lemon/graph_utils.h
author athos
Tue, 31 Oct 2006 15:57:53 +0000
changeset 2288 ef8af928c54e
parent 2286 1ef281b2b10e
child 2290 f30867b359a8
permissions -rw-r--r--
Corrected some typos and grammatical errors.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2006
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_GRAPH_UTILS_H
    20 #define LEMON_GRAPH_UTILS_H
    21 
    22 #include <iterator>
    23 #include <vector>
    24 #include <map>
    25 #include <cmath>
    26 #include <algorithm>
    27 
    28 #include <lemon/bits/invalid.h>
    29 #include <lemon/bits/utility.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/bits/traits.h>
    32 
    33 #include <lemon/bits/alteration_notifier.h>
    34 #include <lemon/bits/default_map.h>
    35 
    36 ///\ingroup gutils
    37 ///\file
    38 ///\brief Graph utilities.
    39 ///
    40 ///
    41 
    42 
    43 namespace lemon {
    44 
    45   /// \addtogroup gutils
    46   /// @{
    47 
    48   ///Creates convenience typedefs for the graph types and iterators
    49 
    50   ///This \c \#define creates convenience typedefs for the following types
    51   ///of \c Graph: \c Node,  \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt,
    52   ///\c OutEdgeIt
    53   ///\note If \c G it a template parameter, it should be used in this way.
    54   ///\code
    55   ///  GRAPH_TYPEDEFS(typename G)
    56   ///\endcode
    57   ///
    58   ///\warning There are no typedefs for the graph maps because of the lack of
    59   ///template typedefs in C++.
    60 #define GRAPH_TYPEDEFS(Graph)				\
    61   typedef Graph::     Node      Node;			\
    62     typedef Graph::   NodeIt    NodeIt;			\
    63     typedef Graph::   Edge      Edge;			\
    64     typedef Graph::   EdgeIt    EdgeIt;			\
    65     typedef Graph:: InEdgeIt  InEdgeIt;			\
    66     typedef Graph::OutEdgeIt OutEdgeIt;			
    67 
    68   ///Creates convenience typedefs for the undirected graph types and iterators
    69 
    70   ///This \c \#define creates the same convenience typedefs as defined by
    71   ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates
    72   ///\c UEdge, \c UEdgeIt, \c IncEdgeIt,
    73   ///
    74   ///\note If \c G it a template parameter, it should be used in this way.
    75   ///\code
    76   ///  UGRAPH_TYPEDEFS(typename G)
    77   ///\endcode
    78   ///
    79   ///\warning There are no typedefs for the graph maps because of the lack of
    80   ///template typedefs in C++.
    81 #define UGRAPH_TYPEDEFS(Graph)				\
    82   GRAPH_TYPEDEFS(Graph)						\
    83     typedef Graph:: UEdge   UEdge;			\
    84     typedef Graph:: UEdgeIt UEdgeIt;			\
    85     typedef Graph:: IncEdgeIt   IncEdgeIt;		       
    86 
    87   ///\brief Creates convenience typedefs for the bipartite undirected graph 
    88   ///types and iterators
    89 
    90   ///This \c \#define creates the same convenience typedefs as defined by
    91   ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates
    92   ///\c ANodeIt, \c BNodeIt, 
    93   ///
    94   ///\note If \c G it a template parameter, it should be used in this way.
    95   ///\code
    96   ///  BPUGRAPH_TYPEDEFS(typename G)
    97   ///\endcode
    98   ///
    99   ///\warning There are no typedefs for the graph maps because of the lack of
   100   ///template typedefs in C++.
   101 #define BPUGRAPH_TYPEDEFS(Graph)            \
   102   UGRAPH_TYPEDEFS(Graph)                    \
   103     typedef Graph::ANode ANode;             \
   104     typedef Graph::BNode BNode;             \
   105     typedef Graph::ANodeIt ANodeIt;	    \
   106     typedef Graph::BNodeIt BNodeIt;
   107 
   108   /// \brief Function to count the items in the graph.
   109   ///
   110   /// This function counts the items (nodes, edges etc) in the graph.
   111   /// The complexity of the function is O(n) because
   112   /// it iterates on all of the items.
   113 
   114   template <typename Graph, typename Item>
   115   inline int countItems(const Graph& g) {
   116     typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   117     int num = 0;
   118     for (ItemIt it(g); it != INVALID; ++it) {
   119       ++num;
   120     }
   121     return num;
   122   }
   123 
   124   // Node counting:
   125 
   126   namespace _graph_utils_bits {
   127     
   128     template <typename Graph, typename Enable = void>
   129     struct CountNodesSelector {
   130       static int count(const Graph &g) {
   131         return countItems<Graph, typename Graph::Node>(g);
   132       }
   133     };
   134 
   135     template <typename Graph>
   136     struct CountNodesSelector<
   137       Graph, typename 
   138       enable_if<typename Graph::NodeNumTag, void>::type> 
   139     {
   140       static int count(const Graph &g) {
   141         return g.nodeNum();
   142       }
   143     };    
   144   }
   145 
   146   /// \brief Function to count the nodes in the graph.
   147   ///
   148   /// This function counts the nodes in the graph.
   149   /// The complexity of the function is O(n) but for some
   150   /// graph structures it is specialized to run in O(1).
   151   ///
   152   /// \todo refer how to specialize it
   153 
   154   template <typename Graph>
   155   inline int countNodes(const Graph& g) {
   156     return _graph_utils_bits::CountNodesSelector<Graph>::count(g);
   157   }
   158 
   159   namespace _graph_utils_bits {
   160     
   161     template <typename Graph, typename Enable = void>
   162     struct CountANodesSelector {
   163       static int count(const Graph &g) {
   164         return countItems<Graph, typename Graph::ANode>(g);
   165       }
   166     };
   167 
   168     template <typename Graph>
   169     struct CountANodesSelector<
   170       Graph, typename 
   171       enable_if<typename Graph::NodeNumTag, void>::type> 
   172     {
   173       static int count(const Graph &g) {
   174         return g.aNodeNum();
   175       }
   176     };    
   177   }
   178 
   179   /// \brief Function to count the anodes in the graph.
   180   ///
   181   /// This function counts the anodes in the graph.
   182   /// The complexity of the function is O(an) but for some
   183   /// graph structures it is specialized to run in O(1).
   184   ///
   185   /// \todo refer how to specialize it
   186 
   187   template <typename Graph>
   188   inline int countANodes(const Graph& g) {
   189     return _graph_utils_bits::CountANodesSelector<Graph>::count(g);
   190   }
   191 
   192   namespace _graph_utils_bits {
   193     
   194     template <typename Graph, typename Enable = void>
   195     struct CountBNodesSelector {
   196       static int count(const Graph &g) {
   197         return countItems<Graph, typename Graph::BNode>(g);
   198       }
   199     };
   200 
   201     template <typename Graph>
   202     struct CountBNodesSelector<
   203       Graph, typename 
   204       enable_if<typename Graph::NodeNumTag, void>::type> 
   205     {
   206       static int count(const Graph &g) {
   207         return g.bNodeNum();
   208       }
   209     };    
   210   }
   211 
   212   /// \brief Function to count the bnodes in the graph.
   213   ///
   214   /// This function counts the bnodes in the graph.
   215   /// The complexity of the function is O(bn) but for some
   216   /// graph structures it is specialized to run in O(1).
   217   ///
   218   /// \todo refer how to specialize it
   219 
   220   template <typename Graph>
   221   inline int countBNodes(const Graph& g) {
   222     return _graph_utils_bits::CountBNodesSelector<Graph>::count(g);
   223   }
   224 
   225 
   226   // Edge counting:
   227 
   228   namespace _graph_utils_bits {
   229     
   230     template <typename Graph, typename Enable = void>
   231     struct CountEdgesSelector {
   232       static int count(const Graph &g) {
   233         return countItems<Graph, typename Graph::Edge>(g);
   234       }
   235     };
   236 
   237     template <typename Graph>
   238     struct CountEdgesSelector<
   239       Graph, 
   240       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   241     {
   242       static int count(const Graph &g) {
   243         return g.edgeNum();
   244       }
   245     };    
   246   }
   247 
   248   /// \brief Function to count the edges in the graph.
   249   ///
   250   /// This function counts the edges in the graph.
   251   /// The complexity of the function is O(e) but for some
   252   /// graph structures it is specialized to run in O(1).
   253 
   254   template <typename Graph>
   255   inline int countEdges(const Graph& g) {
   256     return _graph_utils_bits::CountEdgesSelector<Graph>::count(g);
   257   }
   258 
   259   // Undirected edge counting:
   260   namespace _graph_utils_bits {
   261     
   262     template <typename Graph, typename Enable = void>
   263     struct CountUEdgesSelector {
   264       static int count(const Graph &g) {
   265         return countItems<Graph, typename Graph::UEdge>(g);
   266       }
   267     };
   268 
   269     template <typename Graph>
   270     struct CountUEdgesSelector<
   271       Graph, 
   272       typename enable_if<typename Graph::EdgeNumTag, void>::type> 
   273     {
   274       static int count(const Graph &g) {
   275         return g.uEdgeNum();
   276       }
   277     };    
   278   }
   279 
   280   /// \brief Function to count the undirected edges in the graph.
   281   ///
   282   /// This function counts the undirected edges in the graph.
   283   /// The complexity of the function is O(e) but for some
   284   /// graph structures it is specialized to run in O(1).
