lemon/lp_base.h
author deba
Fri, 04 Nov 2005 17:33:33 +0000
changeset 1775 f19e108cb286
parent 1766 6c59b1386fe8
child 1787 932b8490caf0
permissions -rw-r--r--
Added doc to demos.
     1 /* -*- C++ -*-
     2  * lemon/lp_base.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_LP_BASE_H
    18 #define LEMON_LP_BASE_H
    19 
    20 #include<vector>
    21 #include<map>
    22 #include<limits>
    23 #include<cmath>
    24 
    25 #include<lemon/utility.h>
    26 #include<lemon/error.h>
    27 #include<lemon/invalid.h>
    28 
    29 ///\file
    30 ///\brief The interface of the LP solver interface.
    31 ///\ingroup gen_opt_group
    32 namespace lemon {
    33   
    34   ///Internal data structure to convert floating id's to fix one's
    35     
    36   ///\todo This might be implemented to be also usable in other places.
    37   class _FixId 
    38   {
    39     std::vector<int> index;
    40     std::vector<int> cross;
    41     int first_free;
    42   public:
    43     _FixId() : first_free(-1) {};
    44     ///Convert a floating id to a fix one
    45 
    46     ///\param n is a floating id
    47     ///\return the corresponding fix id
    48     int fixId(int n) const {return cross[n];}
    49     ///Convert a fix id to a floating one
    50 
    51     ///\param n is a fix id
    52     ///\return the corresponding floating id
    53     int floatingId(int n) const { return index[n];}
    54     ///Add a new floating id.
    55 
    56     ///\param n is a floating id
    57     ///\return the fix id of the new value
    58     ///\todo Multiple additions should also be handled.
    59     int insert(int n)
    60     {
    61       if(n>=int(cross.size())) {
    62 	cross.resize(n+1);
    63 	if(first_free==-1) {
    64 	  cross[n]=index.size();
    65 	  index.push_back(n);
    66 	}
    67 	else {
    68 	  cross[n]=first_free;
    69 	  int next=index[first_free];
    70 	  index[first_free]=n;
    71 	  first_free=next;
    72 	}
    73 	return cross[n];
    74       }
    75       ///\todo Create an own exception type.
    76       else throw LogicError(); //floatingId-s must form a continuous range;
    77     }
    78     ///Remove a fix id.
    79 
    80     ///\param n is a fix id
    81     ///
    82     void erase(int n) 
    83     {
    84       int fl=index[n];
    85       index[n]=first_free;
    86       first_free=n;
    87       for(int i=fl+1;i<int(cross.size());++i) {
    88 	cross[i-1]=cross[i];
    89 	index[cross[i]]--;
    90       }
    91       cross.pop_back();
    92     }
    93     ///An upper bound on the largest fix id.
    94 
    95     ///\todo Do we need this?
    96     ///
    97     std::size_t maxFixId() { return cross.size()-1; }
    98   
    99   };
   100     
   101   ///Common base class for LP solvers
   102   
   103   ///\todo Much more docs
   104   ///\ingroup gen_opt_group
   105   class LpSolverBase {
   106 
   107   public:
   108 
   109     ///Possible outcomes of an LP solving procedure
   110     enum SolveExitStatus {
   111       ///This means that the problem has been successfully solved: either
   112       ///an optimal solution has been found or infeasibility/unboundedness
   113       ///has been proved.
   114       SOLVED = 0,
   115       ///Any other case (including the case when some user specified limit has been exceeded)
   116       UNSOLVED = 1
   117     };
   118       
   119       ///\e
   120     enum SolutionStatus {
   121       ///Feasible solution has'n been found (but may exist).
   122 
   123       ///\todo NOTFOUND might be a better name.
   124       ///
   125       UNDEFINED = 0,
   126       ///The problem has no feasible solution
   127       INFEASIBLE = 1,
   128       ///Feasible solution found
   129       FEASIBLE = 2,
   130       ///Optimal solution exists and found
   131       OPTIMAL = 3,
   132       ///The cost function is unbounded
   133 
   134       ///\todo Give a feasible solution and an infinite ray (and the
   135       ///corresponding bases)
   136       INFINITE = 4
   137     };
   138 
   139     ///\e The type of the investigated LP problem
   140     enum ProblemTypes {
   141       ///Primal-dual feasible
   142       PRIMAL_DUAL_FEASIBLE = 0,
   143       ///Primal feasible dual infeasible
   144       PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
   145       ///Primal infeasible dual feasible
   146       PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
   147       ///Primal-dual infeasible
   148       PRIMAL_DUAL_INFEASIBLE = 3,
   149       ///Could not determine so far
   150       UNKNOWN = 4
   151     };
   152 
   153     ///The floating point type used by the solver
   154     typedef double Value;
   155     ///The infinity constant
   156     static const Value INF;
   157     ///The not a number constant
   158     static const Value NaN;
   159     
   160     ///Refer to a column of the LP.
   161 
   162     ///This type is used to refer to a column of the LP.
   163     ///
   164     ///Its value remains valid and correct even after the addition or erase of
   165     ///other columns.
