lemon/cost_scaling.h
author ladanyi
Sun, 02 Mar 2008 22:55:27 +0000
changeset 2592 f1fb0c31f952
parent 2581 054566ac0934
child 2620 8f41a3129746
permissions -rw-r--r--
Revert to long long int since currently I don't know a better solution.
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    26 
    27 #include <deque>
    28 #include <lemon/graph_adaptor.h>
    29 #include <lemon/graph_utils.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/math.h>
    32 
    33 #include <lemon/circulation.h>
    34 #include <lemon/bellman_ford.h>
    35 
    36 namespace lemon {
    37 
    38   /// \addtogroup min_cost_flow
    39   /// @{
    40 
    41   /// \brief Implementation of the cost scaling algorithm for finding a
    42   /// minimum cost flow.
    43   ///
    44   /// \ref CostScaling implements the cost scaling algorithm performing
    45   /// generalized push-relabel operations for finding a minimum cost
    46   /// flow.
    47   ///
    48   /// \tparam Graph The directed graph type the algorithm runs on.
    49   /// \tparam LowerMap The type of the lower bound map.
    50   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    51   /// \tparam CostMap The type of the cost (length) map.
    52   /// \tparam SupplyMap The type of the supply map.
    53   ///
    54   /// \warning
    55   /// - Edge capacities and costs should be \e non-negative \e integers.
    56   /// - Supply values should be \e signed \e integers.
    57   /// - The value types of the maps should be convertible to each other.
    58   /// - \c CostMap::Value must be signed type.
    59   ///
    60   /// \note Edge costs are multiplied with the number of nodes during
    61   /// the algorithm so overflow problems may arise more easily than with
    62   /// other minimum cost flow algorithms.
    63   /// If it is available, <tt>long long int</tt> type is used instead of
    64   /// <tt>long int</tt> in the inside computations.
    65   ///
    66   /// \author Peter Kovacs
    67 
    68   template < typename Graph,
    69              typename LowerMap = typename Graph::template EdgeMap<int>,
    70              typename CapacityMap = typename Graph::template EdgeMap<int>,
    71              typename CostMap = typename Graph::template EdgeMap<int>,
    72              typename SupplyMap = typename Graph::template NodeMap<int> >
    73   class CostScaling
    74   {
    75     GRAPH_TYPEDEFS(typename Graph);
    76 
    77     typedef typename CapacityMap::Value Capacity;
    78     typedef typename CostMap::Value Cost;
    79     typedef typename SupplyMap::Value Supply;
    80     typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
    81     typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
    82 
    83     typedef ResGraphAdaptor< const Graph, Capacity,
    84                              CapacityEdgeMap, CapacityEdgeMap > ResGraph;
    85     typedef typename ResGraph::Edge ResEdge;
    86 
    87 #if defined __GNUC__ && !defined __STRICT_ANSI__
    88     typedef long long int LCost;
    89 #else
    90     typedef long int LCost;
    91 #endif
    92     typedef typename Graph::template EdgeMap<LCost> LargeCostMap;
    93 
    94   public:
    95 
    96     /// The type of the flow map.
    97     typedef typename Graph::template EdgeMap<Capacity> FlowMap;
    98     /// The type of the potential map.
    99     typedef typename Graph::template NodeMap<LCost> PotentialMap;
   100 
   101   private:
   102 
   103     /// \brief Map adaptor class for handling residual edge costs.
   104     ///
   105     /// \ref ResidualCostMap is a map adaptor class for handling
   106     /// residual edge costs.
   107     template <typename Map>
   108     class ResidualCostMap : public MapBase<ResEdge, typename Map::Value>
   109     {
   110     private:
   111 
   112       const Map &_cost_map;
   113 
   114     public:
   115 
   116       ///\e
   117       ResidualCostMap(const Map &cost_map) :
   118         _cost_map(cost_map) {}
   119 
   120       ///\e
   121       typename Map::Value operator[](const ResEdge &e) const {
   122         return ResGraph::forward(e) ?  _cost_map[e] : -_cost_map[e];
   123       }
   124 
   125     }; //class ResidualCostMap
   126 
   127     /// \brief Map adaptor class for handling reduced edge costs.
   128     ///
   129     /// \ref ReducedCostMap is a map adaptor class for handling reduced
   130     /// edge costs.