   285 
   286   template <typename Graph>
   287   inline int countUEdges(const Graph& g) {
   288     return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g);
   289 
   290   }
   291 
   292 
   293   template <typename Graph, typename DegIt>
   294   inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
   295     int num = 0;
   296     for (DegIt it(_g, _n); it != INVALID; ++it) {
   297       ++num;
   298     }
   299     return num;
   300   }
   301 
   302   /// \brief Function to count the number of the out-edges from node \c n.
   303   ///
   304   /// This function counts the number of the out-edges from node \c n
   305   /// in the graph.  
   306   template <typename Graph>
   307   inline int countOutEdges(const Graph& _g,  const typename Graph::Node& _n) {
   308     return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n);
   309   }
   310 
   311   /// \brief Function to count the number of the in-edges to node \c n.
   312   ///
   313   /// This function counts the number of the in-edges to node \c n
   314   /// in the graph.  
   315   template <typename Graph>
   316   inline int countInEdges(const Graph& _g,  const typename Graph::Node& _n) {
   317     return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n);
   318   }
   319 
   320   /// \brief Function to count the number of the inc-edges to node \c n.
   321   ///
   322   /// This function counts the number of the inc-edges to node \c n
   323   /// in the graph.  
   324   template <typename Graph>
   325   inline int countIncEdges(const Graph& _g,  const typename Graph::Node& _n) {
   326     return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n);
   327   }
   328 
   329   namespace _graph_utils_bits {
   330     
   331     template <typename Graph, typename Enable = void>
   332     struct FindEdgeSelector {
   333       typedef typename Graph::Node Node;
   334       typedef typename Graph::Edge Edge;
   335       static Edge find(const Graph &g, Node u, Node v, Edge e) {
   336         if (e == INVALID) {
   337           g.firstOut(e, u);
   338         } else {
   339           g.nextOut(e);
   340         }
   341         while (e != INVALID && g.target(e) != v) {
   342           g.nextOut(e);
   343         }
   344         return e;
   345       }
   346     };
   347 
   348     template <typename Graph>
   349     struct FindEdgeSelector<
   350       Graph, 
   351       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   352     {
   353       typedef typename Graph::Node Node;
   354       typedef typename Graph::Edge Edge;
   355       static Edge find(const Graph &g, Node u, Node v, Edge prev) {
   356         return g.findEdge(u, v, prev);
   357       }
   358     };    
   359   }
   360 
   361   /// \brief Finds an edge between two nodes of a graph.
   362   ///
   363   /// Finds an edge from node \c u to node \c v in graph \c g.
   364   ///
   365   /// If \c prev is \ref INVALID (this is the default value), then
   366   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   367   /// the next edge from \c u to \c v after \c prev.
   368   /// \return The found edge or \ref INVALID if there is no such an edge.
   369   ///
   370   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   371   ///\code
   372   /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) {
   373   ///   ...
   374   /// }
   375   ///\endcode
   376   ///
   377   ///\sa EdgeLookUp
   378   ///\se AllEdgeLookup
   379   ///\sa ConEdgeIt
   380   template <typename Graph>
   381   inline typename Graph::Edge 
   382   findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   383            typename Graph::Edge prev = INVALID) {
   384     return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev);
   385   }
   386 
   387   /// \brief Iterator for iterating on edges connected the same nodes.
   388   ///
   389   /// Iterator for iterating on edges connected the same nodes. It is 
   390   /// higher level interface for the findEdge() function. You can
   391   /// use it the following way:
   392   ///\code
   393   /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   394   ///   ...
   395   /// }
   396   ///\endcode
   397   /// 
   398   ///\sa findEdge()
   399   ///\sa EdgeLookUp
   400   ///\se AllEdgeLookup
   401   ///
   402   /// \author Balazs Dezso 
   403   template <typename _Graph>
   404   class ConEdgeIt : public _Graph::Edge {
   405   public:
   406 
   407     typedef _Graph Graph;
   408     typedef typename Graph::Edge Parent;
   409 
   410     typedef typename Graph::Edge Edge;
   411     typedef typename Graph::Node Node;
   412 
   413     /// \brief Constructor.
   414     ///
   415     /// Construct a new ConEdgeIt iterating on the edges which
   416     /// connects the \c u and \c v node.
   417     ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   418       Parent::operator=(findEdge(graph, u, v));
   419     }
   420 
   421     /// \brief Constructor.
   422     ///
   423     /// Construct a new ConEdgeIt which continues the iterating from 
   424     /// the \c e edge.
   425     ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {}
   426     
   427     /// \brief Increment operator.
   428     ///
   429     /// It increments the iterator and gives back the next edge.
   430     ConEdgeIt& operator++() {
   431       Parent::operator=(findEdge(graph, graph.source(*this), 
   432 				 graph.target(*this), *this));
   433       return *this;
   434     }
   435   private:
   436     const Graph& graph;
   437   };
   438 
   439   namespace _graph_utils_bits {
   440     
   441     template <typename Graph, typename Enable = void>
   442     struct FindUEdgeSelector {
   443       typedef typename Graph::Node Node;
   444       typedef typename Graph::UEdge UEdge;
   445       static UEdge find(const Graph &g, Node u, Node v, UEdge e) {
   446         bool b;
   447         if (u != v) {
   448           if (e == INVALID) {
   449             g.firstInc(e, b, u);
   450           } else {
   451             b = g.source(e) == u;
   452             g.nextInc(e, b);
   453           }
   454           while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) {
   455             g.nextInc(e, b);
   456           }
   457         } else {
   458           if (e == INVALID) {
   459             g.firstInc(e, b, u);
   460           } else {
   461             b = true;
   462             g.nextInc(e, b);
   463           }
   464           while (e != INVALID && (!b || g.target(e) != v)) {
   465             g.nextInc(e, b);
   466           }
   467         }
   468         return e;
   469       }
   470     };
   471 
   472     template <typename Graph>
   473     struct FindUEdgeSelector<
   474       Graph, 
   475       typename enable_if<typename Graph::FindEdgeTag, void>::type> 
   476     {
   477       typedef typename Graph::Node Node;
   478       typedef typename Graph::UEdge UEdge;
   479       static UEdge find(const Graph &g, Node u, Node v, UEdge prev) {
   480         return g.findUEdge(u, v, prev);
   481       }
   482     };    
   483   }
   484 
   485   /// \brief Finds an uedge between two nodes of a graph.
   486   ///
   487   /// Finds an uedge from node \c u to node \c v in graph \c g.
   488   /// If the node \c u and node \c v is equal then each loop edge
   489   /// will be enumerated.
   490   ///
   491   /// If \c prev is \ref INVALID (this is the default value), then
   492   /// it finds the first edge from \c u to \c v. Otherwise it looks for
   493   /// the next edge from \c u to \c v after \c prev.
   494   /// \return The found edge or \ref INVALID if there is no such an edge.
   495   ///
   496   /// Thus you can iterate through each edge from \c u to \c v as it follows.
   497   ///\code
   498   /// for(UEdge e = findUEdge(g,u,v); e != INVALID; 
   499   ///     e = findUEdge(g,u,v,e)) {
   500   ///   ...
   501   /// }
   502   ///\endcode
   503   ///
   504   ///\sa ConEdgeIt
   505 
   506   template <typename Graph>
   507   inline typename Graph::UEdge 
   508   findUEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v,
   509             typename Graph::UEdge p = INVALID) {
   510     return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p);
   511   }
   512 
   513   /// \brief Iterator for iterating on uedges connected the same nodes.
   514   ///
   515   /// Iterator for iterating on uedges connected the same nodes. It is 
   516   /// higher level interface for the findUEdge() function. You can
   517   /// use it the following way:
   518   ///\code
   519   /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
   520   ///   ...
   521   /// }
   522   ///\endcode
   523   ///
   524   ///\sa findUEdge()
   525   ///
   526   /// \author Balazs Dezso 
   527   template <typename _Graph>
   528   class ConUEdgeIt : public _Graph::UEdge {
   529   public:
   530 
   531     typedef _Graph Graph;
   532     typedef typename Graph::UEdge Parent;
   533 
   534     typedef typename Graph::UEdge UEdge;
   535     typedef typename Graph::Node Node;
   536 
   537     /// \brief Constructor.
   538     ///
   539     /// Construct a new ConUEdgeIt iterating on the edges which
   540     /// connects the \c u and \c v node.
   541     ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) {
   542       Parent::operator=(findUEdge(graph, u, v));
   543     }
   544 
   545     /// \brief Constructor.
   546     ///
   547     /// Construct a new ConUEdgeIt which continues the iterating from 
   548     /// the \c e edge.
   549     ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {}
   550     
   551     /// \brief Increment operator.
   552     ///
   553     /// It increments the iterator and gives back the next edge.
   554     ConUEdgeIt& operator++() {
   555       Parent::operator=(findUEdge(graph, graph.source(*this), 
   556 				      graph.target(*this), *this));
   557       return *this;
   558     }
   559   private:
   560     const Graph& graph;
   561   };
   562 
   563   /// \brief Copy a map.
   564   ///
   565   /// This function copies the \c source map to the \c target map. It uses the
   566   /// given iterator to iterate on the data structure and it uses the \c ref
   567   /// mapping to convert the source's keys to the target's keys.
   568   template <typename Target, typename Source, 
   569 	    typename ItemIt, typename Ref>	    
   570   void copyMap(Target& target, const Source& source, 
   571 	       ItemIt it, const Ref& ref) {
   572     for (; it != INVALID; ++it) {
   573       target[ref[it]] = source[it];
   574     }
   575   }
   576 
   577   /// \brief Copy the source map to the target map.
