src/lemon/graph_wrapper.h
author ladanyi
Mon, 18 Apr 2005 17:23:42 +0000
changeset 1369 f1cf6b807414
parent 1307 d4acebef7276
child 1383 79b68a337f9f
permissions -rw-r--r--
irrelevant changes
     1 /* -*- C++ -*-
     2  * src/lemon/graph_wrapper.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_GRAPH_WRAPPER_H
    18 #define LEMON_GRAPH_WRAPPER_H
    19 
    20 ///\ingroup gwrappers
    21 ///\file
    22 ///\brief Several graph wrappers.
    23 ///
    24 ///This file contains several useful graph wrapper functions.
    25 ///
    26 ///\author Marton Makai
    27 
    28 #include <lemon/invalid.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/bits/iterable_graph_extender.h>
    31 #include <iostream>
    32 
    33 namespace lemon {
    34 
    35   // Graph wrappers
    36 
    37   /*!
    38     \addtogroup gwrappers
    39     @{
    40    */
    41 
    42   /*! 
    43     Base type for the Graph Wrappers
    44     
    45     \warning Graph wrappers are in even more experimental state than the other
    46     parts of the lib. Use them at you own risk.
    47     
    48     This is the base type for most of LEMON graph wrappers. 
    49     This class implements a trivial graph wrapper i.e. it only wraps the 
    50     functions and types of the graph. The purpose of this class is to 
    51     make easier implementing graph wrappers. E.g. if a wrapper is 
    52     considered which differs from the wrapped graph only in some of its 
    53     functions or types, then it can be derived from GraphWrapper, and only the 
    54     differences should be implemented.
    55   
    56     \author Marton Makai 
    57   */
    58   template<typename _Graph>
    59   class GraphWrapperBase {
    60   public:
    61     typedef _Graph Graph;
    62     /// \todo Is it needed?
    63     typedef Graph BaseGraph;
    64     typedef Graph ParentGraph;
    65 
    66   protected:
    67     Graph* graph;
    68     GraphWrapperBase() : graph(0) { }
    69     void setGraph(Graph& _graph) { graph=&_graph; }
    70 
    71   public:
    72     GraphWrapperBase(Graph& _graph) : graph(&_graph) { }
    73  
    74     typedef typename Graph::Node Node;
    75     typedef typename Graph::Edge Edge;
    76    
    77     void first(Node& i) const { graph->first(i); }
    78     void first(Edge& i) const { graph->first(i); }
    79     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    80     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    81 
    82     void next(Node& i) const { graph->next(i); }
    83     void next(Edge& i) const { graph->next(i); }
    84     void nextIn(Edge& i) const { graph->nextIn(i); }
    85     void nextOut(Edge& i) const { graph->nextOut(i); }
    86 
    87     Node source(const Edge& e) const { return graph->source(e); }
    88     Node target(const Edge& e) const { return graph->target(e); }
    89 
    90     int nodeNum() const { return graph->nodeNum(); }
    91     int edgeNum() const { return graph->edgeNum(); }
    92   
    93     Node addNode() const { return Node(graph->addNode()); }
    94     Edge addEdge(const Node& source, const Node& target) const { 
    95       return Edge(graph->addEdge(source, target)); }
    96 
    97     void erase(const Node& i) const { graph->erase(i); }
    98     void erase(const Edge& i) const { graph->erase(i); }
    99   
   100     void clear() const { graph->clear(); }
   101     
   102     bool forward(const Edge& e) const { return graph->forward(e); }
   103     bool backward(const Edge& e) const { return graph->backward(e); }
   104 
   105     int id(const Node& v) const { return graph->id(v); }
   106     int id(const Edge& e) const { return graph->id(e); }
   107     
   108     Edge opposite(const Edge& e) const { return Edge(graph->opposite(e)); }
   109 
   110     template <typename _Value>
   111     class NodeMap : public _Graph::template NodeMap<_Value> {
   112     public:
   113       typedef typename _Graph::template NodeMap<_Value> Parent;
   114       NodeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
   115       NodeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
   116       : Parent(*gw.graph, value) { }
   117     };
   118 
   119     template <typename _Value>
   120     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   121     public:
   122       typedef typename _Graph::template EdgeMap<_Value> Parent;
   123       EdgeMap(const GraphWrapperBase<_Graph>& gw) : Parent(*gw.graph) { }
   124       EdgeMap(const GraphWrapperBase<_Graph>& gw, const _Value& value)
   125       : Parent(*gw.graph, value) { }
   126     };
   127 
   128   };
   129 
   130   template <typename _Graph>
   131   class GraphWrapper :
   132     public IterableGraphExtender<GraphWrapperBase<_Graph> > { 
   133   public:
   134     typedef _Graph Graph;
   135     typedef IterableGraphExtender<GraphWrapperBase<_Graph> > Parent;
   136   protected:
   137     GraphWrapper() : Parent() { }
   138 
   139   public:
   140     GraphWrapper(Graph& _graph) { setGraph(_graph); }
   141   };
   142 
   143   template <typename _Graph>
   144   class RevGraphWrapperBase : public GraphWrapperBase<_Graph> {
   145   public:
   146     typedef _Graph Graph;
   147     typedef GraphWrapperBase<_Graph> Parent;
   148   protected:
   149     RevGraphWrapperBase() : Parent() { }
   150   public:
   151     typedef typename Parent::Node Node;
   152     typedef typename Parent::Edge Edge;
   153 
   154     using Parent::first;
   155     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   156     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   157 
   158     using Parent::next;
   159     void nextIn(Edge& i) const { Parent::nextOut(i); }
   160     void nextOut(Edge& i) const { Parent::nextIn(i); }
   161 
   162     Node source(const Edge& e) const { return Parent::target(e); }
   163     Node target(const Edge& e) const { return Parent::source(e); }
   164   };
   165     
   166 
   167   /// A graph wrapper which reverses the orientation of the edges.
