EdgeNotifier;
  2120 
  2121   };
  2122 
  2123   template <typename _Graph, typename EdgeEnable>
  2124   class AlterableSplitGraphAdaptor<
  2125     _Graph,
  2126     typename enable_if<typename _Graph::NodeNotifier::Notifier>::type,
  2127     EdgeEnable> 
  2128       : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
  2129   public:
  2130 
  2131     typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  2132     typedef _Graph Graph;
  2133 
  2134     typedef typename Graph::Node GraphNode;
  2135     typedef typename Graph::Edge GraphEdge;
  2136 
  2137     typedef typename Parent::Node Node;
  2138     typedef typename Parent::Edge Edge;
  2139  
  2140   protected:
  2141 
  2142     AlterableSplitGraphAdaptor() 
  2143       : Parent(), node_notifier(*this), node_notifier_proxy(*this) {}
  2144 
  2145     void setGraph(_Graph& graph) {
  2146       Parent::setGraph(graph);
  2147       node_notifier_proxy.setNotifier(graph.notifier(GraphNode()));
  2148     }
  2149 
  2150   public:
  2151 
  2152     ~AlterableSplitGraphAdaptor() {
  2153       node_notifier.clear();
  2154     }
  2155 
  2156     typedef AlterationNotifier<AlterableSplitGraphAdaptor, Node> NodeNotifier;
  2157     typedef InvalidType EdgeNotifier;
  2158 
  2159     NodeNotifier& notifier(Node) const { return node_notifier; }
  2160 
  2161   protected:
  2162 
  2163     class NodeNotifierProxy : public Graph::NodeNotifier::ObserverBase {
  2164     public:
  2165 
  2166       typedef typename Graph::NodeNotifier::ObserverBase Parent;
  2167       typedef AlterableSplitGraphAdaptor AdaptorBase;
  2168       
  2169       NodeNotifierProxy(const AdaptorBase& _adaptor)
  2170         : Parent(), adaptor(&_adaptor) {
  2171       }
  2172 
  2173       virtual ~NodeNotifierProxy() {
  2174         if (Parent::attached()) {
  2175           Parent::detach();
  2176         }
  2177       }
  2178 
  2179       void setNotifier(typename Graph::NodeNotifier& graph_notifier) {
  2180         Parent::attach(graph_notifier);
  2181       }
  2182 
  2183       
  2184     protected:
  2185 
  2186       virtual void add(const GraphNode& gn) {
  2187         std::vector<Node> nodes;
  2188         nodes.push_back(AdaptorBase::Parent::inNode(gn));
  2189         nodes.push_back(AdaptorBase::Parent::outNode(gn));
  2190         adaptor->notifier(Node()).add(nodes);
  2191       }
  2192 
  2193       virtual void add(const std::vector<GraphNode>& gn) {
  2194         std::vector<Node> nodes;
  2195         for (int i = 0; i < int(gn.size()); ++i) {
  2196           nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
  2197           nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
  2198         }
  2199         adaptor->notifier(Node()).add(nodes);
  2200       }
  2201 
  2202       virtual void erase(const GraphNode& gn) {
  2203         std::vector<Node> nodes;
  2204         nodes.push_back(AdaptorBase::Parent::inNode(gn));
  2205         nodes.push_back(AdaptorBase::Parent::outNode(gn));
  2206         adaptor->notifier(Node()).erase(nodes);
  2207       }
  2208 
  2209       virtual void erase(const std::vector<GraphNode>& gn) {
  2210         std::vector<Node> nodes;
  2211         for (int i = 0; i < int(gn.size()); ++i) {
  2212           nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
  2213           nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
  2214         }
  2215         adaptor->notifier(Node()).erase(nodes);
  2216       }
  2217       virtual void build() {
  2218         adaptor->notifier(Node()).build();
  2219       }
  2220       virtual void clear() {
  2221         adaptor->notifier(Node()).clear();
  2222       }
  2223 
  2224       const AdaptorBase* adaptor;
  2225     };
  2226 
  2227 
  2228     mutable NodeNotifier node_notifier;
  2229 