   166     ///
   167     ///\todo Document what can one do with a Col (INVALID, comparing,
   168     ///it is similar to Node/Edge)
   169     class Col {
   170     protected:
   171       int id;
   172       friend class LpSolverBase;
   173     public:
   174       typedef Value ExprValue;
   175       typedef True LpSolverCol;
   176       Col() {}
   177       Col(const Invalid&) : id(-1) {}
   178       bool operator<(Col c) const  {return id<c.id;}
   179       bool operator==(Col c) const  {return id==c.id;}
   180       bool operator!=(Col c) const  {return id==c.id;}
   181     };
   182 
   183     ///Refer to a row of the LP.
   184 
   185     ///This type is used to refer to a row of the LP.
   186     ///
   187     ///Its value remains valid and correct even after the addition or erase of
   188     ///other rows.
   189     ///
   190     ///\todo Document what can one do with a Row (INVALID, comparing,
   191     ///it is similar to Node/Edge)
   192     class Row {
   193     protected:
   194       int id;
   195       friend class LpSolverBase;
   196     public:
   197       typedef Value ExprValue;
   198       typedef True LpSolverRow;
   199       Row() {}
   200       Row(const Invalid&) : id(-1) {}
   201 
   202       bool operator<(Row c) const  {return id<c.id;}
   203       bool operator==(Row c) const  {return id==c.id;}
   204       bool operator!=(Row c) const  {return id==c.id;} 
   205    };
   206     
   207     ///Linear expression of variables and a constant component
   208     
   209     ///This data structure strores a linear expression of the variables
   210     ///(\ref Col "Col"s) and also has a constant component.
   211     ///
   212     ///There are several ways to access and modify the contents of this
   213     ///container.
   214     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
   215     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
   216     ///read and modify the coefficients like
   217     ///these.
   218     ///\code
   219     ///e[v]=5;
   220     ///e[v]+=12;
   221     ///e.erase(v);
   222     ///\endcode
   223     ///or you can also iterate through its elements.
   224     ///\code
   225     ///double s=0;
   226     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
   227     ///  s+=i->second;
   228     ///\endcode
   229     ///(This code computes the sum of all coefficients).
   230     ///- Numbers (<tt>double</tt>'s)
   231     ///and variables (\ref Col "Col"s) directly convert to an
   232     ///\ref Expr and the usual linear operations are defined so  
   233     ///\code
   234     ///v+w
   235     ///2*v-3.12*(v-w/2)+2
   236     ///v*2.1+(3*v+(v*12+w+6)*3)/2
   237     ///\endcode
   238     ///are valid \ref Expr "Expr"essions.
   239     ///The usual assignment operations are also defined.
   240     ///\code
   241     ///e=v+w;
   242     ///e+=2*v-3.12*(v-w/2)+2;
   243     ///e*=3.4;
   244     ///e/=5;
   245     ///\endcode
   246     ///- The constant member can be set and read by \ref constComp()
   247     ///\code
   248     ///e.constComp()=12;
   249     ///double c=e.constComp();
   250     ///\endcode
   251     ///
   252     ///\note \ref clear() not only sets all coefficients to 0 but also
   253     ///clears the constant components.
   254     ///
   255     ///\sa Constr
   256     ///
   257     class Expr : public std::map<Col,Value>
   258     {
   259     public:
   260       typedef LpSolverBase::Col Key; 
   261       typedef LpSolverBase::Value Value;
   262       
   263     protected:
   264       typedef std::map<Col,Value> Base;
   265       
   266       Value const_comp;
   267   public:
   268       typedef True IsLinExpression;
   269       ///\e
   270       Expr() : Base(), const_comp(0) { }
   271       ///\e
   272       Expr(const Key &v) : const_comp(0) {
   273 	Base::insert(std::make_pair(v, 1));
   274       }
   275       ///\e
   276       Expr(const Value &v) : const_comp(v) {}
   277       ///\e
   278       void set(const Key &v,const Value &c) {
   279 	Base::insert(std::make_pair(v, c));
   280       }
   281       ///\e
   282       Value &constComp() { return const_comp; }
   283       ///\e
   284       const Value &constComp() const { return const_comp; }
   285       
   286       ///Removes the components with zero coefficient.
   287       void simplify() {
   288 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   289 	  Base::iterator j=i;
   290 	  ++j;
   291 	  if ((*i).second==0) Base::erase(i);
   292 	  j=i;
   293 	}
   294       }
   295 
   296       ///Removes the coefficients closer to zero than \c tolerance.
   297       void simplify(double &tolerance) {
   298 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   299 	  Base::iterator j=i;
   300 	  ++j;
   301 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   302 	  j=i;
   303 	}
   304       }
   305 
   306       ///Sets all coefficients and the constant component to 0.
   307       void clear() {
   308 	Base::clear();
   309 	const_comp=0;
   310       }
   311 
   312       ///\e
   313       Expr &operator+=(const Expr &e) {
   314 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   315 	  (*this)[j->first]+=j->second;
   316 	const_comp+=e.const_comp;
   317 	return *this;
   318       }
   319       ///\e
   320       Expr &operator-=(const Expr &e) {
   321 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   322 	  (*this)[j->first]-=j->second;
   323 	const_comp-=e.const_comp;
   324 	return *this;
   325       }
   326       ///\e
   327       Expr &operator*=(const Value &c) {
   328 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   329 	  j->second*=c;
   330 	const_comp*=c;
   331 	return *this;
   332       }
   333       ///\e
   334       Expr &operator/=(const Value &c) {
   335 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   336 	  j->second/=c;
   337 	const_comp/=c;
   338 	return *this;
   339       }
   340     };
   341     
   342     ///Linear constraint
   343 
   344     ///This data stucture represents a linear constraint in the LP.