   131     class ReducedCostMap : public MapBase<Edge, LCost>
   132     {
   133     private:
   134 
   135       const Graph &_gr;
   136       const LargeCostMap &_cost_map;
   137       const PotentialMap &_pot_map;
   138 
   139     public:
   140 
   141       ///\e
   142       ReducedCostMap( const Graph &gr,
   143                       const LargeCostMap &cost_map,
   144                       const PotentialMap &pot_map ) :
   145         _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
   146 
   147       ///\e
   148       LCost operator[](const Edge &e) const {
   149         return _cost_map[e] + _pot_map[_gr.source(e)]
   150                             - _pot_map[_gr.target(e)];
   151       }
   152 
   153     }; //class ReducedCostMap
   154 
   155   private:
   156 
   157     // Scaling factor
   158     static const int ALPHA = 4;
   159 
   160     // Paramters for heuristics
   161     static const int BF_HEURISTIC_EPSILON_BOUND = 5000;
   162     static const int BF_HEURISTIC_BOUND_FACTOR  = 3;
   163 
   164   private:
   165 
   166     // The directed graph the algorithm runs on
   167     const Graph &_graph;
   168     // The original lower bound map
   169     const LowerMap *_lower;
   170     // The modified capacity map
   171     CapacityEdgeMap _capacity;
   172     // The original cost map
   173     const CostMap &_orig_cost;
   174     // The scaled cost map
   175     LargeCostMap _cost;
   176     // The modified supply map
   177     SupplyNodeMap _supply;
   178     bool _valid_supply;
   179 
   180     // Edge map of the current flow
   181     FlowMap *_flow;
   182     bool _local_flow;
   183     // Node map of the current potentials
   184     PotentialMap *_potential;
   185     bool _local_potential;
   186 
   187     // The residual graph
   188     ResGraph *_res_graph;
   189     // The residual cost map
   190     ResidualCostMap<LargeCostMap> _res_cost;
   191     // The reduced cost map
   192     ReducedCostMap *_red_cost;
   193     // The excess map
   194     SupplyNodeMap _excess;
   195     // The epsilon parameter used for cost scaling
   196     LCost _epsilon;
   197 
   198   public:
   199 
   200     /// \brief General constructor (with lower bounds).
   201     ///
   202     /// General constructor (with lower bounds).
   203     ///
   204     /// \param graph The directed graph the algorithm runs on.
   205     /// \param lower The lower bounds of the edges.
   206     /// \param capacity The capacities (upper bounds) of the edges.
   207     /// \param cost The cost (length) values of the edges.
   208     /// \param supply The supply values of the nodes (signed).
   209     CostScaling( const Graph &graph,
   210                  const LowerMap &lower,
   211                  const CapacityMap &capacity,
   212                  const CostMap &cost,
   213                  const SupplyMap &supply ) :
   214       _graph(graph), _lower(&lower), _capacity(graph), _orig_cost(cost),
   215       _cost(graph), _supply(graph), _flow(0), _local_flow(false),
   216       _potential(0), _local_potential(false), _res_cost(_cost),
   217       _excess(graph, 0)
   218     {
   219       // Removing non-zero lower bounds
   220       _capacity = subMap(capacity, lower);
   221       Supply sum = 0;
   222       for (NodeIt n(_graph); n != INVALID; ++n) {
   223         Supply s = supply[n];
   224         for (InEdgeIt e(_graph, n); e != INVALID; ++e)
   225           s += lower[e];
   226         for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
   227           s -= lower[e];
   228         _supply[n] = s;
   229         sum += s;
   230       }
   231       _valid_supply = sum == 0;
   232     }
   233 
   234     /// \brief General constructor (without lower bounds).
   235     ///
   236     /// General constructor (without lower bounds).
   237     ///
   238     /// \param graph The directed graph the algorithm runs on.
   239     /// \param capacity The capacities (upper bounds) of the edges.
   240     /// \param cost The cost (length) values of the edges.
   241     /// \param supply The supply values of the nodes (signed).
   242     CostScaling( const Graph &graph,
   243                  const CapacityMap &capacity,
   244                  const CostMap &cost,
   245                  const SupplyMap &supply ) :
   246       _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
   247       _cost(graph), _supply(supply), _flow(0), _local_flow(false),
   248       _potential(0), _local_potential(false), _res_cost(_cost),
   249       _excess(graph, 0)
   250     {
   251       // Checking the sum of supply values
   252       Supply sum = 0;
   253       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   254       _valid_supply = sum == 0;
   255     }
   256 
   257     /// \brief Simple constructor (with lower bounds).
   258     ///
   259     /// Simple constructor (with lower bounds).
   260     ///
   261     /// \param graph The directed graph the algorithm runs on.
   262     /// \param lower The lower bounds of the edges.
   263     /// \param capacity The capacities (upper bounds) of the edges.
   264     /// \param cost The cost (length) values of the edges.
   265     /// \param s The source node.