   578   ///
   579   /// Copy the \c source map to the \c target map. It uses the given iterator
   580   /// to iterate on the data structure.
   581   template <typename Target, typename Source, typename ItemIt>	    
   582   void copyMap(Target& target, const Source& source, ItemIt it) {
   583     for (; it != INVALID; ++it) {
   584       target[it] = source[it];
   585     }
   586   }
   587 
   588   namespace _graph_utils_bits {
   589 
   590     template <typename Graph, typename Item, typename RefMap>
   591     class MapCopyBase {
   592     public:
   593       virtual void copy(const Graph& source, const RefMap& refMap) = 0;
   594       
   595       virtual ~MapCopyBase() {}
   596     };
   597 
   598     template <typename Graph, typename Item, typename RefMap, 
   599               typename TargetMap, typename SourceMap>
   600     class MapCopy : public MapCopyBase<Graph, Item, RefMap> {
   601     public:
   602 
   603       MapCopy(TargetMap& tmap, const SourceMap& map) 
   604         : _tmap(tmap), _map(map) {}
   605       
   606       virtual void copy(const Graph& graph, const RefMap& refMap) {
   607         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   608         for (ItemIt it(graph); it != INVALID; ++it) {
   609           _tmap.set(refMap[it], _map[it]);
   610         }
   611       }
   612 
   613     private:
   614       TargetMap& _tmap;
   615       const SourceMap& _map;
   616     };
   617 
   618     template <typename Graph, typename Item, typename RefMap, typename Ref>
   619     class RefCopy : public MapCopyBase<Graph, Item, RefMap> {
   620     public:
   621 
   622       RefCopy(Ref& map) : _map(map) {}
   623       
   624       virtual void copy(const Graph& graph, const RefMap& refMap) {
   625         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   626         for (ItemIt it(graph); it != INVALID; ++it) {
   627           _map.set(it, refMap[it]);
   628         }
   629       }
   630 
   631     private:
   632       Ref& _map;
   633     };
   634 
   635     template <typename Graph, typename Item, typename RefMap, 
   636               typename CrossRef>
   637     class CrossRefCopy : public MapCopyBase<Graph, Item, RefMap> {
   638     public:
   639 
   640       CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {}
   641       
   642       virtual void copy(const Graph& graph, const RefMap& refMap) {
   643         typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
   644         for (ItemIt it(graph); it != INVALID; ++it) {
   645           _cmap.set(refMap[it], it);
   646         }
   647       }
   648 
   649     private:
   650       CrossRef& _cmap;
   651     };
   652 
   653   }
   654 
   655   /// \brief Class to copy a graph.
   656   ///
   657   /// Class to copy a graph to another graph (duplicate a graph). The
   658   /// simplest way of using it is through the \c copyGraph() function.
   659   template <typename Target, typename Source>
   660   class GraphCopy {
   661   private:
   662 
   663     typedef typename Source::Node Node;
   664     typedef typename Source::NodeIt NodeIt;
   665     typedef typename Source::Edge Edge;
   666     typedef typename Source::EdgeIt EdgeIt;
   667 
   668     typedef typename Target::Node TNode;
   669     typedef typename Target::Edge TEdge;
   670 
   671     typedef typename Source::template NodeMap<TNode> NodeRefMap;
   672     typedef typename Source::template EdgeMap<TEdge> EdgeRefMap;
   673     
   674     
   675   public: 
   676 
   677 
   678     /// \brief Constructor for the GraphCopy.
   679     ///
   680     /// It copies the content of the \c _source graph into the
   681     /// \c _target graph.
   682     GraphCopy(Target& _target, const Source& _source) 
   683       : source(_source), target(_target) {}
   684 
   685     /// \brief Destructor of the GraphCopy
   686     ///
   687     /// Destructor of the GraphCopy
   688     ~GraphCopy() {
   689       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
   690         delete nodeMapCopies[i];
   691       }
   692       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
   693         delete edgeMapCopies[i];
   694       }
   695 
   696     }
   697 
   698     /// \brief Copies the node references into the given map.
   699     ///
   700     /// Copies the node references into the given map.
   701     template <typename NodeRef>
   702     GraphCopy& nodeRef(NodeRef& map) {
   703       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
   704                               NodeRefMap, NodeRef>(map));
   705       return *this;
   706     }
   707 
   708     /// \brief Reverse and copies the node references into the given map.
   709     ///
   710     /// Reverse and copies the node references into the given map.
   711     template <typename NodeCrossRef>
   712     GraphCopy& nodeCrossRef(NodeCrossRef& map) {
   713       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
   714                               NodeRefMap, NodeCrossRef>(map));
   715       return *this;
   716     }
   717 
   718     /// \brief Make copy of the given map.
   719     ///
   720     /// Makes copy of the given map for the newly created graph. 
   721     /// The new map's key type is the target graph's node type,
   722     /// and the copied map's key type is the source graph's node
   723     /// type.  
   724     template <typename TargetMap, typename SourceMap>
   725     GraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
   726       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
   727                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
   728       return *this;
   729     }
   730 
   731     /// \brief Copies the edge references into the given map.
   732     ///
   733     /// Copies the edge references into the given map.
   734     template <typename EdgeRef>
   735     GraphCopy& edgeRef(EdgeRef& map) {
   736       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
   737                               EdgeRefMap, EdgeRef>(map));
   738       return *this;
   739     }
   740 
   741     /// \brief Reverse and copies the edge references into the given map.
   742     ///
   743     /// Reverse and copies the edge references into the given map.
   744     template <typename EdgeCrossRef>
   745     GraphCopy& edgeCrossRef(EdgeCrossRef& map) {
   746       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
   747                               EdgeRefMap, EdgeCrossRef>(map));
   748       return *this;
   749     }
   750 
   751     /// \brief Make copy of the given map.
   752     ///
   753     /// Makes copy of the given map for the newly created graph. 
   754     /// The new map's key type is the target graph's edge type,
   755     /// and the copied map's key type is the source graph's edge
   756     /// type.  
   757     template <typename TargetMap, typename SourceMap>
   758     GraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
   759       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
   760                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
   761       return *this;
   762     }
   763 
   764     /// \brief Executes the copies.
   765     ///
   766     /// Executes the copies.
   767     void run() {
   768       NodeRefMap nodeRefMap(source);
   769       for (NodeIt it(source); it != INVALID; ++it) {
   770 	nodeRefMap[it] = target.addNode();
   771       }
   772       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
   773         nodeMapCopies[i]->copy(source, nodeRefMap);
   774       }
   775       EdgeRefMap edgeRefMap(source);
   776       for (EdgeIt it(source); it != INVALID; ++it) {
   777 	edgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
   778 					nodeRefMap[source.target(it)]);
   779       }
   780       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
   781         edgeMapCopies[i]->copy(source, edgeRefMap);
   782       }
   783     }
   784 
   785   private:
   786     
   787     const Source& source;
   788     Target& target;
   789 
   790     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
   791     nodeMapCopies;
   792 
   793     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
   794     edgeMapCopies;
   795 
   796   };
   797 
   798   /// \brief Copy a graph to another graph.
   799   ///
   800   /// Copy a graph to another graph.
   801   /// The usage of the function:
   802   /// 
   803   ///\code
   804   /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
   805   ///\endcode
   806   /// 
   807   /// After the copy the \c nr map will contain the mapping from the
   808   /// source graph's nodes to the target graph's nodes and the \c ecr will
   809   /// contain the mapping from the target graph's edges to the source's
   810   /// edges.
   811   template <typename Target, typename Source>
   812   GraphCopy<Target, Source> copyGraph(Target& target, const Source& source) {
   813     return GraphCopy<Target, Source>(target, source);
   814   }
   815 
   816   /// \brief Class to copy an undirected graph.
   817   ///
   818   /// Class to copy an undirected graph to another graph (duplicate a graph).
   819   /// The simplest way of using it is through the \c copyUGraph() function.
   820   template <typename Target, typename Source>
   821   class UGraphCopy {
   822   private:
   823 
   824     typedef typename Source::Node Node;
   825     typedef typename Source::NodeIt NodeIt;
   826     typedef typename Source::Edge Edge;
   827     typedef typename Source::EdgeIt EdgeIt;
   828     typedef typename Source::UEdge UEdge;
   829     typedef typename Source::UEdgeIt UEdgeIt;
   830 
   831     typedef typename Target::Node TNode;
   832     typedef typename Target::Edge TEdge;
   833     typedef typename Target::UEdge TUEdge;
   834 
   835     typedef typename Source::template NodeMap<TNode> NodeRefMap;
   836     typedef typename Source::template UEdgeMap<TUEdge> UEdgeRefMap;
   837 
   838     struct EdgeRefMap {
   839       EdgeRefMap(const Target& _target, const Source& _source,
   840                  const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) 
   841         : target(_target), source(_source), 
   842           uedge_ref(_uedge_ref), node_ref(_node_ref) {}
   843 
   844       typedef typename Source::Edge Key;
   845       typedef typename Target::Edge Value;
   846 
   847       Value operator[](const Key& key) const {
   848         bool forward = (source.direction(key) == 
   849                         (node_ref[source.source((UEdge)key)] == 
   850                          target.source(uedge_ref[(UEdge)key])));
   851 	return target.direct(uedge_ref[key], forward); 
   852       }
   853       
   854       const Target& target;
   855       const Source& source;
   856       const UEdgeRefMap& uedge_ref;
   857       const NodeRefMap& node_ref;
   858     };
   859 
   860     
   861   public: 
   862 
   863 
   864     /// \brief Constructor for the GraphCopy.