   345     ///Basically it is a linear expression with a lower or an upper bound
   346     ///(or both). These parts of the constraint can be obtained by the member
   347     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
   348     ///respectively.
   349     ///There are two ways to construct a constraint.
   350     ///- You can set the linear expression and the bounds directly
   351     ///  by the functions above.
   352     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
   353     ///  are defined between expressions, or even between constraints whenever
   354     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
   355     ///  \c s and \c t are numbers, then the followings are valid expressions
   356     ///  and thus they can be used directly e.g. in \ref addRow() whenever
   357     ///  it makes sense.
   358     ///  \code
   359     ///  e<=s
   360     ///  e<=f
   361     ///  s<=e<=t
   362     ///  e>=t
   363     ///  \endcode
   364     ///\warning The validity of a constraint is checked only at run time, so
   365     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
   366     ///\ref LogicError exception.
   367     class Constr
   368     {
   369     public:
   370       typedef LpSolverBase::Expr Expr;
   371       typedef Expr::Key Key;
   372       typedef Expr::Value Value;
   373       
   374 //       static const Value INF;
   375 //       static const Value NaN;
   376 
   377     protected:
   378       Expr _expr;
   379       Value _lb,_ub;
   380     public:
   381       ///\e
   382       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
   383       ///\e
   384       Constr(Value lb,const Expr &e,Value ub) :
   385 	_expr(e), _lb(lb), _ub(ub) {}
   386       ///\e
   387       Constr(const Expr &e,Value ub) : 
   388 	_expr(e), _lb(NaN), _ub(ub) {}
   389       ///\e
   390       Constr(Value lb,const Expr &e) :
   391 	_expr(e), _lb(lb), _ub(NaN) {}
   392       ///\e
   393       Constr(const Expr &e) : 
   394 	_expr(e), _lb(NaN), _ub(NaN) {}
   395       ///\e
   396       void clear() 
   397       {
   398 	_expr.clear();
   399 	_lb=_ub=NaN;
   400       }
   401 
   402       ///Reference to the linear expression 
   403       Expr &expr() { return _expr; }
   404       ///Cont reference to the linear expression 
   405       const Expr &expr() const { return _expr; }
   406       ///Reference to the lower bound.
   407 
   408       ///\return
   409       ///- \ref INF "INF": the constraint is lower unbounded.
   410       ///- \ref NaN "NaN": lower bound has not been set.
   411       ///- finite number: the lower bound
   412       Value &lowerBound() { return _lb; }
   413       ///The const version of \ref lowerBound()
   414       const Value &lowerBound() const { return _lb; }
   415       ///Reference to the upper bound.
   416 
   417       ///\return
   418       ///- \ref INF "INF": the constraint is upper unbounded.
   419       ///- \ref NaN "NaN": upper bound has not been set.
   420       ///- finite number: the upper bound
   421       Value &upperBound() { return _ub; }
   422       ///The const version of \ref upperBound()
   423       const Value &upperBound() const { return _ub; }
   424       ///Is the constraint lower bounded?
   425       bool lowerBounded() const { 
   426 	using namespace std;
   427 	return finite(_lb);
   428       }
   429       ///Is the constraint upper bounded?
   430       bool upperBounded() const {
   431 	using namespace std;
   432 	return finite(_ub);
   433       }
   434     };
   435     
   436     ///Linear expression of rows
   437     
   438     ///This data structure represents a column of the matrix,
   439     ///thas is it strores a linear expression of the dual variables
   440     ///(\ref Row "Row"s).
   441     ///
   442     ///There are several ways to access and modify the contents of this
   443     ///container.
   444     ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
   445     ///if \c e is an DualExpr and \c v
   446     ///and \c w are of type \ref Row, then you can
   447     ///read and modify the coefficients like
   448     ///these.
   449     ///\code
   450     ///e[v]=5;
   451     ///e[v]+=12;
   452     ///e.erase(v);
   453     ///\endcode
   454     ///or you can also iterate through its elements.
   455     ///\code
   456     ///double s=0;
   457     ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
   458     ///  s+=i->second;
   459     ///\endcode
   460     ///(This code computes the sum of all coefficients).
   461     ///- Numbers (<tt>double</tt>'s)
   462     ///and variables (\ref Row "Row"s) directly convert to an
   463     ///\ref DualExpr and the usual linear operations are defined so  
   464     ///\code
   465     ///v+w
   466     ///2*v-3.12*(v-w/2)
   467     ///v*2.1+(3*v+(v*12+w)*3)/2
   468     ///\endcode
   469     ///are valid \ref DualExpr "DualExpr"essions.
   470     ///The usual assignment operations are also defined.