   168 
   169   ///\warning Graph wrappers are in even more experimental state than the other
   170   ///parts of the lib. Use them at you own risk.
   171   ///
   172   /// Let \f$G=(V, A)\f$ be a directed graph and 
   173   /// suppose that a graph instange \c g of type 
   174   /// \c ListGraph implements \f$G\f$.
   175   /// \code
   176   /// ListGraph g;
   177   /// \endcode
   178   /// For each directed edge 
   179   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
   180   /// reversing its orientation. 
   181   /// Then RevGraphWrapper implements the graph structure with node-set 
   182   /// \f$V\f$ and edge-set 
   183   /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
   184   /// reversing the orientation of its edges. The following code shows how 
   185   /// such an instance can be constructed.
   186   /// \code
   187   /// RevGraphWrapper<ListGraph> gw(g);
   188   /// \endcode
   189   ///\author Marton Makai
   190   template<typename _Graph>
   191   class RevGraphWrapper : 
   192     public IterableGraphExtender<RevGraphWrapperBase<_Graph> > {
   193   public:
   194     typedef _Graph Graph;
   195     typedef IterableGraphExtender<
   196       RevGraphWrapperBase<_Graph> > Parent;
   197   protected:
   198     RevGraphWrapper() { }
   199   public:
   200     RevGraphWrapper(_Graph& _graph) { setGraph(_graph); }
   201   };
   202 
   203   
   204   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   205   class SubGraphWrapperBase : public GraphWrapperBase<_Graph> {
   206   public:
   207     typedef _Graph Graph;
   208     typedef GraphWrapperBase<_Graph> Parent;
   209   protected:
   210     NodeFilterMap* node_filter_map;
   211     EdgeFilterMap* edge_filter_map;
   212     SubGraphWrapperBase() : Parent(), 
   213 			    node_filter_map(0), edge_filter_map(0) { }
   214 
   215     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   216       node_filter_map=&_node_filter_map;
   217     }
   218     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   219       edge_filter_map=&_edge_filter_map;
   220     }
   221 
   222   public:
   223 //     SubGraphWrapperBase(Graph& _graph, 
   224 // 			NodeFilterMap& _node_filter_map, 
   225 // 			EdgeFilterMap& _edge_filter_map) : 
   226 //       Parent(&_graph), 
   227 //       node_filter_map(&node_filter_map), 
   228 //       edge_filter_map(&edge_filter_map) { }
   229 
   230     typedef typename Parent::Node Node;
   231     typedef typename Parent::Edge Edge;
   232 
   233     void first(Node& i) const { 
   234       Parent::first(i); 
   235       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   236     }
   237     void first(Edge& i) const { 
   238       Parent::first(i); 
   239       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   240     }
   241     void firstIn(Edge& i, const Node& n) const { 
   242       Parent::firstIn(i, n); 
   243       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   244     }
   245     void firstOut(Edge& i, const Node& n) const { 
   246       Parent::firstOut(i, n); 
   247       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   248     }
   249 
   250     void next(Node& i) const { 
   251       Parent::next(i); 
   252       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   253     }
   254     void next(Edge& i) const { 
   255       Parent::next(i); 
   256       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   257     }
   258     void nextIn(Edge& i) const { 
   259       Parent::nextIn(i); 
   260       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   261     }
   262     void nextOut(Edge& i) const { 
   263       Parent::nextOut(i); 
   264       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   265     }
   266 
   267     /// This function hides \c n in the graph, i.e. the iteration 
   268     /// jumps over it. This is done by simply setting the value of \c n  
   269     /// to be false in the corresponding node-map.
   270     void hide(const Node& n) const { node_filter_map->set(n, false); }
   271 
   272     /// This function hides \c e in the graph, i.e. the iteration 
   273     /// jumps over it. This is done by simply setting the value of \c e  
   274     /// to be false in the corresponding edge-map.
   275     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   276 
   277     /// The value of \c n is set to be true in the node-map which stores 
   278     /// hide information. If \c n was hidden previuosly, then it is shown 
   279     /// again
   280      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   281 
   282     /// The value of \c e is set to be true in the edge-map which stores 
   283     /// hide information. If \c e was hidden previuosly, then it is shown 
   284     /// again
   285     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   286 
   287     /// Returns true if \c n is hidden.
   288     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   289 
   290     /// Returns true if \c n is hidden.
   291     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   292 
   293     /// \warning This is a linear time operation and works only if s
   294     /// \c Graph::NodeIt is defined.
   295     /// \todo assign tags.
   296     int nodeNum() const { 
   297       int i=0;
   298       Node n;
   299       for (first(n); n!=INVALID; next(n)) ++i;
   300       return i; 
   301     }
   302 
   303     /// \warning This is a linear time operation and works only if 
   304     /// \c Graph::EdgeIt is defined.
   305     /// \todo assign tags.
   306     int edgeNum() const { 
   307       int i=0;
   308       Edge e;
   309       for (first(e); e!=INVALID; next(e)) ++i;
   310       return i; 
   311     }
   312 
   313 
   314   };
   315 
   316   /*! \brief A graph wrapper for hiding nodes and edges from a graph.
   317     
   318   \warning Graph wrappers are in even more experimental state than the other
   319   parts of the lib. Use them at you own risk.
   320   
   321   SubGraphWrapper shows the graph with filtered node-set and 
   322   edge-set. 