   865     ///
   866     /// It copies the content of the \c _source graph into the
   867     /// \c _target graph.
   868     UGraphCopy(Target& _target, const Source& _source) 
   869       : source(_source), target(_target) {}
   870 
   871     /// \brief Destructor of the GraphCopy
   872     ///
   873     /// Destructor of the GraphCopy
   874     ~UGraphCopy() {
   875       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
   876         delete nodeMapCopies[i];
   877       }
   878       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
   879         delete edgeMapCopies[i];
   880       }
   881       for (int i = 0; i < (int)uEdgeMapCopies.size(); ++i) {
   882         delete uEdgeMapCopies[i];
   883       }
   884 
   885     }
   886 
   887     /// \brief Copies the node references into the given map.
   888     ///
   889     /// Copies the node references into the given map.
   890     template <typename NodeRef>
   891     UGraphCopy& nodeRef(NodeRef& map) {
   892       nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Node, 
   893                               NodeRefMap, NodeRef>(map));
   894       return *this;
   895     }
   896 
   897     /// \brief Reverse and copies the node references into the given map.
   898     ///
   899     /// Reverse and copies the node references into the given map.
   900     template <typename NodeCrossRef>
   901     UGraphCopy& nodeCrossRef(NodeCrossRef& map) {
   902       nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Node,
   903                               NodeRefMap, NodeCrossRef>(map));
   904       return *this;
   905     }
   906 
   907     /// \brief Make copy of the given map.
   908     ///
   909     /// Makes copy of the given map for the newly created graph. 
   910     /// The new map's key type is the target graph's node type,
   911     /// and the copied map's key type is the source graph's node
   912     /// type.  
   913     template <typename TargetMap, typename SourceMap>
   914     UGraphCopy& nodeMap(TargetMap& tmap, const SourceMap& map) {
   915       nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Node, 
   916                               NodeRefMap, TargetMap, SourceMap>(tmap, map));
   917       return *this;
   918     }
   919 
   920     /// \brief Copies the edge references into the given map.
   921     ///
   922     /// Copies the edge references into the given map.
   923     template <typename EdgeRef>
   924     UGraphCopy& edgeRef(EdgeRef& map) {
   925       edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, Edge, 
   926                               EdgeRefMap, EdgeRef>(map));
   927       return *this;
   928     }
   929 
   930     /// \brief Reverse and copies the edge references into the given map.
   931     ///
   932     /// Reverse and copies the edge references into the given map.
   933     template <typename EdgeCrossRef>
   934     UGraphCopy& edgeCrossRef(EdgeCrossRef& map) {
   935       edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, Edge,
   936                               EdgeRefMap, EdgeCrossRef>(map));
   937       return *this;
   938     }
   939 
   940     /// \brief Make copy of the given map.
   941     ///
   942     /// Makes copy of the given map for the newly created graph. 
   943     /// The new map's key type is the target graph's edge type,
   944     /// and the copied map's key type is the source graph's edge
   945     /// type.  
   946     template <typename TargetMap, typename SourceMap>
   947     UGraphCopy& edgeMap(TargetMap& tmap, const SourceMap& map) {
   948       edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, Edge, 
   949                               EdgeRefMap, TargetMap, SourceMap>(tmap, map));
   950       return *this;
   951     }
   952 
   953     /// \brief Copies the uEdge references into the given map.
   954     ///
   955     /// Copies the uEdge references into the given map.
   956     template <typename UEdgeRef>
   957     UGraphCopy& uEdgeRef(UEdgeRef& map) {
   958       uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<Source, UEdge, 
   959                                UEdgeRefMap, UEdgeRef>(map));
   960       return *this;
   961     }
   962 
   963     /// \brief Reverse and copies the uEdge references into the given map.
   964     ///
   965     /// Reverse and copies the uEdge references into the given map.
   966     template <typename UEdgeCrossRef>
   967     UGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) {
   968       uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<Source, 
   969                                UEdge, UEdgeRefMap, UEdgeCrossRef>(map));
   970       return *this;
   971     }
   972 
   973     /// \brief Make copy of the given map.
   974     ///
   975     /// Makes copy of the given map for the newly created graph. 
   976     /// The new map's key type is the target graph's uEdge type,
   977     /// and the copied map's key type is the source graph's uEdge
   978     /// type.  
   979     template <typename TargetMap, typename SourceMap>
   980     UGraphCopy& uEdgeMap(TargetMap& tmap, const SourceMap& map) {
   981       uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<Source, UEdge, 
   982                                UEdgeRefMap, TargetMap, SourceMap>(tmap, map));
   983       return *this;
   984     }
   985 
   986     /// \brief Executes the copies.
   987     ///
   988     /// Executes the copies.
   989     void run() {
   990       NodeRefMap nodeRefMap(source);
   991       for (NodeIt it(source); it != INVALID; ++it) {
   992 	nodeRefMap[it] = target.addNode();
   993       }
   994       for (int i = 0; i < (int)nodeMapCopies.size(); ++i) {
   995         nodeMapCopies[i]->copy(source, nodeRefMap);
   996       }
   997       UEdgeRefMap uEdgeRefMap(source);
   998       EdgeRefMap edgeRefMap(target, source, uEdgeRefMap, nodeRefMap);
   999       for (UEdgeIt it(source); it != INVALID; ++it) {
  1000 	uEdgeRefMap[it] = target.addEdge(nodeRefMap[source.source(it)], 
  1001                                          nodeRefMap[source.target(it)]);
  1002       }
  1003       for (int i = 0; i < (int)uEdgeMapCopies.size(); ++i) {
  1004         uEdgeMapCopies[i]->copy(source, uEdgeRefMap);
  1005       }
  1006       for (int i = 0; i < (int)edgeMapCopies.size(); ++i) {
  1007         edgeMapCopies[i]->copy(source, edgeRefMap);
  1008       }
  1009     }
  1010 
  1011   private:
  1012     
  1013     const Source& source;
  1014     Target& target;
  1015 
  1016     std::vector<_graph_utils_bits::MapCopyBase<Source, Node, NodeRefMap>* > 
  1017     nodeMapCopies;
  1018 
  1019     std::vector<_graph_utils_bits::MapCopyBase<Source, Edge, EdgeRefMap>* > 
  1020     edgeMapCopies;
  1021 
  1022     std::vector<_graph_utils_bits::MapCopyBase<Source, UEdge, UEdgeRefMap>* > 
  1023     uEdgeMapCopies;
  1024 
  1025   };
  1026 
  1027   /// \brief Copy a graph to another graph.
  1028   ///
  1029   /// Copy a graph to another graph.
  1030   /// The usage of the function:
  1031   /// 
  1032   ///\code
  1033   /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run();
  1034   ///\endcode
  1035   /// 
  1036   /// After the copy the \c nr map will contain the mapping from the
  1037   /// source graph's nodes to the target graph's nodes and the \c ecr will
  1038   /// contain the mapping from the target graph's edges to the source's
  1039   /// edges.
  1040   template <typename Target, typename Source>
  1041   UGraphCopy<Target, Source> 
  1042   copyUGraph(Target& target, const Source& source) {
  1043     return UGraphCopy<Target, Source>(target, source);
  1044   }
  1045 
  1046 
  1047   /// @}
  1048 
  1049   /// \addtogroup graph_maps
  1050   /// @{
  1051 
  1052   /// Provides an immutable and unique id for each item in the graph.
  1053 
  1054   /// The IdMap class provides a unique and immutable id for each item of the
  1055   /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
  1056   /// different items (nodes) get different ids <li>\b immutable: the id of an
  1057   /// item (node) does not change (even if you delete other nodes).  </ul>
  1058   /// Through this map you get access (i.e. can read) the inner id values of
  1059   /// the items stored in the graph. This map can be inverted with its member
  1060   /// class \c InverseMap.
  1061   ///
  1062   template <typename _Graph, typename _Item>
  1063   class IdMap {
  1064   public:
  1065     typedef _Graph Graph;
  1066     typedef int Value;
  1067     typedef _Item Item;
  1068     typedef _Item Key;
  1069 
  1070     /// \brief Constructor.
  1071     ///
  1072     /// Constructor for creating id map.
  1073     explicit IdMap(const Graph& _graph) : graph(&_graph) {}
  1074 
  1075     /// \brief Gives back the \e id of the item.
  1076     ///
  1077     /// Gives back the immutable and unique \e id of the map.
  1078     int operator[](const Item& item) const { return graph->id(item);}
  1079 
  1080 
  1081   private:
  1082     const Graph* graph;
  1083 
  1084   public:
  1085 
  1086     /// \brief The class represents the inverse of its owner (IdMap).
  1087     ///
  1088     /// The class represents the inverse of its owner (IdMap).
  1089     /// \see inverse()
  1090     class InverseMap {
  1091     public:
  1092 
  1093       /// \brief Constructor.
  1094       ///
  1095       /// Constructor for creating an id-to-item map.
  1096       explicit InverseMap(const Graph& _graph) : graph(&_graph) {}
  1097 
  1098       /// \brief Constructor.
  1099       ///
  1100       /// Constructor for creating an id-to-item map.
  1101       explicit InverseMap(const IdMap& idMap) : graph(idMap.graph) {}
  1102 
  1103       /// \brief Gives back the given item from its id.