   471     ///\code
   472     ///e=v+w;
   473     ///e+=2*v-3.12*(v-w/2);
   474     ///e*=3.4;
   475     ///e/=5;
   476     ///\endcode
   477     ///
   478     ///\sa Expr
   479     ///
   480     class DualExpr : public std::map<Row,Value>
   481     {
   482     public:
   483       typedef LpSolverBase::Row Key; 
   484       typedef LpSolverBase::Value Value;
   485       
   486     protected:
   487       typedef std::map<Row,Value> Base;
   488       
   489     public:
   490       typedef True IsLinExpression;
   491       ///\e
   492       DualExpr() : Base() { }
   493       ///\e
   494       DualExpr(const Key &v) {
   495 	Base::insert(std::make_pair(v, 1));
   496       }
   497       ///\e
   498       void set(const Key &v,const Value &c) {
   499 	Base::insert(std::make_pair(v, c));
   500       }
   501       
   502       ///Removes the components with zero coefficient.
   503       void simplify() {
   504 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   505 	  Base::iterator j=i;
   506 	  ++j;
   507 	  if ((*i).second==0) Base::erase(i);
   508 	  j=i;
   509 	}
   510       }
   511 
   512       ///Removes the coefficients closer to zero than \c tolerance.
   513       void simplify(double &tolerance) {
   514 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
   515 	  Base::iterator j=i;
   516 	  ++j;
   517 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
   518 	  j=i;
   519 	}
   520       }
   521 
   522 
   523       ///Sets all coefficients to 0.
   524       void clear() {
   525 	Base::clear();
   526       }
   527 
   528       ///\e
   529       DualExpr &operator+=(const DualExpr &e) {
   530 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   531 	  (*this)[j->first]+=j->second;
   532 	return *this;
   533       }
   534       ///\e
   535       DualExpr &operator-=(const DualExpr &e) {
   536 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
   537 	  (*this)[j->first]-=j->second;
   538 	return *this;
   539       }
   540       ///\e
   541       DualExpr &operator*=(const Value &c) {
   542 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   543 	  j->second*=c;
   544 	return *this;
   545       }
   546       ///\e
   547       DualExpr &operator/=(const Value &c) {
   548 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
   549 	  j->second/=c;
   550 	return *this;
   551       }
   552     };
   553     
   554 
   555   protected:
   556     _FixId rows;
   557     _FixId cols;
   558 
   559     //Abstract virtual functions
   560     virtual LpSolverBase &_newLp() = 0;
   561     virtual LpSolverBase &_copyLp(){
   562       ///\todo This should be implemented here, too,  when we have problem retrieving routines. It can be overriden.
   563 
   564       //Starting:
   565       LpSolverBase & newlp(_newLp());
   566       return newlp;
   567       //return *(LpSolverBase*)0;
   568     };
   569 
   570     virtual int _addCol() = 0;
   571     virtual int _addRow() = 0;
   572     virtual void _eraseCol(int col) = 0;
   573     virtual void _eraseRow(int row) = 0;
   574     virtual void _setRowCoeffs(int i, 
   575 			       int length,
   576                                int  const * indices, 
   577                                Value  const * values ) = 0;
   578     virtual void _setColCoeffs(int i, 
   579 			       int length,
   580                                int  const * indices, 
   581                                Value  const * values ) = 0;
   582     virtual void _setCoeff(int row, int col, Value value) = 0;
   583     virtual void _setColLowerBound(int i, Value value) = 0;
   584     virtual void _setColUpperBound(int i, Value value) = 0;
   585 //     virtual void _setRowLowerBound(int i, Value value) = 0;
   586 //     virtual void _setRowUpperBound(int i, Value value) = 0;
   587     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
   588     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
   589     virtual void _clearObj()=0;
   590 //     virtual void _setObj(int length,
   591 //                          int  const * indices, 
   592 //                          Value  const * values ) = 0;
   593     virtual SolveExitStatus _solve() = 0;
   594     virtual Value _getPrimal(int i) = 0;
   595     virtual Value _getPrimalValue() = 0;
   596     virtual SolutionStatus _getPrimalStatus() = 0;
   597     virtual SolutionStatus _getDualStatus() = 0;
   598     ///\todo This could be implemented here, too, using _getPrimalStatus() and
   599     ///_getDualStatus()
   600     virtual ProblemTypes _getProblemType() = 0;
   601 
   602     virtual void _setMax() = 0;
   603     virtual void _setMin() = 0;
   604     
   605     //Own protected stuff
   606     
   607     //Constant component of the objective function
   608     Value obj_const_comp;
   609     
   610 
   611 
   612     
   613   public:
   614 
   615     ///\e
   616     LpSolverBase() : obj_const_comp(0) {}
   617 
   618     ///\e
   619     virtual ~LpSolverBase() {}
   620 
   621     ///Creates a new LP problem
   622     LpSolverBase &newLp() {return _newLp();}
   623     ///Makes a copy of the LP problem
   624     LpSolverBase &copyLp() {return _copyLp();}
   625     
   626     ///\name Build up and modify the LP
   627 
   628     ///@{
   629 
   630     ///Add a new empty column (i.e a new variable) to the LP
   631     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
   632 
   633     ///\brief Adds several new columns
   634     ///(i.e a variables) at once
   635     ///
   636     ///This magic function takes a container as its argument
   637     ///and fills its elements
   638     ///with new columns (i.e. variables)
   639     ///\param t can be
   640     ///- a standard STL compatible iterable container with
   641     ///\ref Col as its \c values_type
   642     ///like
   643     ///\code
   644     ///std::vector<LpSolverBase::Col>
   645     ///std::list<LpSolverBase::Col>
   646     ///\endcode
   647     ///- a standard STL compatible iterable container with
   648     ///\ref Col as its \c mapped_type
   649     ///like
   650     ///\code
   651     ///std::map<AnyType,LpSolverBase::Col>
   652     ///\endcode
   653     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   654     ///\code
   655     ///ListGraph::NodeMap<LpSolverBase::Col>
   656     ///ListGraph::EdgeMap<LpSolverBase::Col>
   657     ///\endcode
   658     ///\return The number of the created column.