   266     /// \param t The target node.
   267     /// \param flow_value The required amount of flow from node \c s
   268     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   269     CostScaling( const Graph &graph,
   270                  const LowerMap &lower,
   271                  const CapacityMap &capacity,
   272                  const CostMap &cost,
   273                  Node s, Node t,
   274                  Supply flow_value ) :
   275       _graph(graph), _lower(&lower), _capacity(graph), _orig_cost(cost),
   276       _cost(graph), _supply(graph), _flow(0), _local_flow(false),
   277       _potential(0), _local_potential(false), _res_cost(_cost),
   278       _excess(graph, 0)
   279     {
   280       // Removing nonzero lower bounds
   281       _capacity = subMap(capacity, lower);
   282       for (NodeIt n(_graph); n != INVALID; ++n) {
   283         Supply sum = 0;
   284         if (n == s) sum =  flow_value;
   285         if (n == t) sum = -flow_value;
   286         for (InEdgeIt e(_graph, n); e != INVALID; ++e)
   287           sum += lower[e];
   288         for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
   289           sum -= lower[e];
   290         _supply[n] = sum;
   291       }
   292       _valid_supply = true;
   293     }
   294 
   295     /// \brief Simple constructor (without lower bounds).
   296     ///
   297     /// Simple constructor (without lower bounds).
   298     ///
   299     /// \param graph The directed graph the algorithm runs on.
   300     /// \param capacity The capacities (upper bounds) of the edges.
   301     /// \param cost The cost (length) values of the edges.
   302     /// \param s The source node.
   303     /// \param t The target node.
   304     /// \param flow_value The required amount of flow from node \c s
   305     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   306     CostScaling( const Graph &graph,
   307                  const CapacityMap &capacity,
   308                  const CostMap &cost,
   309                  Node s, Node t,
   310                  Supply flow_value ) :
   311       _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
   312       _cost(graph), _supply(graph, 0), _flow(0), _local_flow(false),
   313       _potential(0), _local_potential(false), _res_cost(_cost),
   314       _excess(graph, 0)
   315     {
   316       _supply[s] =  flow_value;
   317       _supply[t] = -flow_value;
   318       _valid_supply = true;
   319     }
   320 
   321     /// Destructor.
   322     ~CostScaling() {
   323       if (_local_flow) delete _flow;
   324       if (_local_potential) delete _potential;
   325       delete _res_graph;
   326       delete _red_cost;
   327     }
   328 
   329     /// \brief Sets the flow map.
   330     ///
   331     /// Sets the flow map.
   332     ///
   333     /// \return \c (*this)
   334     CostScaling& flowMap(FlowMap &map) {
   335       if (_local_flow) {
   336         delete _flow;
   337         _local_flow = false;
   338       }
   339       _flow = &map;
   340       return *this;
   341     }
   342 
   343     /// \brief Sets the potential map.
   344     ///
   345     /// Sets the potential map.
   346     ///
   347     /// \return \c (*this)
   348     CostScaling& potentialMap(PotentialMap &map) {
   349       if (_local_potential) {
   350         delete _potential;
   351         _local_potential = false;
   352       }
   353       _potential = &map;
   354       return *this;
   355     }
   356 
   357     /// \name Execution control
   358     /// The only way to execute the algorithm is to call the run()
   359     /// function.
   360 
   361     /// @{
   362 
   363     /// \brief Runs the algorithm.
   364     ///
   365     /// Runs the algorithm.
   366     ///
   367     /// \return \c true if a feasible flow can be found.
   368     bool run() {
   369       return init() && start();
   370     }
   371 
   372     /// @}
   373 
   374     /// \name Query Functions
   375     /// The result of the algorithm can be obtained using these
   376     /// functions.
   377     /// \n run() must be called before using them.
   378 
   379     /// @{
   380 
   381     /// \brief Returns a const reference to the edge map storing the
   382     /// found flow.
   383     ///
   384     /// Returns a const reference to the edge map storing the found flow.
   385     ///
   386     /// \pre \ref run() must be called before using this function.
   387     const FlowMap& flowMap() const {
   388       return *_flow;
   389     }
   390 
   391     /// \brief Returns a const reference to the node map storing the
   392     /// found potentials (the dual solution).
   393     ///
   394     /// Returns a const reference to the node map storing the found
   395     /// potentials (the dual solution).
   396     ///
   397     /// \pre \ref run() must be called before using this function.
   398     const PotentialMap& potentialMap() const {
   399       return *_potential;
   400     }
   401 
   402     /// \brief Returns the flow on the given edge.
   403     ///
   404     /// Returns the flow on the given edge.