  1104       ///
  1105       /// Gives back the given item from its id.
  1106       /// 
  1107       Item operator[](int id) const { return graph->fromId(id, Item());}
  1108     private:
  1109       const Graph* graph;
  1110     };
  1111 
  1112     /// \brief Gives back the inverse of the map.
  1113     ///
  1114     /// Gives back the inverse of the IdMap.
  1115     InverseMap inverse() const { return InverseMap(*graph);} 
  1116 
  1117   };
  1118 
  1119   
  1120   /// \brief General invertable graph-map type.
  1121 
  1122   /// This type provides simple invertable graph-maps. 
  1123   /// The InvertableMap wraps an arbitrary ReadWriteMap 
  1124   /// and if a key is set to a new value then store it
  1125   /// in the inverse map.
  1126   ///
  1127   /// The values of the map can be accessed
  1128   /// with stl compatible forward iterator.
  1129   ///
  1130   /// \param _Graph The graph type.
  1131   /// \param _Item The item type of the graph.
  1132   /// \param _Value The value type of the map.
  1133   ///
  1134   /// \see IterableValueMap
  1135   template <typename _Graph, typename _Item, typename _Value>
  1136   class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> {
  1137   private:
  1138     
  1139     typedef DefaultMap<_Graph, _Item, _Value> Map;
  1140     typedef _Graph Graph;
  1141 
  1142     typedef std::map<_Value, _Item> Container;
  1143     Container invMap;    
  1144 
  1145   public:
  1146  
  1147     /// The key type of InvertableMap (Node, Edge, UEdge).
  1148     typedef typename Map::Key Key;
  1149     /// The value type of the InvertableMap.
  1150     typedef typename Map::Value Value;
  1151 
  1152 
  1153 
  1154     /// \brief Constructor.
  1155     ///
  1156     /// Construct a new InvertableMap for the graph.
  1157     ///
  1158     explicit InvertableMap(const Graph& graph) : Map(graph) {} 
  1159 
  1160     /// \brief Forward iterator for values.
  1161     ///
  1162     /// This iterator is an stl compatible forward
  1163     /// iterator on the values of the map. The values can
  1164     /// be accessed in the [beginValue, endValue) range.
  1165     ///
  1166     class ValueIterator 
  1167       : public std::iterator<std::forward_iterator_tag, Value> {
  1168       friend class InvertableMap;
  1169     private:
  1170       ValueIterator(typename Container::const_iterator _it) 
  1171         : it(_it) {}
  1172     public:
  1173       
  1174       ValueIterator() {}
  1175 
  1176       ValueIterator& operator++() { ++it; return *this; }
  1177       ValueIterator operator++(int) { 
  1178         ValueIterator tmp(*this); 
  1179         operator++();
  1180         return tmp; 
  1181       }
  1182 
  1183       const Value& operator*() const { return it->first; }
  1184       const Value* operator->() const { return &(it->first); }
  1185 
  1186       bool operator==(ValueIterator jt) const { return it == jt.it; }
  1187       bool operator!=(ValueIterator jt) const { return it != jt.it; }
  1188       
  1189     private:
  1190       typename Container::const_iterator it;
  1191     };
  1192 
  1193     /// \brief Returns an iterator to the first value.
  1194     ///
  1195     /// Returns an stl compatible iterator to the 
  1196     /// first value of the map. The values of the
  1197     /// map can be accessed in the [beginValue, endValue)
  1198     /// range.
  1199     ValueIterator beginValue() const {
  1200       return ValueIterator(invMap.begin());
  1201     }
  1202 
  1203     /// \brief Returns an iterator after the last value.
  1204     ///
  1205     /// Returns an stl compatible iterator after the 
  1206     /// last value of the map. The values of the
  1207     /// map can be accessed in the [beginValue, endValue)
  1208     /// range.
  1209     ValueIterator endValue() const {
  1210       return ValueIterator(invMap.end());
  1211     }
  1212     
  1213     /// \brief The setter function of the map.
  1214     ///
  1215     /// Sets the mapped value.
  1216     void set(const Key& key, const Value& val) {
  1217       Value oldval = Map::operator[](key);
  1218       typename Container::iterator it = invMap.find(oldval);
  1219       if (it != invMap.end() && it->second == key) {
  1220 	invMap.erase(it);
  1221       }      
  1222       invMap.insert(make_pair(val, key));
  1223       Map::set(key, val);
  1224     }
  1225 
  1226     /// \brief The getter function of the map.
  1227     ///
  1228     /// It gives back the value associated with the key.
  1229     typename MapTraits<Map>::ConstReturnValue 
  1230     operator[](const Key& key) const {
  1231       return Map::operator[](key);
  1232     }
  1233 
  1234   protected:
  1235 
  1236     /// \brief Erase the key from the map.
  1237     ///
  1238     /// Erase the key to the map. It is called by the
  1239     /// \c AlterationNotifier.
  1240     virtual void erase(const Key& key) {
  1241       Value val = Map::operator[](key);
  1242       typename Container::iterator it = invMap.find(val);
  1243       if (it != invMap.end() && it->second == key) {
  1244 	invMap.erase(it);
  1245       }
  1246       Map::erase(key);
  1247     }
  1248 
  1249     /// \brief Erase more keys from the map.
  1250     ///
  1251     /// Erase more keys from the map. It is called by the
  1252     /// \c AlterationNotifier.
  1253     virtual void erase(const std::vector<Key>& keys) {
  1254       for (int i = 0; i < (int)keys.size(); ++i) {
  1255 	Value val = Map::operator[](keys[i]);
  1256 	typename Container::iterator it = invMap.find(val);
  1257 	if (it != invMap.end() && it->second == keys[i]) {
  1258 	  invMap.erase(it);
  1259 	}
  1260       }
  1261       Map::erase(keys);
  1262     }
  1263 
  1264     /// \brief Clear the keys from the map and inverse map.
  1265     ///
  1266     /// Clear the keys from the map and inverse map. It is called by the
  1267     /// \c AlterationNotifier.
  1268     virtual void clear() {
  1269       invMap.clear();
  1270       Map::clear();
  1271     }
  1272 
  1273   public:
  1274 
  1275     /// \brief The inverse map type.
  1276     ///
  1277     /// The inverse of this map. The subscript operator of the map
  1278     /// gives back always the item what was last assigned to the value. 
  1279     class InverseMap {
  1280     public:
  1281       /// \brief Constructor of the InverseMap.
  1282       ///
  1283       /// Constructor of the InverseMap.
  1284       explicit InverseMap(const InvertableMap& _inverted) 
  1285         : inverted(_inverted) {}
  1286 
  1287       /// The value type of the InverseMap.
  1288       typedef typename InvertableMap::Key Value;
  1289       /// The key type of the InverseMap.
  1290       typedef typename InvertableMap::Value Key; 
  1291 
  1292       /// \brief Subscript operator. 
  1293       ///
  1294       /// Subscript operator. It gives back always the item 
  1295       /// what was last assigned to the value.
  1296       Value operator[](const Key& key) const {
  1297 	typename Container::const_iterator it = inverted.invMap.find(key);
  1298 	return it->second;
  1299       }
  1300       
  1301     private:
  1302       const InvertableMap& inverted;
  1303     };
  1304 
  1305     /// \brief It gives back the just readable inverse map.
  1306     ///
  1307     /// It gives back the just readable inverse map.
  1308     InverseMap inverse() const {
  1309       return InverseMap(*this);
  1310     } 
  1311 
  1312 
  1313     
  1314   };
  1315 
  1316   /// \brief Provides a mutable, continuous and unique descriptor for each 
  1317   /// item in the graph.
  1318   ///
  1319   /// The DescriptorMap class provides a unique and continuous (but mutable)
  1320   /// descriptor (id) for each item of the same type (e.g. node) in the
  1321   /// graph. This id is <ul><li>\b unique: different items (nodes) get
  1322   /// different ids <li>\b continuous: the range of the ids is the set of
  1323   /// integers between 0 and \c n-1, where \c n is the number of the items of
  1324   /// this type (e.g. nodes) (so the id of a node can change if you delete an
  1325   /// other node, i.e. this id is mutable).  </ul> This map can be inverted
  1326   /// with its member class \c InverseMap.
  1327   ///
  1328   /// \param _Graph The graph class the \c DescriptorMap belongs to.
  1329   /// \param _Item The Item is the Key of the Map. It may be Node, Edge or 
  1330   /// UEdge.
  1331   template <typename _Graph, typename _Item>
  1332   class DescriptorMap : protected DefaultMap<_Graph, _Item, int> {
  1333 
  1334     typedef _Item Item;
  1335     typedef DefaultMap<_Graph, _Item, int> Map;
  1336 
  1337   public:
  1338     /// The graph class of DescriptorMap.
  1339     typedef _Graph Graph;
  1340 
  1341     /// The key type of DescriptorMap (Node, Edge, UEdge).
  1342     typedef typename Map::Key Key;
  1343     /// The value type of DescriptorMap.
  1344     typedef typename Map::Value Value;
  1345 
  1346     /// \brief Constructor.
  1347     ///
  1348     /// Constructor for descriptor map.
  1349     explicit DescriptorMap(const Graph& _graph) : Map(_graph) {
  1350       Item it;
  1351       const typename Map::Notifier* notifier = Map::getNotifier(); 
  1352       for (notifier->first(it); it != INVALID; notifier->next(it)) {
  1353 	Map::set(it, invMap.size());
  1354 	invMap.push_back(it);	
  1355       }      
  1356     }
  1357 
  1358   protected:
  1359 
  1360     /// \brief Add a new key to the map.