   659 #ifdef DOXYGEN
   660     template<class T>
   661     int addColSet(T &t) { return 0;} 
   662 #else
   663     template<class T>
   664     typename enable_if<typename T::value_type::LpSolverCol,int>::type
   665     addColSet(T &t,dummy<0> = 0) {
   666       int s=0;
   667       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
   668       return s;
   669     }
   670     template<class T>
   671     typename enable_if<typename T::value_type::second_type::LpSolverCol,
   672 		       int>::type
   673     addColSet(T &t,dummy<1> = 1) { 
   674       int s=0;
   675       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   676 	i->second=addCol();
   677 	s++;
   678       }
   679       return s;
   680     }
   681     template<class T>
   682     typename enable_if<typename T::ValueSet::value_type::LpSolverCol,
   683 		       int>::type
   684     addColSet(T &t,dummy<2> = 2) { 
   685       ///\bug <tt>return addColSet(t.valueSet());</tt> should also work.
   686       int s=0;
   687       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   688 	  i!=t.valueSet().end();
   689 	  ++i)
   690 	{
   691 	  *i=addCol();
   692 	  s++;
   693 	}
   694       return s;
   695     }
   696 #endif
   697 
   698     ///Set a column (i.e a dual constraint) of the LP
   699 
   700     ///\param c is the column to be modified
   701     ///\param e is a dual linear expression (see \ref DualExpr)
   702     ///\bug This is a temporary function. The interface will change to
   703     ///a better one.
   704     void setCol(Col c,const DualExpr &e) {
   705       std::vector<int> indices;
   706       std::vector<Value> values;
   707       indices.push_back(0);
   708       values.push_back(0);
   709       for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i)
   710 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   711 	  indices.push_back(cols.floatingId((*i).first.id));
   712 	  values.push_back((*i).second);
   713 	}
   714       _setColCoeffs(cols.floatingId(c.id),indices.size()-1,
   715 		    &indices[0],&values[0]);
   716     }
   717 
   718     ///Add a new column to the LP
   719 
   720     ///\param e is a dual linear expression (see \ref DualExpr)
   721     ///\param obj is the corresponding component of the objective
   722     ///function. It is 0 by default.
   723     ///\return The created column.
   724     ///\bug This is a temportary function. The interface will change to
   725     ///a better one.
   726     Col addCol(const DualExpr &e, Value obj=0) {
   727       Col c=addCol();
   728       setCol(c,e);
   729       objCoeff(c,obj);
   730       return c;
   731     }
   732 
   733     ///Add a new empty row (i.e a new constraint) to the LP
   734 
   735     ///This function adds a new empty row (i.e a new constraint) to the LP.
   736     ///\return The created row
   737     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
   738 
   739     ///\brief Add several new rows
   740     ///(i.e a constraints) at once
   741     ///
   742     ///This magic function takes a container as its argument
   743     ///and fills its elements
   744     ///with new row (i.e. variables)
   745     ///\param t can be
   746     ///- a standard STL compatible iterable container with
   747     ///\ref Row as its \c values_type
   748     ///like
   749     ///\code
   750     ///std::vector<LpSolverBase::Row>
   751     ///std::list<LpSolverBase::Row>
   752     ///\endcode
   753     ///- a standard STL compatible iterable container with
   754     ///\ref Row as its \c mapped_type
   755     ///like
   756     ///\code
   757     ///std::map<AnyType,LpSolverBase::Row>
   758     ///\endcode
   759     ///- an iterable lemon \ref concept::WriteMap "write map" like 
   760     ///\code
   761     ///ListGraph::NodeMap<LpSolverBase::Row>
   762     ///ListGraph::EdgeMap<LpSolverBase::Row>
   763     ///\endcode
   764     ///\return The number of rows created.
   765 #ifdef DOXYGEN
   766     template<class T>
   767     int addRowSet(T &t) { return 0;} 
   768 #else
   769     template<class T>
   770     typename enable_if<typename T::value_type::LpSolverRow,int>::type
   771     addRowSet(T &t,dummy<0> = 0) {
   772       int s=0;
   773       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
   774       return s;
   775     }
   776     template<class T>
   777     typename enable_if<typename T::value_type::second_type::LpSolverRow,
   778 		       int>::type
   779     addRowSet(T &t,dummy<1> = 1) { 
   780       int s=0;
   781       for(typename T::iterator i=t.begin();i!=t.end();++i) {
   782 	i->second=addRow();
   783 	s++;
   784       }
   785       return s;
   786     }
   787     template<class T>
   788     typename enable_if<typename T::ValueSet::value_type::LpSolverRow,
   789 		       int>::type
   790     addRowSet(T &t,dummy<2> = 2) { 
   791       ///\bug <tt>return addRowSet(t.valueSet());</tt> should also work.