  2230     NodeNotifierProxy node_notifier_proxy;
  2231 
  2232   };
  2233 
  2234   template <typename _Graph>
  2235   class AlterableSplitGraphAdaptor<
  2236     _Graph,
  2237     typename enable_if<typename _Graph::NodeNotifier::Notifier>::type,
  2238     typename enable_if<typename _Graph::EdgeNotifier::Notifier>::type> 
  2239       : public GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > {
  2240   public:
  2241 
  2242     typedef GraphAdaptorExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  2243     typedef _Graph Graph;
  2244 
  2245     typedef typename Graph::Node GraphNode;
  2246     typedef typename Graph::Edge GraphEdge;
  2247 
  2248     typedef typename Parent::Node Node;
  2249     typedef typename Parent::Edge Edge;
  2250  
  2251   protected:
  2252     
  2253     AlterableSplitGraphAdaptor() 
  2254       : Parent(), node_notifier(*this), edge_notifier(*this), 
  2255         node_notifier_proxy(*this), edge_notifier_proxy(*this) {}
  2256     
  2257     void setGraph(_Graph& g) {
  2258       Parent::setGraph(g);
  2259       node_notifier_proxy.setNotifier(g.notifier(GraphNode()));
  2260       edge_notifier_proxy.setNotifier(g.notifier(GraphEdge()));
  2261     }
  2262 
  2263   public:
  2264 
  2265     ~AlterableSplitGraphAdaptor() {
  2266       node_notifier.clear();
  2267       edge_notifier.clear();
  2268     }
  2269 
  2270     typedef AlterationNotifier<AlterableSplitGraphAdaptor, Node> NodeNotifier;
  2271     typedef AlterationNotifier<AlterableSplitGraphAdaptor, Edge> EdgeNotifier;
  2272 
  2273     NodeNotifier& notifier(Node) const { return node_notifier; }
  2274     EdgeNotifier& notifier(Edge) const { return edge_notifier; }
  2275 
  2276   protected:
  2277 
  2278     class NodeNotifierProxy : public Graph::NodeNotifier::ObserverBase {
  2279     public:
  2280       
  2281       typedef typename Graph::NodeNotifier::ObserverBase Parent;
  2282       typedef AlterableSplitGraphAdaptor AdaptorBase;
  2283       
  2284       NodeNotifierProxy(const AdaptorBase& _adaptor)
  2285         : Parent(), adaptor(&_adaptor) {
  2286       }
  2287 
  2288       virtual ~NodeNotifierProxy() {
  2289         if (Parent::attached()) {
  2290           Parent::detach();
  2291         }
  2292       }
  2293 
  2294       void setNotifier(typename Graph::NodeNotifier& graph_notifier) {
  2295         Parent::attach(graph_notifier);
  2296       }
  2297 
  2298       
  2299     protected:
  2300 
  2301       virtual void add(const GraphNode& gn) {
  2302         std::vector<Node> nodes;
  2303         nodes.push_back(AdaptorBase::Parent::inNode(gn));
  2304         nodes.push_back(AdaptorBase::Parent::outNode(gn));
  2305         adaptor->notifier(Node()).add(nodes);
  2306         adaptor->notifier(Edge()).add(AdaptorBase::Parent::edge(gn));
  2307       }
  2308       virtual void add(const std::vector<GraphNode>& gn) {
  2309         std::vector<Node> nodes;
  2310         std::vector<Edge> edges;
  2311         for (int i = 0; i < int(gn.size()); ++i) {
  2312           edges.push_back(AdaptorBase::Parent::edge(gn[i]));
  2313           nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
  2314           nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
  2315         }
  2316         adaptor->notifier(Node()).add(nodes);
  2317         adaptor->notifier(Edge()).add(edges);
  2318       }
  2319       virtual void erase(const GraphNode& gn) {
  2320         adaptor->notifier(Edge()).erase(AdaptorBase::Parent::edge(gn));
  2321         std::vector<Node> nodes;
  2322         nodes.push_back(AdaptorBase::Parent::inNode(gn));
  2323         nodes.push_back(AdaptorBase::Parent::outNode(gn));
  2324         adaptor->notifier(Node()).erase(nodes);
  2325       }
  2326       virtual void erase(const std::vector<GraphNode>& gn) {