  1361     ///
  1362     /// Add a new key to the map. It is called by the
  1363     /// \c AlterationNotifier.
  1364     virtual void add(const Item& item) {
  1365       Map::add(item);
  1366       Map::set(item, invMap.size());
  1367       invMap.push_back(item);
  1368     }
  1369 
  1370     /// \brief Add more new keys to the map.
  1371     ///
  1372     /// Add more new keys to the map. It is called by the
  1373     /// \c AlterationNotifier.
  1374     virtual void add(const std::vector<Item>& items) {
  1375       Map::add(items);
  1376       for (int i = 0; i < (int)items.size(); ++i) {
  1377 	Map::set(items[i], invMap.size());
  1378 	invMap.push_back(items[i]);
  1379       }
  1380     }
  1381 
  1382     /// \brief Erase the key from the map.
  1383     ///
  1384     /// Erase the key from the map. It is called by the
  1385     /// \c AlterationNotifier.
  1386     virtual void erase(const Item& item) {
  1387       Map::set(invMap.back(), Map::operator[](item));
  1388       invMap[Map::operator[](item)] = invMap.back();
  1389       invMap.pop_back();
  1390       Map::erase(item);
  1391     }
  1392 
  1393     /// \brief Erase more keys from the map.
  1394     ///
  1395     /// Erase more keys from the map. It is called by the
  1396     /// \c AlterationNotifier.
  1397     virtual void erase(const std::vector<Item>& items) {
  1398       for (int i = 0; i < (int)items.size(); ++i) {
  1399 	Map::set(invMap.back(), Map::operator[](items[i]));
  1400 	invMap[Map::operator[](items[i])] = invMap.back();
  1401 	invMap.pop_back();
  1402       }
  1403       Map::erase(items);
  1404     }
  1405 
  1406     /// \brief Build the unique map.
  1407     ///
  1408     /// Build the unique map. It is called by the
  1409     /// \c AlterationNotifier.
  1410     virtual void build() {
  1411       Map::build();
  1412       Item it;
  1413       const typename Map::Notifier* notifier = Map::getNotifier(); 
  1414       for (notifier->first(it); it != INVALID; notifier->next(it)) {
  1415 	Map::set(it, invMap.size());
  1416 	invMap.push_back(it);	
  1417       }      
  1418     }
  1419     
  1420     /// \brief Clear the keys from the map.
  1421     ///
  1422     /// Clear the keys from the map. It is called by the
  1423     /// \c AlterationNotifier.
  1424     virtual void clear() {
  1425       invMap.clear();
  1426       Map::clear();
  1427     }
  1428 
  1429   public:
  1430 
  1431     /// \brief Returns the maximal value plus one.
  1432     ///
  1433     /// Returns the maximal value plus one in the map.
  1434     unsigned int size() const {
  1435       return invMap.size();
  1436     }
  1437 
  1438     /// \brief Swaps the position of the two items in the map.
  1439     ///
  1440     /// Swaps the position of the two items in the map.
  1441     void swap(const Item& p, const Item& q) {
  1442       int pi = Map::operator[](p);
  1443       int qi = Map::operator[](q);
  1444       Map::set(p, qi);
  1445       invMap[qi] = p;
  1446       Map::set(q, pi);
  1447       invMap[pi] = q;
  1448     }
  1449 
  1450     /// \brief Gives back the \e descriptor of the item.
  1451     ///
  1452     /// Gives back the mutable and unique \e descriptor of the map.
  1453     int operator[](const Item& item) const {
  1454       return Map::operator[](item);
  1455     }
  1456     
  1457   private:
  1458 
  1459     typedef std::vector<Item> Container;
  1460     Container invMap;
  1461 
  1462   public:
  1463     /// \brief The inverse map type of DescriptorMap.
  1464     ///
  1465     /// The inverse map type of DescriptorMap.
  1466     class InverseMap {
  1467     public:
  1468       /// \brief Constructor of the InverseMap.
  1469       ///
  1470       /// Constructor of the InverseMap.
  1471       explicit InverseMap(const DescriptorMap& _inverted) 
  1472 	: inverted(_inverted) {}
  1473 
  1474 
  1475       /// The value type of the InverseMap.
  1476       typedef typename DescriptorMap::Key Value;
  1477       /// The key type of the InverseMap.
  1478       typedef typename DescriptorMap::Value Key; 
  1479 
  1480       /// \brief Subscript operator. 
  1481       ///
  1482       /// Subscript operator. It gives back the item 
  1483       /// that the descriptor belongs to currently.
  1484       Value operator[](const Key& key) const {
  1485 	return inverted.invMap[key];
  1486       }
  1487 
  1488       /// \brief Size of the map.
  1489       ///
  1490       /// Returns the size of the map.
  1491       unsigned int size() const {
  1492 	return inverted.invMap.size();
  1493       }
  1494       
  1495     private:
  1496       const DescriptorMap& inverted;
  1497     };
  1498 
  1499     /// \brief Gives back the inverse of the map.
  1500     ///
  1501     /// Gives back the inverse of the map.
  1502     const InverseMap inverse() const {
  1503       return InverseMap(*this);
  1504     }
  1505   };
  1506 
  1507   /// \brief Returns the source of the given edge.
  1508   ///
  1509   /// The SourceMap gives back the source Node of the given edge. 
  1510   /// \author Balazs Dezso
  1511   template <typename Graph>
  1512   class SourceMap {
  1513   public:
  1514 
  1515     typedef typename Graph::Node Value;
  1516     typedef typename Graph::Edge Key;
  1517 
  1518     /// \brief Constructor
  1519     ///
  1520     /// Constructor
  1521     /// \param _graph The graph that the map belongs to.
  1522     explicit SourceMap(const Graph& _graph) : graph(_graph) {}
  1523 
  1524     /// \brief The subscript operator.
  1525     ///
  1526     /// The subscript operator.
  1527     /// \param edge The edge 
  1528     /// \return The source of the edge 
  1529     Value operator[](const Key& edge) const {
  1530       return graph.source(edge);
  1531     }
  1532 
  1533   private:
  1534     const Graph& graph;
  1535   };
  1536 
  1537   /// \brief Returns a \ref SourceMap class
  1538   ///
  1539   /// This function just returns an \ref SourceMap class.
  1540   /// \relates SourceMap
  1541   template <typename Graph>
  1542   inline SourceMap<Graph> sourceMap(const Graph& graph) {
  1543     return SourceMap<Graph>(graph);
  1544   } 
  1545 
  1546   /// \brief Returns the target of the given edge.
  1547   ///
  1548   /// The TargetMap gives back the target Node of the given edge. 
  1549   /// \author Balazs Dezso
  1550   template <typename Graph>
  1551   class TargetMap {
  1552   public:
  1553 
  1554     typedef typename Graph::Node Value;
  1555     typedef typename Graph::Edge Key;
  1556 
  1557     /// \brief Constructor
  1558     ///
  1559     /// Constructor
  1560     /// \param _graph The graph that the map belongs to.
  1561     explicit TargetMap(const Graph& _graph) : graph(_graph) {}
  1562 
  1563     /// \brief The subscript operator.
  1564     ///
  1565     /// The subscript operator.
  1566     /// \param e The edge 
  1567     /// \return The target of the edge 
  1568     Value operator[](const Key& e) const {
  1569       return graph.target(e);
  1570     }
  1571 
  1572   private:
  1573     const Graph& graph;
  1574   };
  1575 
  1576   /// \brief Returns a \ref TargetMap class
  1577   ///
  1578   /// This function just returns a \ref TargetMap class.
  1579   /// \relates TargetMap
  1580   template <typename Graph>
  1581   inline TargetMap<Graph> targetMap(const Graph& graph) {
  1582     return TargetMap<Graph>(graph);
  1583   }
  1584 
  1585   /// \brief Returns the "forward" directed edge view of an undirected edge.
  1586   ///
  1587   /// Returns the "forward" directed edge view of an undirected edge.
  1588   /// \author Balazs Dezso
  1589   template <typename Graph>
  1590   class ForwardMap {
  1591   public:
  1592 
  1593     typedef typename Graph::Edge Value;
  1594     typedef typename Graph::UEdge Key;
  1595 
  1596     /// \brief Constructor
  1597     ///
  1598     /// Constructor
  1599     /// \param _graph The graph that the map belongs to.
  1600     explicit ForwardMap(const Graph& _graph) : graph(_graph) {}
  1601 
  1602     /// \brief The subscript operator.
  1603     ///
  1604     /// The subscript operator.
  1605     /// \param key An undirected edge 
  1606     /// \return The "forward" directed edge view of undirected edge 
  1607     Value operator[](const Key& key) const {
  1608       return graph.direct(key, true);
  1609     }
  1610 
  1611   private:
  1612     const Graph& graph;
  1613   };
  1614 
  1615   /// \brief Returns a \ref ForwardMap class
  1616   ///
  1617   /// This function just returns an \ref ForwardMap class.
  1618   /// \relates ForwardMap
  1619   template <typename Graph>
  1620   inline ForwardMap<Graph> forwardMap(const Graph& graph) {
  1621     return ForwardMap<Graph>(graph);
  1622   }
  1623 
  1624   /// \brief Returns the "backward" directed edge view of an undirected edge.
  1625   ///
  1626   /// Returns the "backward" directed edge view of an undirected edge.