   323   Let \f$G=(V, A)\f$ be a directed graph 
   324   and suppose that the graph instance \c g of type ListGraph implements 
   325   \f$G\f$. 
   326   Let moreover \f$b_V\f$ and 
   327   \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
   328   SubGraphWrapper<...>::NodeIt iterates 
   329   on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
   330   SubGraphWrapper<...>::EdgeIt iterates 
   331   on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
   332   SubGraphWrapper<...>::OutEdgeIt and SubGraphWrapper<...>::InEdgeIt iterates 
   333   only on edges leaving and entering a specific node which have true value.
   334 
   335   We have to note that this does not mean that an 
   336   induced subgraph is obtained, the node-iterator cares only the filter 
   337   on the node-set, and the edge-iterators care only the filter on the 
   338   edge-set. 
   339   \code
   340   typedef ListGraph Graph;
   341   Graph g;
   342   typedef Graph::Node Node;
   343   typedef Graph::Edge Edge;
   344   Node u=g.addNode(); //node of id 0
   345   Node v=g.addNode(); //node of id 1
   346   Node e=g.addEdge(u, v); //edge of id 0
   347   Node f=g.addEdge(v, u); //edge of id 1
   348   Graph::NodeMap<bool> nm(g, true);
   349   nm.set(u, false);
   350   Graph::EdgeMap<bool> em(g, true);
   351   em.set(e, false);
   352   typedef SubGraphWrapper<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   353   SubGW gw(g, nm, em);
   354   for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   355   std::cout << ":-)" << std::endl;
   356   for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   357   \endcode
   358   The output of the above code is the following.
   359   \code
   360   1
   361   :-)
   362   1
   363   \endcode
   364   Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   365   \c Graph::Node that is why \c g.id(n) can be applied.
   366 
   367   For other examples see also the documentation of NodeSubGraphWrapper and 
   368   EdgeSubGraphWrapper.
   369 
   370   \author Marton Makai
   371   */
   372   template<typename _Graph, typename NodeFilterMap, 
   373 	   typename EdgeFilterMap>
   374   class SubGraphWrapper : 
   375     public IterableGraphExtender<
   376     SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > {
   377   public:
   378     typedef _Graph Graph;
   379     typedef IterableGraphExtender<
   380       SubGraphWrapperBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   381   protected:
   382     SubGraphWrapper() { }
   383   public:
   384     SubGraphWrapper(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   385 		    EdgeFilterMap& _edge_filter_map) { 
   386       setGraph(_graph);
   387       setNodeFilterMap(_node_filter_map);
   388       setEdgeFilterMap(_edge_filter_map);
   389     }
   390   };
   391 
   392 
   393 
   394   /*! \brief A wrapper for hiding nodes from a graph.
   395 
   396   \warning Graph wrappers are in even more experimental state than the other
   397   parts of the lib. Use them at you own risk.
   398   
   399   A wrapper for hiding nodes from a graph.
   400   This wrapper specializes SubGraphWrapper in the way that only the node-set 
   401   can be filtered. Note that this does not mean of considering induced 
   402   subgraph, the edge-iterators consider the original edge-set.
   403   \author Marton Makai
   404   */
   405   template<typename Graph, typename NodeFilterMap>
   406   class NodeSubGraphWrapper : 
   407     public SubGraphWrapper<Graph, NodeFilterMap, 
   408 			   ConstMap<typename Graph::Edge,bool> > {
   409   public:
   410     typedef SubGraphWrapper<Graph, NodeFilterMap, 
   411 			    ConstMap<typename Graph::Edge,bool> > Parent;
   412   protected:
   413     ConstMap<typename Graph::Edge, bool> const_true_map;
   414   public:
   415     NodeSubGraphWrapper(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   416       Parent(), const_true_map(true) { 
   417       Parent::setGraph(_graph);
   418       Parent::setNodeFilterMap(_node_filter_map);
   419       Parent::setEdgeFilterMap(const_true_map);
   420     }
   421   };
   422 
   423 
   424   /*! \brief A wrapper for hiding edges from a graph.
   425 
   426   \warning Graph wrappers are in even more experimental state than the other
   427   parts of the lib. Use them at you own risk.
   428   
   429   A wrapper for hiding edges from a graph.
   430   This wrapper specializes SubGraphWrapper in the way that only the edge-set 
   431   can be filtered. The usefulness of this wrapper is demonstrated in the 
   432   problem of searching a maximum number of edge-disjoint shortest paths 
   433   between 
   434   two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   435   non-negative edge-lengths. Note that 
   436   the comprehension of the presented solution 
   437   need's some elementary knowledge from combinatorial optimization. 
   438 
   439   If a single shortest path is to be 
   440   searched between \c s and \c t, then this can be done easily by 
   441   applying the Dijkstra algorithm. What happens, if a maximum number of 
   442   edge-disjoint shortest paths is to be computed. It can be proved that an 
   443   edge can be in a shortest path if and only if it is tight with respect to 
   444   the potential function computed by Dijkstra. Moreover, any path containing 
   445   only such edges is a shortest one. Thus we have to compute a maximum number 
   446   of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
   447   all the tight edges. The computation will be demonstrated on the following 
   448   graph, which is read from a dimacs file.