  2327         std::vector<Node> nodes;
  2328         std::vector<Edge> edges;
  2329         for (int i = 0; i < int(gn.size()); ++i) {
  2330           edges.push_back(AdaptorBase::Parent::edge(gn[i]));
  2331           nodes.push_back(AdaptorBase::Parent::inNode(gn[i]));
  2332           nodes.push_back(AdaptorBase::Parent::outNode(gn[i]));
  2333         }
  2334         adaptor->notifier(Edge()).erase(edges);
  2335         adaptor->notifier(Node()).erase(nodes);
  2336       }
  2337       virtual void build() {
  2338         std::vector<Edge> edges;
  2339         const typename Parent::Notifier* nf = Parent::notifier();
  2340         GraphNode it;
  2341         for (nf->first(it); it != INVALID; nf->next(it)) {
  2342           edges.push_back(AdaptorBase::Parent::edge(it));
  2343         }
  2344         adaptor->notifier(Node()).build();
  2345         adaptor->notifier(Edge()).add(edges);        
  2346       }
  2347       virtual void clear() {
  2348         std::vector<Edge> edges;
  2349         const typename Parent::Notifier* nf = Parent::notifier();
  2350         GraphNode it;
  2351         for (nf->first(it); it != INVALID; nf->next(it)) {
  2352           edges.push_back(AdaptorBase::Parent::edge(it));
  2353         }
  2354         adaptor->notifier(Edge()).erase(edges);        
  2355         adaptor->notifier(Node()).clear();
  2356       }
  2357 
  2358       const AdaptorBase* adaptor;
  2359     };
  2360 
  2361     class EdgeNotifierProxy : public Graph::EdgeNotifier::ObserverBase {
  2362     public:
  2363 
  2364       typedef typename Graph::EdgeNotifier::ObserverBase Parent;
  2365       typedef AlterableSplitGraphAdaptor AdaptorBase;
  2366       
  2367       EdgeNotifierProxy(const AdaptorBase& _adaptor)
  2368         : Parent(), adaptor(&_adaptor) {
  2369       }
  2370 
  2371       virtual ~EdgeNotifierProxy() {
  2372         if (Parent::attached()) {
  2373           Parent::detach();
  2374         }
  2375       }
  2376 
  2377       void setNotifier(typename Graph::EdgeNotifier& graph_notifier) {
  2378         Parent::attach(graph_notifier);
  2379       }
  2380 
  2381       
  2382     protected:
  2383 
  2384       virtual void add(const GraphEdge& ge) {
  2385         adaptor->notifier(Edge()).add(AdaptorBase::edge(ge));
  2386       }
  2387       virtual void add(const std::vector<GraphEdge>& ge) {
  2388         std::vector<Edge> edges;
  2389         for (int i = 0; i < int(ge.size()); ++i) {
  2390           edges.push_back(AdaptorBase::edge(ge[i]));
  2391         }
  2392         adaptor->notifier(Edge()).add(edges);
  2393       }
  2394       virtual void erase(const GraphEdge& ge) {
  2395         adaptor->notifier(Edge()).erase(AdaptorBase::edge(ge));
  2396       }
  2397       virtual void erase(const std::vector<GraphEdge>& ge) {
  2398         std::vector<Edge> edges;
  2399         for (int i = 0; i < int(ge.size()); ++i) {
  2400           edges.push_back(AdaptorBase::edge(ge[i]));
  2401         }
  2402         adaptor->notifier(Edge()).erase(edges);
  2403       }
  2404       virtual void build() {
  2405         std::vector<Edge> edges;
  2406         const typename Parent::Notifier* nf = Parent::notifier();
  2407         GraphEdge it;
  2408         for (nf->first(it); it != INVALID; nf->next(it)) {
  2409           edges.push_back(AdaptorBase::Parent::edge(it));
  2410         }
  2411         adaptor->notifier(Edge()).add(edges);
  2412       }
  2413       virtual void clear() {
  2414         std::vector<Edge> edges;
  2415         const typename Parent::Notifier* nf = Parent::notifier();
  2416         GraphEdge it;
  2417         for (nf->first(it); it != INVALID; nf->next(it)) {
  2418           edges.push_back(AdaptorBase::Parent::edge(it));
  2419         }
  2420         adaptor->notifier(Edge()).erase(edges);