  1627   /// \author Balazs Dezso
  1628   template <typename Graph>
  1629   class BackwardMap {
  1630   public:
  1631 
  1632     typedef typename Graph::Edge Value;
  1633     typedef typename Graph::UEdge Key;
  1634 
  1635     /// \brief Constructor
  1636     ///
  1637     /// Constructor
  1638     /// \param _graph The graph that the map belongs to.
  1639     explicit BackwardMap(const Graph& _graph) : graph(_graph) {}
  1640 
  1641     /// \brief The subscript operator.
  1642     ///
  1643     /// The subscript operator.
  1644     /// \param key An undirected edge 
  1645     /// \return The "backward" directed edge view of undirected edge 
  1646     Value operator[](const Key& key) const {
  1647       return graph.direct(key, false);
  1648     }
  1649 
  1650   private:
  1651     const Graph& graph;
  1652   };
  1653 
  1654   /// \brief Returns a \ref BackwardMap class
  1655 
  1656   /// This function just returns a \ref BackwardMap class.
  1657   /// \relates BackwardMap
  1658   template <typename Graph>
  1659   inline BackwardMap<Graph> backwardMap(const Graph& graph) {
  1660     return BackwardMap<Graph>(graph);
  1661   }
  1662 
  1663   /// \brief Potential difference map
  1664   ///
  1665   /// If there is an potential map on the nodes then we
  1666   /// can get an edge map as we get the substraction of the
  1667   /// values of the target and source.
  1668   template <typename Graph, typename NodeMap>
  1669   class PotentialDifferenceMap {
  1670   public:
  1671     typedef typename Graph::Edge Key;
  1672     typedef typename NodeMap::Value Value;
  1673 
  1674     /// \brief Constructor
  1675     ///
  1676     /// Contructor of the map
  1677     explicit PotentialDifferenceMap(const Graph& _graph, 
  1678                                     const NodeMap& _potential) 
  1679       : graph(_graph), potential(_potential) {}
  1680 
  1681     /// \brief Const subscription operator
  1682     ///
  1683     /// Const subscription operator
  1684     Value operator[](const Key& edge) const {
  1685       return potential[graph.target(edge)] - potential[graph.source(edge)];
  1686     }
  1687 
  1688   private:
  1689     const Graph& graph;
  1690     const NodeMap& potential;
  1691   };
  1692 
  1693   /// \brief Just returns a PotentialDifferenceMap
  1694   ///
  1695   /// Just returns a PotentialDifferenceMap
  1696   /// \relates PotentialDifferenceMap
  1697   template <typename Graph, typename NodeMap>
  1698   PotentialDifferenceMap<Graph, NodeMap> 
  1699   potentialDifferenceMap(const Graph& graph, const NodeMap& potential) {
  1700     return PotentialDifferenceMap<Graph, NodeMap>(graph, potential);
  1701   }
  1702 
  1703   /// \brief Map of the node in-degrees.
  1704   ///
  1705   /// This map returns the in-degree of a node. Once it is constructed,
  1706   /// the degrees are stored in a standard NodeMap, so each query is done
  1707   /// in constant time. On the other hand, the values are updated automatically
  1708   /// whenever the graph changes.
  1709   ///
  1710   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  1711   /// alternative ways to modify the graph. The correct behavior of InDegMap
  1712   /// is not guarantied if these additional features are used. For example
  1713   /// the functions \ref ListGraph::changeSource() "changeSource()",
  1714   /// \ref ListGraph::changeTarget() "changeTarget()" and
  1715   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  1716   /// of \ref ListGraph will \e not update the degree values correctly.
  1717   ///
  1718   /// \sa OutDegMap
  1719 
  1720   template <typename _Graph>
  1721   class InDegMap  
  1722     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  1723       ::ItemNotifier::ObserverBase {
  1724 
  1725   public:
  1726     
  1727     typedef _Graph Graph;
  1728     typedef int Value;
  1729     typedef typename Graph::Node Key;
  1730 
  1731     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  1732     ::ItemNotifier::ObserverBase Parent;
  1733 
  1734   private:
  1735 
  1736     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  1737     public:
  1738 
  1739       typedef DefaultMap<_Graph, Key, int> Parent;
  1740       typedef typename Parent::Graph Graph;
  1741 
  1742       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  1743       
  1744       virtual void add(const Key& key) {
  1745 	Parent::add(key);
  1746 	Parent::set(key, 0);
  1747       }
  1748 
  1749       virtual void add(const std::vector<Key>& keys) {
  1750 	Parent::add(keys);
  1751 	for (int i = 0; i < (int)keys.size(); ++i) {
  1752 	  Parent::set(keys[i], 0);
  1753 	}
  1754       }
  1755     };
  1756 
  1757   public:
  1758 
  1759     /// \brief Constructor.
  1760     ///
  1761     /// Constructor for creating in-degree map.
  1762     explicit InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  1763       Parent::attach(graph.getNotifier(typename _Graph::Edge()));
  1764       
  1765       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1766 	deg[it] = countInEdges(graph, it);
  1767       }
  1768     }
  1769     
  1770     /// Gives back the in-degree of a Node.
  1771     int operator[](const Key& key) const {
  1772       return deg[key];
  1773     }
  1774 
  1775   protected:
  1776     
  1777     typedef typename Graph::Edge Edge;
  1778 
  1779     virtual void add(const Edge& edge) {
  1780       ++deg[graph.target(edge)];
  1781     }
  1782 
  1783     virtual void add(const std::vector<Edge>& edges) {
  1784       for (int i = 0; i < (int)edges.size(); ++i) {
  1785         ++deg[graph.target(edges[i])];
  1786       }
  1787     }
  1788 
  1789     virtual void erase(const Edge& edge) {
  1790       --deg[graph.target(edge)];
  1791     }
  1792 
  1793     virtual void erase(const std::vector<Edge>& edges) {
  1794       for (int i = 0; i < (int)edges.size(); ++i) {
  1795         --deg[graph.target(edges[i])];
  1796       }
  1797     }
  1798 
  1799     virtual void build() {
  1800       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1801 	deg[it] = countInEdges(graph, it);
  1802       }      
  1803     }
  1804 
  1805     virtual void clear() {
  1806       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1807 	deg[it] = 0;
  1808       }
  1809     }
  1810   private:
  1811     
  1812     const _Graph& graph;
  1813     AutoNodeMap deg;
  1814   };
  1815 
  1816   /// \brief Map of the node out-degrees.
  1817   ///
  1818   /// This map returns the out-degree of a node. Once it is constructed,
  1819   /// the degrees are stored in a standard NodeMap, so each query is done
  1820   /// in constant time. On the other hand, the values are updated automatically
  1821   /// whenever the graph changes.
  1822   ///
  1823   /// \warning Besides addNode() and addEdge(), a graph structure may provide
  1824   /// alternative ways to modify the graph. The correct behavior of OutDegMap
  1825   /// is not guarantied if these additional features are used. For example
  1826   /// the functions \ref ListGraph::changeSource() "changeSource()",
  1827   /// \ref ListGraph::changeTarget() "changeTarget()" and
  1828   /// \ref ListGraph::reverseEdge() "reverseEdge()"
  1829   /// of \ref ListGraph will \e not update the degree values correctly.
  1830   ///
  1831   /// \sa InDegMap
  1832 
  1833   template <typename _Graph>
  1834   class OutDegMap  
  1835     : protected ItemSetTraits<_Graph, typename _Graph::Edge>
  1836       ::ItemNotifier::ObserverBase {
  1837 
  1838   public:
  1839 
  1840     typedef typename ItemSetTraits<_Graph, typename _Graph::Edge>
  1841     ::ItemNotifier::ObserverBase Parent;
  1842     
  1843     typedef _Graph Graph;
  1844     typedef int Value;
  1845     typedef typename Graph::Node Key;
  1846 
  1847   private:
  1848 
  1849     class AutoNodeMap : public DefaultMap<_Graph, Key, int> {
  1850     public:
  1851 
  1852       typedef DefaultMap<_Graph, Key, int> Parent;
  1853       typedef typename Parent::Graph Graph;
  1854 
  1855       AutoNodeMap(const Graph& graph) : Parent(graph, 0) {}
  1856       
  1857       virtual void add(const Key& key) {
  1858 	Parent::add(key);
  1859 	Parent::set(key, 0);
  1860       }
  1861       virtual void add(const std::vector<Key>& keys) {
  1862 	Parent::add(keys);
  1863 	for (int i = 0; i < (int)keys.size(); ++i) {
  1864 	  Parent::set(keys[i], 0);
  1865 	}
  1866       }
  1867     };
  1868 
  1869   public:
  1870 
  1871     /// \brief Constructor.
  1872     ///
  1873     /// Constructor for creating out-degree map.
  1874     explicit OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) {
  1875       Parent::attach(graph.getNotifier(typename _Graph::Edge()));
  1876       
  1877       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1878 	deg[it] = countOutEdges(graph, it);
  1879       }
  1880     }
  1881 
  1882     /// Gives back the out-degree of a Node.