   449   
   450   \dot
   451   digraph lemon_dot_example {
   452   node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   453   n0 [ label="0 (s)" ];
   454   n1 [ label="1" ];
   455   n2 [ label="2" ];
   456   n3 [ label="3" ];
   457   n4 [ label="4" ];
   458   n5 [ label="5" ];
   459   n6 [ label="6 (t)" ];
   460   edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   461   n5 ->  n6 [ label="9, length:4" ];
   462   n4 ->  n6 [ label="8, length:2" ];
   463   n3 ->  n5 [ label="7, length:1" ];
   464   n2 ->  n5 [ label="6, length:3" ];
   465   n2 ->  n6 [ label="5, length:5" ];
   466   n2 ->  n4 [ label="4, length:2" ];
   467   n1 ->  n4 [ label="3, length:3" ];
   468   n0 ->  n3 [ label="2, length:1" ];
   469   n0 ->  n2 [ label="1, length:2" ];
   470   n0 ->  n1 [ label="0, length:3" ];
   471   }
   472   \enddot
   473 
   474   \code
   475   Graph g;
   476   Node s, t;
   477   LengthMap length(g);
   478 
   479   readDimacs(std::cin, g, length, s, t);
   480 
   481   cout << "edges with lengths (of form id, source--length->target): " << endl;
   482   for(EdgeIt e(g); e!=INVALID; ++e) 
   483     cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   484          << length[e] << "->" << g.id(g.target(e)) << endl;
   485 
   486   cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   487   \endcode
   488   Next, the potential function is computed with Dijkstra.
   489   \code
   490   typedef Dijkstra<Graph, LengthMap> Dijkstra;
   491   Dijkstra dijkstra(g, length);
   492   dijkstra.run(s);
   493   \endcode
   494   Next, we consrtruct a map which filters the edge-set to the tight edges.
   495   \code
   496   typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   497     TightEdgeFilter;
   498   TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   499   
   500   typedef EdgeSubGraphWrapper<Graph, TightEdgeFilter> SubGW;
   501   SubGW gw(g, tight_edge_filter);
   502   \endcode
   503   Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   504   with a max flow algorithm Preflow.
   505   \code
   506   ConstMap<Edge, int> const_1_map(1);
   507   Graph::EdgeMap<int> flow(g, 0);
   508 
   509   Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   510     preflow(gw, s, t, const_1_map, flow);
   511   preflow.run();
   512   \endcode
   513   Last, the output is:
   514   \code  
   515   cout << "maximum number of edge-disjoint shortest path: " 
   516        << preflow.flowValue() << endl;
   517   cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   518        << endl;
   519   for(EdgeIt e(g); e!=INVALID; ++e) 
   520     if (flow[e])
   521       cout << " " << g.id(g.source(e)) << "--" 
   522 	   << length[e] << "->" << g.id(g.target(e)) << endl;
   523   \endcode
   524   The program has the following (expected :-)) output:
   525   \code
   526   edges with lengths (of form id, source--length->target):
   527    9, 5--4->6
   528    8, 4--2->6
   529    7, 3--1->5
   530    6, 2--3->5
   531    5, 2--5->6
   532    4, 2--2->4
   533    3, 1--3->4
   534    2, 0--1->3
   535    1, 0--2->2
   536    0, 0--3->1
   537   s: 0 t: 6
   538   maximum number of edge-disjoint shortest path: 2
   539   edges of the maximum number of edge-disjoint shortest s-t paths:
   540    9, 5--4->6
   541    8, 4--2->6
   542    7, 3--1->5
   543    4, 2--2->4
   544    2, 0--1->3
   545    1, 0--2->2
   546   \endcode
   547 
   548   \author Marton Makai
   549   */
   550   template<typename Graph, typename EdgeFilterMap>
   551   class EdgeSubGraphWrapper : 
   552     public SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
   553 			   EdgeFilterMap> {
   554   public:
   555     typedef SubGraphWrapper<Graph, ConstMap<typename Graph::Node,bool>, 
   556 			    EdgeFilterMap> Parent;
   557   protected:
   558     ConstMap<typename Graph::Node, bool> const_true_map;
   559   public:
   560     EdgeSubGraphWrapper(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   561       Parent(), const_true_map(true) { 
   562       Parent::setGraph(_graph);
   563       Parent::setNodeFilterMap(const_true_map);
   564       Parent::setEdgeFilterMap(_edge_filter_map);
   565     }
   566   };
   567 
   568 
   569   template<typename Graph>
   570   class UndirGraphWrapper : public GraphWrapper<Graph> {
   571   public:
   572     typedef GraphWrapper<Graph> Parent; 
   573   protected:
   574     UndirGraphWrapper() : GraphWrapper<Graph>() { }
   575     
   576   public:
   577     typedef typename GraphWrapper<Graph>::Node Node;
   578     typedef typename GraphWrapper<Graph>::NodeIt NodeIt;
   579     typedef typename GraphWrapper<Graph>::Edge Edge;
   580     typedef typename GraphWrapper<Graph>::EdgeIt EdgeIt;
   581 
   582     UndirGraphWrapper(Graph& _graph) : GraphWrapper<Graph>(_graph) { }  
   583 
   584     class OutEdgeIt {
   585       friend class UndirGraphWrapper<Graph>;
   586       bool out_or_in; //true iff out
   587       typename Graph::OutEdgeIt out;
   588       typename Graph::InEdgeIt in;
   589     public:
   590       OutEdgeIt() { }
   591       OutEdgeIt(const Invalid& i) : Edge(i) { }
   592       OutEdgeIt(const UndirGraphWrapper<Graph>& _G, const Node& _n) {
   593 	out_or_in=true; _G.graph->first(out, _n);
   594 	if (!(_G.graph->valid(out))) { out_or_in=false; _G.graph->first(in, _n);	}
   595       } 
   596       operator Edge() const { 
   597 	if (out_or_in) return Edge(out); else return Edge(in); 
   598       }
   599     };
   600 
   601     typedef OutEdgeIt InEdgeIt; 
   602 
   603     using GraphWrapper<Graph>::first;
   604     OutEdgeIt& first(OutEdgeIt& i, const Node& p) const { 
   605       i=OutEdgeIt(*this, p); return i;
   606     }
   607 
   608     using GraphWrapper<Graph>::next;
   609 
   610     OutEdgeIt& next(OutEdgeIt& e) const {
   611       if (e.out_or_in) {
   612 	typename Graph::Node n=this->graph->source(e.out);
   613 	this->graph->next(e.out);
   614 	if (!this->graph->valid(e.out)) { 
   615 	  e.out_or_in=false; this->graph->first(e.in, n); }
   616       } else {
   617 	this->graph->next(e.in);
   618       }
   619       return e;
   620     }
   621 
   622     Node aNode(const OutEdgeIt& e) const { 
   623       if (e.out_or_in) return this->graph->source(e); else 
   624 	return this->graph->target(e); }
   625     Node bNode(const OutEdgeIt& e) const { 
   626       if (e.out_or_in) return this->graph->target(e); else 
   627 	return this->graph->source(e); }
   628 
   629     //    KEEP_MAPS(Parent, UndirGraphWrapper);
   630 
   631   };
   632   
   633 //   /// \brief An undirected graph template.