  2421       }
  2422 
  2423       const AdaptorBase* adaptor;
  2424     };
  2425 
  2426 
  2427     mutable NodeNotifier node_notifier;
  2428     mutable EdgeNotifier edge_notifier;
  2429 
  2430     NodeNotifierProxy node_notifier_proxy;
  2431     EdgeNotifierProxy edge_notifier_proxy;
  2432 
  2433   };
  2434 
  2435   /// \ingroup graph_adaptors
  2436   ///
  2437   /// \brief Split graph adaptor class
  2438   /// 
  2439   /// This is an graph adaptor which splits all node into an in-node
  2440   /// and an out-node. Formaly, the adaptor replaces each \f$ u \f$
  2441   /// node in the graph with two node, \f$ u_{in} \f$ node and 
  2442   /// \f$ u_{out} \f$ node. If there is an \f$ (v, u) \f$ edge in the 
  2443   /// original graph the new target of the edge will be \f$ u_{in} \f$ and
  2444   /// similarly the source of the original \f$ (u, v) \f$ edge will be
  2445   /// \f$ u_{out} \f$.  The adaptor will add for each node in the 
  2446   /// original graph an additional edge which will connect 
  2447   /// \f$ (u_{in}, u_{out}) \f$.
  2448   ///
  2449   /// The aim of this class is to run algorithm with node costs if the 
  2450   /// algorithm can use directly just edge costs. In this case we should use
  2451   /// a \c SplitGraphAdaptor and set the node cost of the graph to the
  2452   /// bind edge in the adapted graph.
  2453   /// 
  2454   /// By example a maximum flow algoritm can compute how many edge
  2455   /// disjoint paths are in the graph. But we would like to know how
  2456   /// many node disjoint paths are in the graph. First we have to
  2457   /// adapt the graph with the \c SplitGraphAdaptor. Then run the flow
  2458   /// algorithm on the adapted graph. The bottleneck of the flow will
  2459   /// be the bind edges which bounds the flow with the count of the
  2460   /// node disjoint paths.
  2461   ///
  2462   ///\code
  2463   ///
  2464   /// typedef SplitGraphAdaptor<SmartGraph> SGraph;
  2465   ///
  2466   /// SGraph sgraph(graph);
  2467   ///
  2468   /// typedef ConstMap<SGraph::Edge, int> SCapacity;
  2469   /// SCapacity scapacity(1);
  2470   ///
  2471   /// SGraph::EdgeMap<int> sflow(sgraph);
  2472   ///
  2473   /// Preflow<SGraph, int, SCapacity> 
  2474   ///   spreflow(sgraph, SGraph::outNode(source),SGraph::inNode(target),  
  2475   ///            scapacity, sflow);
  2476   ///                                            
  2477   /// spreflow.run();
  2478   ///
  2479   ///\endcode
  2480   ///
  2481   /// The result of the mamixum flow on the original graph
  2482   /// shows the next figure:
  2483   ///
  2484   /// \image html edge_disjoint.png
  2485   /// \image latex edge_disjoint.eps "Edge disjoint paths" width=\textwidth
  2486   /// 
  2487   /// And the maximum flow on the adapted graph:
  2488   ///
  2489   /// \image html node_disjoint.png
  2490   /// \image latex node_disjoint.eps "Node disjoint paths" width=\textwidth
  2491   ///
  2492   /// The second solution contains just 3 disjoint paths while the first 4.
  2493   /// The full code can be found in the \ref disjoint_paths_demo.cc demo file.
  2494   ///
  2495   /// This graph adaptor is fully conform to the 
  2496   /// \ref concepts::Graph "Graph" concept and
  2497   /// contains some additional member functions and types. The 
  2498   /// documentation of some member functions may be found just in the
  2499   /// SplitGraphAdaptorBase class.
  2500   ///
  2501   /// \sa SplitGraphAdaptorBase
  2502   template <typename _Graph>
  2503   class SplitGraphAdaptor : public AlterableSplitGraphAdaptor<_Graph> {
  2504   public:
  2505     typedef AlterableSplitGraphAdaptor<_Graph> Parent;
  2506 
  2507     typedef typename Parent::Node Node;
  2508     typedef typename Parent::Edge Edge;
  2509 
  2510     /// \brief Constructor of the adaptor.