  1883     int operator[](const Key& key) const {
  1884       return deg[key];
  1885     }
  1886 
  1887   protected:
  1888     
  1889     typedef typename Graph::Edge Edge;
  1890 
  1891     virtual void add(const Edge& edge) {
  1892       ++deg[graph.source(edge)];
  1893     }
  1894 
  1895     virtual void add(const std::vector<Edge>& edges) {
  1896       for (int i = 0; i < (int)edges.size(); ++i) {
  1897         ++deg[graph.source(edges[i])];
  1898       }
  1899     }
  1900 
  1901     virtual void erase(const Edge& edge) {
  1902       --deg[graph.source(edge)];
  1903     }
  1904 
  1905     virtual void erase(const std::vector<Edge>& edges) {
  1906       for (int i = 0; i < (int)edges.size(); ++i) {
  1907         --deg[graph.source(edges[i])];
  1908       }
  1909     }
  1910 
  1911     virtual void build() {
  1912       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1913 	deg[it] = countOutEdges(graph, it);
  1914       }      
  1915     }
  1916 
  1917     virtual void clear() {
  1918       for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) {
  1919 	deg[it] = 0;
  1920       }
  1921     }
  1922   private:
  1923     
  1924     const _Graph& graph;
  1925     AutoNodeMap deg;
  1926   };
  1927 
  1928 
  1929   ///Fast edge look up between given endpoints.
  1930   
  1931   ///\ingroup gutils
  1932   ///Using this class, you can find an edge in a graph from a given
  1933   ///source to a given target in time <em>O(log d)</em>,
  1934   ///where <em>d</em> is the out-degree of the source node.
  1935   ///
  1936   ///It is not possible to find \e all parallel edges between two nodes.
  1937   ///Use \ref AllEdgeLookUp for this purpose.
  1938   ///
  1939   ///\warning This class is static, so you should refresh() (or at least
  1940   ///refresh(Node)) this data structure
  1941   ///whenever the graph changes. This is a time consuming (superlinearly
  1942   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  1943   ///
  1944   ///\param G The type of the underlying graph.
  1945   ///
  1946   ///\sa AllEdgeLookUp  
  1947   template<class G>
  1948   class EdgeLookUp 
  1949   {
  1950   public:
  1951     GRAPH_TYPEDEFS(typename G)
  1952     typedef G Graph;
  1953 
  1954   protected:
  1955     const Graph &_g;
  1956     typename Graph::template NodeMap<Edge> _head;
  1957     typename Graph::template EdgeMap<Edge> _left;
  1958     typename Graph::template EdgeMap<Edge> _right;
  1959     
  1960     class EdgeLess {
  1961       const Graph &g;
  1962     public:
  1963       EdgeLess(const Graph &_g) : g(_g) {}
  1964       bool operator()(Edge a,Edge b) const 
  1965       {
  1966 	return g.target(a)<g.target(b);
  1967       }
  1968     };
  1969     
  1970   public:
  1971     
  1972     ///Constructor
  1973 
  1974     ///Constructor.
  1975     ///
  1976     ///It builds up the search database, which remains valid until the graph
  1977     ///changes.
  1978     EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
  1979     
  1980   private:
  1981     Edge refresh_rec(std::vector<Edge> &v,int a,int b) 
  1982     {
  1983       int m=(a+b)/2;
  1984       Edge me=v[m];
  1985       _left[me] = a<m?refresh_rec(v,a,m-1):INVALID;
  1986       _right[me] = m<b?refresh_rec(v,m+1,b):INVALID;
  1987       return me;
  1988     }
  1989   public:
  1990     ///Refresh the data structure at a node.
  1991 
  1992     ///Build up the search database of node \c n.
  1993     ///
  1994     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  1995     ///the number of the outgoing edges of \c n.
  1996     void refresh(Node n) 
  1997     {
  1998       std::vector<Edge> v;
  1999       for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e);
  2000       if(v.size()) {
  2001 	std::sort(v.begin(),v.end(),EdgeLess(_g));
  2002 	_head[n]=refresh_rec(v,0,v.size()-1);
  2003       }
  2004       else _head[n]=INVALID;
  2005     }
  2006     ///Refresh the full data structure.
  2007 
  2008     ///Build up the full search database. In fact, it simply calls
  2009     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2010     ///
  2011     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2012     ///the number of the edges of \c n and <em>D</em> is the maximum
  2013     ///out-degree of the graph.
  2014 
  2015     void refresh() 
  2016     {
  2017       for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
  2018     }
  2019     
  2020     ///Find an edge between two nodes.
  2021     
  2022     ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where
  2023     /// <em>d</em> is the number of outgoing edges of \c s.
  2024     ///\param s The source node
  2025     ///\param t The target node
  2026     ///\return An edge from \c s to \c t if there exists,
  2027     ///\ref INVALID otherwise.
  2028     ///
  2029     ///\warning If you change the graph, refresh() must be called before using
  2030     ///this operator. If you change the outgoing edges of
  2031     ///a single node \c n, then
  2032     ///\ref refresh(Node) "refresh(n)" is enough.
  2033     ///
  2034     Edge operator()(Node s, Node t) const
  2035     {
  2036       Edge e;
  2037       for(e=_head[s];
  2038 	  e!=INVALID&&_g.target(e)!=t;
  2039 	  e = t < _g.target(e)?_left[e]:_right[e]) ;
  2040       return e;
  2041     }
  2042 
  2043   };
  2044 
  2045   ///Fast look up of all edges between given endpoints.
  2046   
  2047   ///\ingroup gutils
  2048   ///This class is the same as \ref EdgeLookUp, with the addition
  2049   ///that it makes it possible to find all edges between given endpoints.
  2050   ///
  2051   ///\warning This class is static, so you should refresh() (or at least
  2052   ///refresh(Node)) this data structure
  2053   ///whenever the graph changes. This is a time consuming (superlinearly
  2054   ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges).
  2055   ///
  2056   ///\param G The type of the underlying graph.
  2057   ///
  2058   ///\sa EdgeLookUp  
  2059   template<class G>
  2060   class AllEdgeLookUp : public EdgeLookUp<G>
  2061   {
  2062     using EdgeLookUp<G>::_g;
  2063     using EdgeLookUp<G>::_right;
  2064     using EdgeLookUp<G>::_left;
  2065     using EdgeLookUp<G>::_head;
  2066 
  2067     GRAPH_TYPEDEFS(typename G)
  2068     typedef G Graph;
  2069     
  2070     typename Graph::template EdgeMap<Edge> _next;
  2071     
  2072     Edge refreshNext(Edge head,Edge next=INVALID)
  2073     {
  2074       if(head==INVALID) return next;
  2075       else {
  2076 	next=refreshNext(_right[head],next);
  2077 // 	_next[head]=next;
  2078 	_next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
  2079 	  ? next : INVALID;
  2080 	return refreshNext(_left[head],head);
  2081       }
  2082     }
  2083     
  2084     void refreshNext()
  2085     {
  2086       for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
  2087     }
  2088     
  2089   public:
  2090     ///Constructor
  2091 
  2092     ///Constructor.
  2093     ///
  2094     ///It builds up the search database, which remains valid until the graph
  2095     ///changes.
  2096     AllEdgeLookUp(const Graph &g) : EdgeLookUp<G>(g), _next(g) {refreshNext();}
  2097 
  2098     ///Refresh the data structure at a node.
  2099 
  2100     ///Build up the search database of node \c n.
  2101     ///
  2102     ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is
  2103     ///the number of the outgoing edges of \c n.
  2104     
  2105     void refresh(Node n) 
  2106     {
  2107       EdgeLookUp<G>::refresh(n);
  2108       refreshNext(_head[n]);
  2109     }
  2110     
  2111     ///Refresh the full data structure.
  2112 
  2113     ///Build up the full search database. In fact, it simply calls
  2114     ///\ref refresh(Node) "refresh(n)" for each node \c n.
  2115     ///
  2116     ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is
  2117     ///the number of the edges of \c n and <em>D</em> is the maximum
  2118     ///out-degree of the graph.
  2119 
  2120     void refresh() 
  2121     {
  2122       for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
  2123     }
  2124     
  2125     ///Find an edge between two nodes.
  2126     
  2127     ///Find an edge between two nodes.
  2128     ///\param s The source node
  2129     ///\param t The target node
  2130     ///\param prev The previous edge between \c s and \c t. It it is INVALID or
  2131     ///not given, the operator finds the first appropriate edge.
  2132     ///\return An edge from \c s to \c t after \prev or
  2133     ///\ref INVALID if there is no more.
  2134     ///
  2135     ///For example, you can count the number of edges from \c u to \c v in the
  2136     ///following way.
  2137     ///\code
  2138     ///AllEdgeLookUp<ListGraph> ae(g);
  2139     ///...
  2140     ///int n=0;
  2141     ///for(Edge e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
  2142     ///\endcode
  2143     ///
  2144     ///Finding the first edge take <em>O(</em>log<em>d)</em> time, where
  2145     /// <em>d</em> is the number of outgoing edges of \c s. Then, the
  2146     ///consecutive edges are found in constant time.
  2147     ///
  2148     ///\warning If you change the graph, refresh() must be called before using
  2149     ///this operator. If you change the outgoing edges of
  2150     ///a single node \c n, then
  2151     ///\ref refresh(Node) "refresh(n)" is enough.
  2152     ///
  2153 #ifdef DOXYGEN
  2154     Edge operator()(Node s, Node t, Edge prev=INVALID) const {}
  2155 #else
  2156     using EdgeLookUp<G>::operator() ;
  2157     Edge operator()(Node s, Node t, Edge prev) const
  2158     {
  2159       return prev==INVALID?(*this)(s,t):_next[prev];
  2160     }
  2161 #endif
  2162       
  2163   };
  2164 
  2165   /// @}
  2166 
  2167 } //END OF NAMESPACE LEMON
  2168 
  2169 #endif