   634 //   ///
   635 //   ///\warning Graph wrappers are in even more experimental state than the other
   636 //   ///parts of the lib. Use them at your own risk.
   637 //   ///
   638 //   /// An undirected graph template.
   639 //   /// This class works as an undirected graph and a directed graph of 
   640 //   /// class \c Graph is used for the physical storage.
   641 //   /// \ingroup graphs
   642   template<typename Graph>
   643   class UndirGraph : public UndirGraphWrapper<Graph> {
   644     typedef UndirGraphWrapper<Graph> Parent;
   645   protected:
   646     Graph gr;
   647   public:
   648     UndirGraph() : UndirGraphWrapper<Graph>() { 
   649       Parent::setGraph(gr); 
   650     }
   651 
   652     //    KEEP_MAPS(Parent, UndirGraph);
   653   };
   654 
   655   
   656   template <typename _Graph, 
   657 	    typename ForwardFilterMap, typename BackwardFilterMap>
   658   class SubBidirGraphWrapperBase : public GraphWrapperBase<_Graph> {
   659   public:
   660     typedef _Graph Graph;
   661     typedef GraphWrapperBase<_Graph> Parent;
   662   protected:
   663     ForwardFilterMap* forward_filter;
   664     BackwardFilterMap* backward_filter;
   665     SubBidirGraphWrapperBase() : Parent(), 
   666 				 forward_filter(0), backward_filter(0) { }
   667 
   668     void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
   669       forward_filter=&_forward_filter;
   670     }
   671     void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
   672       backward_filter=&_backward_filter;
   673     }
   674 
   675   public:
   676 //     SubGraphWrapperBase(Graph& _graph, 
   677 // 			NodeFilterMap& _node_filter_map, 
   678 // 			EdgeFilterMap& _edge_filter_map) : 
   679 //       Parent(&_graph), 
   680 //       node_filter_map(&node_filter_map), 
   681 //       edge_filter_map(&edge_filter_map) { }
   682 
   683     typedef typename Parent::Node Node;
   684     typedef typename _Graph::Edge GraphEdge;
   685     template <typename T> class EdgeMap;
   686     /// SubBidirGraphWrapperBase<..., ..., ...>::Edge is inherited from 
   687     /// _Graph::Edge. It contains an extra bool flag which is true 
   688     /// if and only if the 
   689     /// edge is the backward version of the original edge.
   690     class Edge : public _Graph::Edge {
   691       friend class SubBidirGraphWrapperBase<
   692 	Graph, ForwardFilterMap, BackwardFilterMap>;
   693       template<typename T> friend class EdgeMap;
   694     protected:
   695       bool backward; //true, iff backward
   696     public:
   697       Edge() { }
   698       /// \todo =false is needed, or causes problems?
   699       /// If \c _backward is false, then we get an edge corresponding to the 
   700       /// original one, otherwise its oppositely directed pair is obtained.