   405     ///
   406     /// \pre \ref run() must be called before using this function.
   407     Capacity flow(const Edge& edge) const {
   408       return (*_flow)[edge];
   409     }
   410 
   411     /// \brief Returns the potential of the given node.
   412     ///
   413     /// Returns the potential of the given node.
   414     ///
   415     /// \pre \ref run() must be called before using this function.
   416     Cost potential(const Node& node) const {
   417       return (*_potential)[node];
   418     }
   419 
   420     /// \brief Returns the total cost of the found flow.
   421     ///
   422     /// Returns the total cost of the found flow. The complexity of the
   423     /// function is \f$ O(e) \f$.
   424     ///
   425     /// \pre \ref run() must be called before using this function.
   426     Cost totalCost() const {
   427       Cost c = 0;
   428       for (EdgeIt e(_graph); e != INVALID; ++e)
   429         c += (*_flow)[e] * _orig_cost[e];
   430       return c;
   431     }
   432 
   433     /// @}
   434 
   435   private:
   436 
   437     /// Initializes the algorithm.
   438     bool init() {
   439       if (!_valid_supply) return false;
   440 
   441       // Initializing flow and potential maps
   442       if (!_flow) {
   443         _flow = new FlowMap(_graph);
   444         _local_flow = true;
   445       }
   446       if (!_potential) {
   447         _potential = new PotentialMap(_graph);
   448         _local_potential = true;
   449       }
   450 
   451       _red_cost = new ReducedCostMap(_graph, _cost, *_potential);
   452       _res_graph = new ResGraph(_graph, _capacity, *_flow);
   453 
   454       // Initializing the scaled cost map and the epsilon parameter
   455       Cost max_cost = 0;
   456       int node_num = countNodes(_graph);
   457       for (EdgeIt e(_graph); e != INVALID; ++e) {
   458         _cost[e] = LCost(_orig_cost[e]) * node_num * ALPHA;
   459         if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e];
   460       }
   461       _epsilon = max_cost * node_num;
   462 
   463       // Finding a feasible flow using Circulation
   464       Circulation< Graph, ConstMap<Edge, Capacity>, CapacityEdgeMap,
   465                    SupplyMap >
   466         circulation( _graph, constMap<Edge>(Capacity(0)), _capacity,
   467                      _supply );
   468       return circulation.flowMap(*_flow).run();
   469     }
   470 
   471 
   472     /// Executes the algorithm.
   473     bool start() {
   474       std::deque<Node> active_nodes;
   475       typename Graph::template NodeMap<bool> hyper(_graph, false);
   476 
   477       int node_num = countNodes(_graph);
   478       for ( ; _epsilon >= 1; _epsilon = _epsilon < ALPHA && _epsilon > 1 ?
   479                                         1 : _epsilon / ALPHA )
   480       {
   481         // Performing price refinement heuristic using Bellman-Ford
   482         // algorithm
   483         if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
   484           typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap;
   485           ShiftCostMap shift_cost(_res_cost, _epsilon);
   486           BellmanFord<ResGraph, ShiftCostMap> bf(*_res_graph, shift_cost);
   487           bf.init(0);
   488           bool done = false;
   489           int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num));
   490           for (int i = 0; i < K && !done; ++i)
   491             done = bf.processNextWeakRound();
   492           if (done) {
   493             for (NodeIt n(_graph); n != INVALID; ++n)
   494               (*_potential)[n] = bf.dist(n);
   495             continue;
   496           }
   497         }
   498 
   499         // Saturating edges not satisfying the optimality condition
   500         Capacity delta;
   501         for (EdgeIt e(_graph); e != INVALID; ++e) {
   502           if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   503             delta = _capacity[e] - (*_flow)[e];
   504             _excess[_graph.source(e)] -= delta;
   505             _excess[_graph.target(e)] += delta;
   506             (*_flow)[e] = _capacity[e];
   507           }
   508           if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   509             _excess[_graph.target(e)] -= (*_flow)[e];
   510             _excess[_graph.source(e)] += (*_flow)[e];
   511             (*_flow)[e] = 0;
   512           }
   513         }
   514 
   515         // Finding active nodes (i.e. nodes with positive excess)
   516         for (NodeIt n(_graph); n != INVALID; ++n)
   517           if (_excess[n] > 0) active_nodes.push_back(n);
   518 
   519         // Performing push and relabel operations
   520         while (active_nodes.size() > 0) {
   521           Node n = active_nodes[0], t;
   522           bool relabel_enabled = true;
   523 
   524           // Performing push operations if there are admissible edges
   525           if (_excess[n] > 0) {
   526             for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   527               if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   528                 delta = _capacity[e] - (*_flow)[e] <= _excess[n] ?