  2511     ///
  2512     /// Constructor of the adaptor.
  2513     SplitGraphAdaptor(_Graph& g) {
  2514       Parent::setGraph(g);
  2515     }
  2516 
  2517     /// \brief NodeMap combined from two original NodeMap
  2518     ///
  2519     /// This class adapt two of the original graph NodeMap to
  2520     /// get a node map on the adapted graph.
  2521     template <typename InNodeMap, typename OutNodeMap>
  2522     class CombinedNodeMap {
  2523     public:
  2524 
  2525       typedef Node Key;
  2526       typedef typename InNodeMap::Value Value;
  2527 
  2528       /// \brief Constructor
  2529       ///
  2530       /// Constructor.
  2531       CombinedNodeMap(InNodeMap& _inNodeMap, OutNodeMap& _outNodeMap) 
  2532 	: inNodeMap(_inNodeMap), outNodeMap(_outNodeMap) {}
  2533 
  2534       /// \brief The subscript operator.
  2535       ///
  2536       /// The subscript operator.
  2537       Value& operator[](const Key& key) {
  2538 	if (Parent::inNode(key)) {
  2539 	  return inNodeMap[key];
  2540 	} else {
  2541 	  return outNodeMap[key];
  2542 	}
  2543       }
  2544 
  2545       /// \brief The const subscript operator.
  2546       ///
  2547       /// The const subscript operator.
  2548       Value operator[](const Key& key) const {
  2549 	if (Parent::inNode(key)) {
  2550 	  return inNodeMap[key];
  2551 	} else {
  2552 	  return outNodeMap[key];
  2553 	}
  2554       }
  2555 
  2556       /// \brief The setter function of the map.
  2557       /// 
  2558       /// The setter function of the map.
  2559       void set(const Key& key, const Value& value) {
  2560 	if (Parent::inNode(key)) {
  2561 	  inNodeMap.set(key, value);
  2562 	} else {
  2563 	  outNodeMap.set(key, value);
  2564 	}
  2565       }
  2566       
  2567     private:
  2568       
  2569       InNodeMap& inNodeMap;
  2570       OutNodeMap& outNodeMap;
  2571       
  2572     };
  2573 
  2574 
  2575     /// \brief Just gives back a combined node map.
  2576     /// 
  2577     /// Just gives back a combined node map.
  2578     template <typename InNodeMap, typename OutNodeMap>
  2579     static CombinedNodeMap<InNodeMap, OutNodeMap> 
  2580     combinedNodeMap(InNodeMap& in_map, OutNodeMap& out_map) {
  2581       return CombinedNodeMap<InNodeMap, OutNodeMap>(in_map, out_map);
  2582     }
  2583 
  2584     template <typename InNodeMap, typename OutNodeMap>
  2585     static CombinedNodeMap<const InNodeMap, OutNodeMap> 
  2586     combinedNodeMap(const InNodeMap& in_map, OutNodeMap& out_map) {
  2587       return CombinedNodeMap<const InNodeMap, OutNodeMap>(in_map, out_map);
  2588     }
  2589 
  2590     template <typename InNodeMap, typename OutNodeMap>
  2591     static CombinedNodeMap<InNodeMap, const OutNodeMap> 
  2592     combinedNodeMap(InNodeMap& in_map, const OutNodeMap& out_map) {
  2593       return CombinedNodeMap<InNodeMap, const OutNodeMap>(in_map, out_map);
  2594     }
  2595 
  2596     template <typename InNodeMap, typename OutNodeMap>
  2597     static CombinedNodeMap<const InNodeMap, const OutNodeMap> 
  2598     combinedNodeMap(const InNodeMap& in_map, const OutNodeMap& out_map) {
  2599       return CombinedNodeMap<const InNodeMap, 
  2600         const OutNodeMap>(in_map, out_map);
  2601     }
  2602 
  2603     /// \brief EdgeMap combined from an original EdgeMap and NodeMap
  2604     ///
  2605     /// This class adapt an original graph EdgeMap and NodeMap to
  2606     /// get an edge map on the adapted graph.