   701       Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
   702 	_Graph::Edge(e), backward(_backward) { }
   703       Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
   704       bool operator==(const Edge& v) const { 
   705 	return (this->backward==v.backward && 
   706 		static_cast<typename _Graph::Edge>(*this)==
   707 		static_cast<typename _Graph::Edge>(v));
   708       } 
   709       bool operator!=(const Edge& v) const { 
   710 	return (this->backward!=v.backward || 
   711 		static_cast<typename _Graph::Edge>(*this)!=
   712 		static_cast<typename _Graph::Edge>(v));
   713       }
   714     };
   715 
   716     void first(Node& i) const { 
   717       Parent::first(i); 
   718     }
   719 
   720     void first(Edge& i) const { 
   721       Parent::first(i); 
   722       i.backward=false;
   723       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   724 	     !(*forward_filter)[i]) Parent::next(i);
   725       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   726 	Parent::first(i); 
   727 	i.backward=true;
   728 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   729 	       !(*backward_filter)[i]) Parent::next(i);
   730       }
   731     }
   732 
   733     void firstIn(Edge& i, const Node& n) const { 
   734       Parent::firstIn(i, n); 
   735       i.backward=false;
   736       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   737 	     !(*forward_filter)[i]) Parent::nextIn(i);
   738       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   739 	Parent::firstOut(i, n); 
   740 	i.backward=true;
   741 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   742 	       !(*backward_filter)[i]) Parent::nextOut(i);
   743       }
   744     }
   745 
   746     void firstOut(Edge& i, const Node& n) const { 
   747       Parent::firstOut(i, n); 
   748       i.backward=false;
   749       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   750 	     !(*forward_filter)[i]) Parent::nextOut(i);
   751       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   752 	Parent::firstIn(i, n); 
   753 	i.backward=true;
   754 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   755 	       !(*backward_filter)[i]) Parent::nextIn(i);
   756       }
   757     }
   758 
   759     void next(Node& i) const { 
   760       Parent::next(i); 
   761     }
   762 
   763     void next(Edge& i) const { 
   764       if (!(i.backward)) {
   765 	Parent::next(i);
   766 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   767 	       !(*forward_filter)[i]) Parent::next(i);
   768 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   769 	  Parent::first(i); 
   770 	  i.backward=true;
   771 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   772 		 !(*backward_filter)[i]) Parent::next(i);
   773 	}
   774       } else {
   775 	Parent::next(i);
   776 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   777 	       !(*backward_filter)[i]) Parent::next(i);
   778       }
   779     }
   780 
   781     void nextIn(Edge& i) const { 
   782       if (!(i.backward)) {
   783 	Node n=Parent::target(i);
   784 	Parent::nextIn(i);
   785 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   786 	       !(*forward_filter)[i]) Parent::nextIn(i);
   787 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   788 	  Parent::firstOut(i, n); 
   789 	  i.backward=true;
   790 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   791 		 !(*backward_filter)[i]) Parent::nextOut(i);
   792 	}
   793       } else {
   794 	Parent::nextOut(i);
   795 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   796 	       !(*backward_filter)[i]) Parent::nextOut(i);
   797       }
   798     }
   799 
   800     void nextOut(Edge& i) const { 
   801       if (!(i.backward)) {
   802 	Node n=Parent::source(i);
   803 	Parent::nextOut(i);
   804 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   805 	       !(*forward_filter)[i]) Parent::nextOut(i);
   806 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   807 	  Parent::firstIn(i, n); 
   808 	  i.backward=true;
   809 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   810 		 !(*backward_filter)[i]) Parent::nextIn(i);
   811 	}
   812       } else {
   813 	Parent::nextIn(i);
   814 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   815 	       !(*backward_filter)[i]) Parent::nextIn(i);
   816       }
   817     }
   818 
   819     Node source(Edge e) const { 
   820       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   821     Node target(Edge e) const { 
   822       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   823 
   824     /// Gives back the opposite edge.
   825     Edge opposite(const Edge& e) const { 
   826       Edge f=e;
   827       f.backward=!f.backward;
   828       return f;
   829     }
   830 
   831     /// \warning This is a linear time operation and works only if 
   832     /// \c Graph::EdgeIt is defined.
   833     /// \todo hmm
   834     int edgeNum() const { 
   835       int i=0;
   836       Edge e;
   837       for (first(e); e!=INVALID; next(e)) ++i;
   838       return i; 
   839     }
   840 
   841     bool forward(const Edge& e) const { return !e.backward; }
   842     bool backward(const Edge& e) const { return e.backward; }
   843 
   844     template <typename T>
   845     /// \c SubBidirGraphWrapperBase<..., ..., ...>::EdgeMap contains two 
   846     /// _Graph::EdgeMap one for the forward edges and 
   847     /// one for the backward edges.
   848     class EdgeMap {
   849       template <typename TT> friend class EdgeMap;
   850       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   851     public:
   852       typedef T Value;
   853       typedef Edge Key;
   854 
   855       EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
   856 	      ForwardFilterMap, BackwardFilterMap>& g) : 
   857 	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
   858 
   859       EdgeMap(const SubBidirGraphWrapperBase<_Graph, 
   860 	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
   861 	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
   862       
   863       void set(Edge e, T a) { 
   864 	if (!e.backward) 
   865 	  forward_map.set(e, a); 
   866 	else 
   867 	  backward_map.set(e, a); 
   868       }
   869 
   870 //       typename _Graph::template EdgeMap<T>::ConstReference 
   871 //       operator[](Edge e) const { 
   872 // 	if (!e.backward) 
   873 // 	  return forward_map[e]; 
   874 // 	else 
   875 // 	  return backward_map[e]; 
   876 //       }
   877 
   878 //      typename _Graph::template EdgeMap<T>::Reference 
   879       T operator[](Edge e) const { 
   880 	if (!e.backward) 
   881 	  return forward_map[e]; 
   882 	else 
   883 	  return backward_map[e]; 
   884       }
   885 
   886       void update() { 
   887 	forward_map.update(); 
   888 	backward_map.update();
   889       }
   890     };
   891 
   892   };
   893 
   894 
   895   ///\brief A wrapper for composing a subgraph of a 
   896   /// bidirected graph made from a directed one. 
   897   ///
   898   /// A wrapper for composing a subgraph of a 
   899   /// bidirected graph made from a directed one. 
   900   ///
   901   ///\warning Graph wrappers are in even more experimental state than the other
   902   ///parts of the lib. Use them at you own risk.
   903   ///
   904   /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
   905   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
   906   /// reversing its orientation. We are given moreover two bool valued 
   907   /// maps on the edge-set, 
   908   /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
   909   /// SubBidirGraphWrapper implements the graph structure with node-set 
   910   /// \f$V\f$ and edge-set 
   911   /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
   912   /// The purpose of writing + instead of union is because parallel 
   913   /// edges can arise. (Similarly, antiparallel edges also can arise).
   914   /// In other words, a subgraph of the bidirected graph obtained, which 
   915   /// is given by orienting the edges of the original graph in both directions.
   916   /// As the oppositely directed edges are logically different, 
   917   /// the maps are able to attach different values for them. 