   792       int s=0;
   793       for(typename T::ValueSet::iterator i=t.valueSet().begin();
   794 	  i!=t.valueSet().end();
   795 	  ++i)
   796 	{
   797 	  *i=addRow();
   798 	  s++;
   799 	}
   800       return s;
   801     }
   802 #endif
   803 
   804     ///Set a row (i.e a constraint) of the LP
   805 
   806     ///\param r is the row to be modified
   807     ///\param l is lower bound (-\ref INF means no bound)
   808     ///\param e is a linear expression (see \ref Expr)
   809     ///\param u is the upper bound (\ref INF means no bound)
   810     ///\bug This is a temportary function. The interface will change to
   811     ///a better one.
   812     ///\todo Option to control whether a constraint with a single variable is
   813     ///added or not.
   814     void setRow(Row r, Value l,const Expr &e, Value u) {
   815       std::vector<int> indices;
   816       std::vector<Value> values;
   817       indices.push_back(0);
   818       values.push_back(0);
   819       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
   820 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
   821 	  indices.push_back(cols.floatingId((*i).first.id));
   822 	  values.push_back((*i).second);
   823 	}
   824       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
   825 		    &indices[0],&values[0]);
   826 //       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
   827 //       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
   828        _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
   829     }
   830 
   831     ///Set a row (i.e a constraint) of the LP
   832 
   833     ///\param r is the row to be modified
   834     ///\param c is a linear expression (see \ref Constr)
   835     void setRow(Row r, const Constr &c) {
   836       setRow(r,
   837 	     c.lowerBounded()?c.lowerBound():-INF,
   838 	     c.expr(),
   839 	     c.upperBounded()?c.upperBound():INF);
   840     }
   841 
   842     ///Add a new row (i.e a new constraint) to the LP
   843 
   844     ///\param l is the lower bound (-\ref INF means no bound)
   845     ///\param e is a linear expression (see \ref Expr)
   846     ///\param u is the upper bound (\ref INF means no bound)
   847     ///\return The created row.
   848     ///\bug This is a temportary function. The interface will change to
   849     ///a better one.
   850     Row addRow(Value l,const Expr &e, Value u) {
   851       Row r=addRow();
   852       setRow(r,l,e,u);
   853       return r;
   854     }
   855 
   856     ///Add a new row (i.e a new constraint) to the LP
   857 
   858     ///\param c is a linear expression (see \ref Constr)
   859     ///\return The created row.
   860     Row addRow(const Constr &c) {
   861       Row r=addRow();
   862       setRow(r,c);
   863       return r;
   864     }
   865     ///Erase a coloumn (i.e a variable) from the LP
   866 
   867     ///\param c is the coloumn to be deleted
   868     ///\todo Please check this
   869     void eraseCol(Col c) {
   870       _eraseCol(cols.floatingId(c.id));
   871       cols.erase(c.id);
   872     }
   873     ///Erase a  row (i.e a constraint) from the LP
   874 
   875     ///\param r is the row to be deleted
   876     ///\todo Please check this
   877     void eraseRow(Row r) {
   878       _eraseRow(rows.floatingId(r.id));
   879       rows.erase(r.id);
   880     }
   881 
   882     ///Set an element of the coefficient matrix of the LP
   883 
   884     ///\param r is the row of the element to be modified
   885     ///\param c is the coloumn of the element to be modified
   886     ///\param val is the new value of the coefficient
   887     void setCoeff(Row r, Col c, Value val){
   888       _setCoeff(rows.floatingId(r.id),cols.floatingId(c.id), val);
   889     }
   890 
   891     /// Set the lower bound of a column (i.e a variable)
   892 
   893     /// The upper bound of a variable (column) has to be given by an 
   894     /// extended number of type Value, i.e. a finite number of type 
   895     /// Value or -\ref INF.
   896     void colLowerBound(Col c, Value value) {
   897       _setColLowerBound(cols.floatingId(c.id),value);
   898     }
   899     /// Set the upper bound of a column (i.e a variable)
   900 
   901     /// The upper bound of a variable (column) has to be given by an 
   902     /// extended number of type Value, i.e. a finite number of type 
   903     /// Value or \ref INF.
   904     void colUpperBound(Col c, Value value) {
   905       _setColUpperBound(cols.floatingId(c.id),value);
   906     };
   907     /// Set the lower and the upper bounds of a column (i.e a variable)
   908 
   909     /// The lower and the upper bounds of
   910     /// a variable (column) have to be given by an 
   911     /// extended number of type Value, i.e. a finite number of type 
   912     /// Value, -\ref INF or \ref INF.