  2607     template <typename GraphEdgeMap, typename GraphNodeMap>
  2608     class CombinedEdgeMap {
  2609     public:
  2610       
  2611       typedef Edge Key;
  2612       typedef typename GraphEdgeMap::Value Value;
  2613       
  2614       /// \brief Constructor
  2615       ///
  2616       /// Constructor.
  2617       CombinedEdgeMap(GraphEdgeMap& _edge_map, GraphNodeMap& _node_map) 
  2618 	: edge_map(_edge_map), node_map(_node_map) {}
  2619 
  2620       /// \brief The subscript operator.
  2621       ///
  2622       /// The subscript operator.
  2623       void set(const Edge& edge, const Value& val) {
  2624 	if (Parent::origEdge(edge)) {
  2625 	  edge_map.set(edge, val);
  2626 	} else {
  2627 	  node_map.set(edge, val);
  2628 	}
  2629       }
  2630 
  2631       /// \brief The const subscript operator.
  2632       ///
  2633       /// The const subscript operator.
  2634       Value operator[](const Key& edge) const {
  2635 	if (Parent::origEdge(edge)) {
  2636 	  return edge_map[edge];
  2637 	} else {
  2638 	  return node_map[edge];
  2639 	}
  2640       }      
  2641 
  2642       /// \brief The const subscript operator.
  2643       ///
  2644       /// The const subscript operator.
  2645       Value& operator[](const Key& edge) {
  2646 	if (Parent::origEdge(edge)) {
  2647 	  return edge_map[edge];
  2648 	} else {
  2649 	  return node_map[edge];
  2650 	}
  2651       }      
  2652       
  2653     private:
  2654       GraphEdgeMap& edge_map;
  2655       GraphNodeMap& node_map;
  2656     };
  2657                     
  2658     /// \brief Just gives back a combined edge map.
  2659     /// 
  2660     /// Just gives back a combined edge map.
  2661     template <typename GraphEdgeMap, typename GraphNodeMap>
  2662     static CombinedEdgeMap<GraphEdgeMap, GraphNodeMap> 
  2663     combinedEdgeMap(GraphEdgeMap& edge_map, GraphNodeMap& node_map) {
  2664       return CombinedEdgeMap<GraphEdgeMap, GraphNodeMap>(edge_map, node_map);
  2665     }
  2666 
  2667     template <typename GraphEdgeMap, typename GraphNodeMap>
  2668     static CombinedEdgeMap<const GraphEdgeMap, GraphNodeMap> 
  2669     combinedEdgeMap(const GraphEdgeMap& edge_map, GraphNodeMap& node_map) {
  2670       return CombinedEdgeMap<const GraphEdgeMap, 
  2671         GraphNodeMap>(edge_map, node_map);
  2672     }
  2673 
  2674     template <typename GraphEdgeMap, typename GraphNodeMap>
  2675     static CombinedEdgeMap<GraphEdgeMap, const GraphNodeMap> 
  2676     combinedEdgeMap(GraphEdgeMap& edge_map, const GraphNodeMap& node_map) {
  2677       return CombinedEdgeMap<GraphEdgeMap, 
  2678         const GraphNodeMap>(edge_map, node_map);
  2679     }
  2680 
  2681     template <typename GraphEdgeMap, typename GraphNodeMap>
  2682     static CombinedEdgeMap<const GraphEdgeMap, const GraphNodeMap> 
  2683     combinedEdgeMap(const GraphEdgeMap& edge_map, 
  2684                     const GraphNodeMap& node_map) {
  2685       return CombinedEdgeMap<const GraphEdgeMap, 
  2686         const GraphNodeMap>(edge_map, node_map);
  2687     }
  2688 
  2689   };
  2690 
  2691   /// \brief Just gives back a split graph adaptor
  2692   ///
  2693   /// Just gives back a split graph adaptor
  2694   template<typename Graph>
  2695   SplitGraphAdaptor<Graph>
  2696   splitGraphAdaptor(const Graph& graph) {
  2697     return SplitGraphAdaptor<Graph>(graph);
  2698   }
  2699 
  2700 
  2701 } //namespace lemon
  2702 
  2703 #endif //LEMON_GRAPH_ADAPTOR_H
  2704