   918   ///
   919   /// An example for such a construction is \c RevGraphWrapper where the 
   920   /// forward_filter is everywhere false and the backward_filter is 
   921   /// everywhere true. We note that for sake of efficiency, 
   922   /// \c RevGraphWrapper is implemented in a different way. 
   923   /// But BidirGraphWrapper is obtained from 
   924   /// SubBidirGraphWrapper by considering everywhere true 
   925   /// valued maps both for forward_filter and backward_filter. 
   926   ///
   927   /// The most important application of SubBidirGraphWrapper 
   928   /// is ResGraphWrapper, which stands for the residual graph in directed 
   929   /// flow and circulation problems. 
   930   /// As wrappers usually, the SubBidirGraphWrapper implements the 
   931   /// above mentioned graph structure without its physical storage, 
   932   /// that is the whole stuff is stored in constant memory. 
   933   template<typename _Graph, 
   934 	   typename ForwardFilterMap, typename BackwardFilterMap>
   935   class SubBidirGraphWrapper : 
   936     public IterableGraphExtender<
   937     SubBidirGraphWrapperBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
   938   public:
   939     typedef _Graph Graph;
   940     typedef IterableGraphExtender<
   941       SubBidirGraphWrapperBase<
   942       _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
   943   protected:
   944     SubBidirGraphWrapper() { }
   945   public:
   946     SubBidirGraphWrapper(_Graph& _graph, ForwardFilterMap& _forward_filter, 
   947 			 BackwardFilterMap& _backward_filter) { 
   948       setGraph(_graph);
   949       setForwardFilterMap(_forward_filter);
   950       setBackwardFilterMap(_backward_filter);
   951     }
   952   };
   953 
   954 
   955 
   956   ///\brief A wrapper for composing bidirected graph from a directed one. 
   957   ///
   958   ///\warning Graph wrappers are in even more experimental state than the other
   959   ///parts of the lib. Use them at you own risk.
   960   ///
   961   /// A wrapper for composing bidirected graph from a directed one. 
   962   /// A bidirected graph is composed over the directed one without physical 
   963   /// storage. As the oppositely directed edges are logically different ones 
   964   /// the maps are able to attach different values for them.
   965   template<typename Graph>
   966   class BidirGraphWrapper : 
   967     public SubBidirGraphWrapper<
   968     Graph, 
   969     ConstMap<typename Graph::Edge, bool>, 
   970     ConstMap<typename Graph::Edge, bool> > {
   971   public:
   972     typedef  SubBidirGraphWrapper<
   973       Graph, 
   974       ConstMap<typename Graph::Edge, bool>, 
   975       ConstMap<typename Graph::Edge, bool> > Parent; 
   976   protected:
   977     ConstMap<typename Graph::Edge, bool> cm;
   978 
   979     BidirGraphWrapper() : Parent(), cm(true) { 
   980       Parent::setForwardFilterMap(cm);
   981       Parent::setBackwardFilterMap(cm);
   982     }
   983   public:
   984     BidirGraphWrapper(Graph& _graph) : Parent(), cm(true) { 
   985       Parent::setGraph(_graph);
   986       Parent::setForwardFilterMap(cm);
   987       Parent::setBackwardFilterMap(cm);
   988     }
   989 
   990     int edgeNum() const { 
   991       return 2*this->graph->edgeNum();
   992     }
   993     //    KEEP_MAPS(Parent, BidirGraphWrapper);
   994   };
   995 
   996 
   997   template<typename Graph, typename Number,
   998 	   typename CapacityMap, typename FlowMap>
   999   class ResForwardFilter {
  1000     //    const Graph* graph;
  1001     const CapacityMap* capacity;
  1002     const FlowMap* flow;
  1003   public:
  1004     ResForwardFilter(/*const Graph& _graph, */
  1005 		     const CapacityMap& _capacity, const FlowMap& _flow) :
  1006       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1007     ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1008     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1009     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1010     bool operator[](const typename Graph::Edge& e) const {
  1011       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1012     }
  1013   };
  1014 
  1015   template<typename Graph, typename Number,
  1016 	   typename CapacityMap, typename FlowMap>
  1017   class ResBackwardFilter {
  1018     const CapacityMap* capacity;
  1019     const FlowMap* flow;
  1020   public:
  1021     ResBackwardFilter(/*const Graph& _graph,*/ 
  1022 		      const CapacityMap& _capacity, const FlowMap& _flow) :
  1023       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1024     ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1025     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1026     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1027     bool operator[](const typename Graph::Edge& e) const {
  1028       return (Number(0) < Number((*flow)[e]));
  1029     }
  1030   };
  1031 
  1032   
  1033   /*! \brief A wrapper for composing the residual graph for directed flow and circulation problems.
  1034 
  1035   A wrapper for composing the residual graph for directed flow and circulation problems. 
  1036   Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
  1037   number type. Let moreover 
  1038   \f$f,c:A\to F\f$, be functions on the edge-set. 
  1039   In the appications of ResGraphWrapper, \f$f\f$ usually stands for a flow 
  1040   and \f$c\f$ for a capacity function.   
  1041   Suppose that a graph instange \c g of type 
  1042   \c ListGraph implements \f$G\f$.
  1043   \code
  1044   ListGraph g;
  1045   \endcode
  1046   Then RevGraphWrapper implements the graph structure with node-set 
  1047   \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
  1048   \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
  1049   \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
  1050   i.e. the so called residual graph. 
  1051   When we take the union \f$A_{forward}\cup A_{backward}\f$, 
  1052   multilicities are counted, i.e. if an edge is in both 
  1053   \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the wrapper it 
  1054   appears twice. 
  1055   The following code shows how 
  1056   such an instance can be constructed.