   913     void colBounds(Col c, Value lower, Value upper) {
   914       _setColLowerBound(cols.floatingId(c.id),lower);
   915       _setColUpperBound(cols.floatingId(c.id),upper);
   916     }
   917     
   918 //     /// Set the lower bound of a row (i.e a constraint)
   919 
   920 //     /// The lower bound of a linear expression (row) has to be given by an 
   921 //     /// extended number of type Value, i.e. a finite number of type 
   922 //     /// Value or -\ref INF.
   923 //     void rowLowerBound(Row r, Value value) {
   924 //       _setRowLowerBound(rows.floatingId(r.id),value);
   925 //     };
   926 //     /// Set the upper bound of a row (i.e a constraint)
   927 
   928 //     /// The upper bound of a linear expression (row) has to be given by an 
   929 //     /// extended number of type Value, i.e. a finite number of type 
   930 //     /// Value or \ref INF.
   931 //     void rowUpperBound(Row r, Value value) {
   932 //       _setRowUpperBound(rows.floatingId(r.id),value);
   933 //     };
   934 
   935     /// Set the lower and the upper bounds of a row (i.e a constraint)
   936 
   937     /// The lower and the upper bounds of
   938     /// a constraint (row) have to be given by an 
   939     /// extended number of type Value, i.e. a finite number of type 
   940     /// Value, -\ref INF or \ref INF.
   941     void rowBounds(Row c, Value lower, Value upper) {
   942       _setRowBounds(rows.floatingId(c.id),lower, upper);
   943       // _setRowUpperBound(rows.floatingId(c.id),upper);
   944     }
   945     
   946     ///Set an element of the objective function
   947     void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
   948     ///Set the objective function
   949     
   950     ///\param e is a linear expression of type \ref Expr.
   951     ///\bug The previous objective function is not cleared!
   952     void setObj(Expr e) {
   953       _clearObj();
   954       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
   955 	objCoeff((*i).first,(*i).second);
   956       obj_const_comp=e.constComp();
   957     }
   958 
   959     ///Maximize
   960     void max() { _setMax(); }
   961     ///Minimize
   962     void min() { _setMin(); }
   963 
   964     
   965     ///@}
   966 
   967 
   968     ///\name Solve the LP
   969 
   970     ///@{
   971 
   972     ///\e Solve the LP problem at hand
   973     ///
   974     ///\return The result of the optimization procedure. Possible values and their meanings can be found in the documentation of \ref SolveExitStatus.
   975     ///
   976     ///\todo Which method is used to solve the problem
   977     SolveExitStatus solve() { return _solve(); }
   978     
   979     ///@}
   980     
   981     ///\name Obtain the solution
   982 
   983     ///@{
   984 
   985     /// The status of the primal problem (the original LP problem)
   986     SolutionStatus primalStatus() {
   987       return _getPrimalStatus();
   988     }
   989 
   990     /// The status of the dual (of the original LP) problem 
   991     SolutionStatus dualStatus() {
   992       return _getDualStatus();
   993     }
   994 
   995     ///The type of the original LP problem
   996     ProblemTypes problemType() {
   997       return _getProblemType();
   998     }
   999 
  1000     ///\e
  1001     Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
  1002 
  1003     ///\e
  1004 
  1005     ///\return
  1006     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
  1007     /// of the primal problem, depending on whether we minimize or maximize.
  1008     ///- \ref NaN if no primal solution is found.
  1009     ///- The (finite) objective value if an optimal solution is found.
  1010     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
  1011     ///@}
  1012     
  1013   };  
  1014 
  1015   ///\e
  1016   
  1017   ///\relates LpSolverBase::Expr
  1018   ///
  1019   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
  1020 				      const LpSolverBase::Expr &b) 
  1021   {
  1022     LpSolverBase::Expr tmp(a);
  1023     tmp+=b;
  1024     return tmp;
  1025   }
  1026   ///\e
  1027   
  1028   ///\relates LpSolverBase::Expr
  1029   ///
  1030   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
  1031 				      const LpSolverBase::Expr &b) 
  1032   {
  1033     LpSolverBase::Expr tmp(a);
  1034     tmp-=b;
  1035     return tmp;
  1036   }
  1037   ///\e
  1038   
  1039   ///\relates LpSolverBase::Expr
  1040   ///
  1041   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
  1042 				      const LpSolverBase::Value &b) 
  1043   {
  1044     LpSolverBase::Expr tmp(a);
  1045     tmp*=b;
  1046     return tmp;
  1047   }
  1048   
  1049   ///\e
  1050   
  1051   ///\relates LpSolverBase::Expr
  1052   ///
  1053   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
  1054 				      const LpSolverBase::Expr &b) 
  1055   {
  1056     LpSolverBase::Expr tmp(b);
  1057     tmp*=a;
  1058     return tmp;
  1059   }
  1060   ///\e
  1061   
  1062   ///\relates LpSolverBase::Expr
  1063   ///
  1064   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
  1065 				      const LpSolverBase::Value &b) 
  1066   {
  1067     LpSolverBase::Expr tmp(a);