   529                         _capacity[e] - (*_flow)[e] : _excess[n];
   530                 t = _graph.target(e);
   531 
   532                 // Push-look-ahead heuristic
   533                 Capacity ahead = -_excess[t];
   534                 for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) {
   535                   if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
   536                     ahead += _capacity[oe] - (*_flow)[oe];
   537                 }
   538                 for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) {
   539                   if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
   540                     ahead += (*_flow)[ie];
   541                 }
   542                 if (ahead < 0) ahead = 0;
   543 
   544                 // Pushing flow along the edge
   545                 if (ahead < delta) {
   546                   (*_flow)[e] += ahead;
   547                   _excess[n] -= ahead;
   548                   _excess[t] += ahead;
   549                   active_nodes.push_front(t);
   550                   hyper[t] = true;
   551                   relabel_enabled = false;
   552                   break;
   553                 } else {
   554                   (*_flow)[e] += delta;
   555                   _excess[n] -= delta;
   556                   _excess[t] += delta;
   557                   if (_excess[t] > 0 && _excess[t] <= delta)
   558                     active_nodes.push_back(t);
   559                 }
   560 
   561                 if (_excess[n] == 0) break;
   562               }
   563             }
   564           }
   565 
   566           if (_excess[n] > 0) {
   567             for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   568               if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   569                 delta = (*_flow)[e] <= _excess[n] ? (*_flow)[e] : _excess[n];
   570                 t = _graph.source(e);
   571 
   572                 // Push-look-ahead heuristic
   573                 Capacity ahead = -_excess[t];
   574                 for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) {
   575                   if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
   576                     ahead += _capacity[oe] - (*_flow)[oe];
   577                 }
   578                 for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) {
   579                   if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
   580                     ahead += (*_flow)[ie];
   581                 }
   582                 if (ahead < 0) ahead = 0;
   583 
   584                 // Pushing flow along the edge
   585                 if (ahead < delta) {
   586                   (*_flow)[e] -= ahead;
   587                   _excess[n] -= ahead;
   588                   _excess[t] += ahead;
   589                   active_nodes.push_front(t);
   590                   hyper[t] = true;
   591                   relabel_enabled = false;
   592                   break;
   593                 } else {
   594                   (*_flow)[e] -= delta;
   595                   _excess[n] -= delta;
   596                   _excess[t] += delta;
   597                   if (_excess[t] > 0 && _excess[t] <= delta)
   598                     active_nodes.push_back(t);
   599                 }
   600 
   601                 if (_excess[n] == 0) break;
   602               }
   603             }
   604           }
   605 
   606           if (relabel_enabled && (_excess[n] > 0 || hyper[n])) {
   607             // Performing relabel operation if the node is still active
   608             LCost min_red_cost = std::numeric_limits<LCost>::max();
   609             for (OutEdgeIt oe(_graph, n); oe != INVALID; ++oe) {
   610               if ( _capacity[oe] - (*_flow)[oe] > 0 &&
   611                    (*_red_cost)[oe] < min_red_cost )
   612                 min_red_cost = (*_red_cost)[oe];
   613             }
   614             for (InEdgeIt ie(_graph, n); ie != INVALID; ++ie) {
   615               if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost)
   616                 min_red_cost = -(*_red_cost)[ie];
   617             }
   618             (*_potential)[n] -= min_red_cost + _epsilon;
   619             hyper[n] = false;
   620           }
   621 
   622           // Removing active nodes with non-positive excess
   623           while ( active_nodes.size() > 0 &&
   624                   _excess[active_nodes[0]] <= 0 &&
   625                   !hyper[active_nodes[0]] ) {
   626             active_nodes.pop_front();
   627           }
   628         }
   629       }
   630 
   631       // Computing node potentials for the original costs
   632       ResidualCostMap<CostMap> res_cost(_orig_cost);
   633       BellmanFord< ResGraph, ResidualCostMap<CostMap> >
   634         bf(*_res_graph, res_cost);
   635       bf.init(0); bf.start();
   636       for (NodeIt n(_graph); n != INVALID; ++n)
   637         (*_potential)[n] = bf.dist(n);
   638 
   639       // Handling non-zero lower bounds
   640       if (_lower) {
   641         for (EdgeIt e(_graph); e != INVALID; ++e)
   642           (*_flow)[e] += (*_lower)[e];
   643       }
   644       return true;
   645     }
   646 
   647   }; //class CostScaling
   648 
   649   ///@}
   650 
   651 } //namespace lemon
   652 
   653 #endif //LEMON_COST_SCALING_H