  1057   \code
  1058   typedef ListGraph Graph;
  1059   Graph::EdgeMap<int> f(g);
  1060   Graph::EdgeMap<int> c(g);
  1061   ResGraphWrapper<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
  1062   \endcode
  1063   \author Marton Makai
  1064   */
  1065   template<typename Graph, typename Number, 
  1066 	   typename CapacityMap, typename FlowMap>
  1067   class ResGraphWrapper : 
  1068     public SubBidirGraphWrapper< 
  1069     Graph, 
  1070     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1071     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
  1072   public:
  1073     typedef SubBidirGraphWrapper< 
  1074       Graph, 
  1075       ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1076       ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
  1077   protected:
  1078     const CapacityMap* capacity;
  1079     FlowMap* flow;
  1080     ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
  1081     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
  1082     ResGraphWrapper() : Parent(), 
  1083  			capacity(0), flow(0) { }
  1084     void setCapacityMap(const CapacityMap& _capacity) {
  1085       capacity=&_capacity;
  1086       forward_filter.setCapacity(_capacity);
  1087       backward_filter.setCapacity(_capacity);
  1088     }
  1089     void setFlowMap(FlowMap& _flow) {
  1090       flow=&_flow;
  1091       forward_filter.setFlow(_flow);
  1092       backward_filter.setFlow(_flow);
  1093     }
  1094   public:
  1095     ResGraphWrapper(Graph& _graph, const CapacityMap& _capacity, 
  1096 		       FlowMap& _flow) : 
  1097       Parent(), capacity(&_capacity), flow(&_flow), 
  1098       forward_filter(/*_graph,*/ _capacity, _flow), 
  1099       backward_filter(/*_graph,*/ _capacity, _flow) {
  1100       Parent::setGraph(_graph);
  1101       Parent::setForwardFilterMap(forward_filter);
  1102       Parent::setBackwardFilterMap(backward_filter);
  1103     }
  1104 
  1105     typedef typename Parent::Edge Edge;
  1106 
  1107     void augment(const Edge& e, Number a) const {
  1108       if (Parent::forward(e))  
  1109 	flow->set(e, (*flow)[e]+a);
  1110       else  
  1111 	flow->set(e, (*flow)[e]-a);
  1112     }
  1113 
  1114     /// \brief Residual capacity map.
  1115     ///
  1116     /// In generic residual graphs the residual capacity can be obtained 
  1117     /// as a map. 
  1118     class ResCap {
  1119     protected:
  1120       const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1121     public:
  1122       typedef Number Value;
  1123       typedef Edge Key;
  1124       ResCap(const ResGraphWrapper<Graph, Number, CapacityMap, FlowMap>& 
  1125 	     _res_graph) : res_graph(&_res_graph) { }
  1126       Number operator[](const Edge& e) const { 
  1127 	if (res_graph->forward(e)) 
  1128 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1129 	else 
  1130 	  return (*(res_graph->flow))[e]; 
  1131       }
  1132     };
  1133 
  1134     //    KEEP_MAPS(Parent, ResGraphWrapper);
  1135   };
  1136 
  1137 
  1138 
  1139   template <typename _Graph, typename FirstOutEdgesMap>
  1140   class ErasingFirstGraphWrapperBase : public GraphWrapperBase<_Graph> {
  1141   public:
  1142     typedef _Graph Graph;
  1143     typedef GraphWrapperBase<_Graph> Parent;
  1144   protected:
  1145     FirstOutEdgesMap* first_out_edges;
  1146     ErasingFirstGraphWrapperBase() : Parent(), 
  1147 				     first_out_edges(0) { }
  1148 
  1149     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1150       first_out_edges=&_first_out_edges;
  1151     }
  1152 
  1153   public:
  1154 
  1155     typedef typename Parent::Node Node;
  1156     typedef typename Parent::Edge Edge;
  1157 
  1158     void firstOut(Edge& i, const Node& n) const { 
  1159       i=(*first_out_edges)[n];
  1160     }
  1161 
  1162     void erase(const Edge& e) const {
  1163       Node n=source(e);
  1164       Edge f=e;
  1165       Parent::nextOut(f);
  1166       first_out_edges->set(n, f);
  1167     }    
  1168   };
  1169 
  1170 
  1171   /// For blocking flows.
  1172 
  1173   ///\warning Graph wrappers are in even more experimental state than the other
  1174   ///parts of the lib. Use them at you own risk.
  1175   ///
  1176   /// This graph wrapper is used for on-the-fly 
  1177   /// Dinits blocking flow computations.
  1178   /// For each node, an out-edge is stored which is used when the 
  1179   /// \code 
  1180   /// OutEdgeIt& first(OutEdgeIt&, const Node&)
  1181   /// \endcode
  1182   /// is called. 
  1183   ///
  1184   /// \author Marton Makai
  1185   template <typename _Graph, typename FirstOutEdgesMap>
  1186   class ErasingFirstGraphWrapper : 
  1187     public IterableGraphExtender<
  1188     ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > {
  1189   public:
  1190     typedef _Graph Graph;
  1191     typedef IterableGraphExtender<
  1192       ErasingFirstGraphWrapperBase<_Graph, FirstOutEdgesMap> > Parent;
  1193     ErasingFirstGraphWrapper(Graph& _graph, 
  1194 			     FirstOutEdgesMap& _first_out_edges) { 
  1195       setGraph(_graph);
  1196       setFirstOutEdgesMap(_first_out_edges);
  1197     } 
  1198 
  1199   };
  1200 
  1201   ///@}
  1202 
  1203 } //namespace lemon
  1204 
  1205 #endif //LEMON_GRAPH_WRAPPER_H
  1206