  1068     tmp/=b;
  1069     return tmp;
  1070   }
  1071   
  1072   ///\e
  1073   
  1074   ///\relates LpSolverBase::Constr
  1075   ///
  1076   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1077 					 const LpSolverBase::Expr &f) 
  1078   {
  1079     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
  1080   }
  1081 
  1082   ///\e
  1083   
  1084   ///\relates LpSolverBase::Constr
  1085   ///
  1086   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
  1087 					 const LpSolverBase::Expr &f) 
  1088   {
  1089     return LpSolverBase::Constr(e,f);
  1090   }
  1091 
  1092   ///\e
  1093   
  1094   ///\relates LpSolverBase::Constr
  1095   ///
  1096   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
  1097 					 const LpSolverBase::Value &f) 
  1098   {
  1099     return LpSolverBase::Constr(e,f);
  1100   }
  1101 
  1102   ///\e
  1103   
  1104   ///\relates LpSolverBase::Constr
  1105   ///
  1106   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1107 					 const LpSolverBase::Expr &f) 
  1108   {
  1109     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
  1110   }
  1111 
  1112 
  1113   ///\e
  1114   
  1115   ///\relates LpSolverBase::Constr
  1116   ///
  1117   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
  1118 					 const LpSolverBase::Expr &f) 
  1119   {
  1120     return LpSolverBase::Constr(f,e);
  1121   }
  1122 
  1123 
  1124   ///\e
  1125   
  1126   ///\relates LpSolverBase::Constr
  1127   ///
  1128   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
  1129 					 const LpSolverBase::Value &f) 
  1130   {
  1131     return LpSolverBase::Constr(f,e);
  1132   }
  1133 
  1134   ///\e
  1135   
  1136   ///\relates LpSolverBase::Constr
  1137   ///
  1138   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
  1139 					 const LpSolverBase::Expr &f) 
  1140   {
  1141     return LpSolverBase::Constr(0,e-f,0);
  1142   }
  1143 
  1144   ///\e
  1145   
  1146   ///\relates LpSolverBase::Constr
  1147   ///
  1148   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
  1149 					 const LpSolverBase::Constr&c) 
  1150   {
  1151     LpSolverBase::Constr tmp(c);
  1152     ///\todo Create an own exception type.
  1153     if(!isnan(tmp.lowerBound())) throw LogicError();
  1154     else tmp.lowerBound()=n;
  1155     return tmp;
  1156   }
  1157   ///\e
  1158   
  1159   ///\relates LpSolverBase::Constr
  1160   ///
  1161   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
  1162 					 const LpSolverBase::Value &n)
  1163   {
  1164     LpSolverBase::Constr tmp(c);
  1165     ///\todo Create an own exception type.
  1166     if(!isnan(tmp.upperBound())) throw LogicError();
  1167     else tmp.upperBound()=n;
  1168     return tmp;
  1169   }
  1170 
  1171   ///\e
  1172   
  1173   ///\relates LpSolverBase::Constr
  1174   ///
  1175   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
  1176 					 const LpSolverBase::Constr&c) 
  1177   {
  1178     LpSolverBase::Constr tmp(c);
  1179     ///\todo Create an own exception type.
  1180     if(!isnan(tmp.upperBound())) throw LogicError();
  1181     else tmp.upperBound()=n;
  1182     return tmp;
  1183   }
  1184   ///\e
  1185   
  1186   ///\relates LpSolverBase::Constr
  1187   ///
  1188   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
  1189 					 const LpSolverBase::Value &n)
  1190   {
  1191     LpSolverBase::Constr tmp(c);
  1192     ///\todo Create an own exception type.
  1193     if(!isnan(tmp.lowerBound())) throw LogicError();
  1194     else tmp.lowerBound()=n;
  1195     return tmp;
  1196   }
  1197 
  1198   ///\e
  1199   
  1200   ///\relates LpSolverBase::DualExpr
  1201   ///
  1202   inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
  1203 				      const LpSolverBase::DualExpr &b) 
  1204   {
  1205     LpSolverBase::DualExpr tmp(a);
  1206     tmp+=b;
  1207     return tmp;
  1208   }
  1209   ///\e
  1210   
  1211   ///\relates LpSolverBase::DualExpr
  1212   ///
  1213   inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
  1214 				      const LpSolverBase::DualExpr &b) 
  1215   {
  1216     LpSolverBase::DualExpr tmp(a);
  1217     tmp-=b;
  1218     return tmp;
  1219   }
  1220   ///\e
  1221   
  1222   ///\relates LpSolverBase::DualExpr
  1223   ///
  1224   inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
  1225 				      const LpSolverBase::Value &b) 
  1226   {
  1227     LpSolverBase::DualExpr tmp(a);
  1228     tmp*=b;
  1229     return tmp;
  1230   }
  1231   
  1232   ///\e
  1233   
  1234   ///\relates LpSolverBase::DualExpr
  1235   ///
  1236   inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
  1237 				      const LpSolverBase::DualExpr &b) 
  1238   {
  1239     LpSolverBase::DualExpr tmp(b);
  1240     tmp*=a;
  1241     return tmp;
  1242   }
  1243   ///\e
  1244   
  1245   ///\relates LpSolverBase::DualExpr
  1246   ///
  1247   inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
  1248 				      const LpSolverBase::Value &b) 
  1249   {
  1250     LpSolverBase::DualExpr tmp(a);
  1251     tmp/=b;
  1252     return tmp;
  1253   }
  1254   
  1255 
  1256 } //namespace lemon
  1257 
  1258 #endif //LEMON_LP_BASE_H