lemon/floyd_warshall.h
author deba
Fri, 14 Oct 2005 11:01:21 +0000
changeset 1726 f214631ea1ac
parent 1710 f531c16dd923
child 1741 7a98fe2ed989
permissions -rw-r--r--
Doc bugfix
     1 /* -*- C++ -*-
     2  * lemon/floyd_warshall.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_FLOYD_WARSHALL_H
    18 #define LEMON_FLOYD_WARSHALL_H
    19 
    20 ///\ingroup flowalgs
    21 /// \file
    22 /// \brief FloydWarshall algorithm.
    23 ///
    24 /// \todo getPath() should be implemented! (also for BFS and DFS)
    25 
    26 #include <lemon/list_graph.h>
    27 #include <lemon/graph_utils.h>
    28 #include <lemon/invalid.h>
    29 #include <lemon/error.h>
    30 #include <lemon/matrix_maps.h>
    31 #include <lemon/maps.h>
    32 
    33 #include <limits>
    34 
    35 namespace lemon {
    36 
    37   /// \brief Default OperationTraits for the FloydWarshall algorithm class.
    38   ///  
    39   /// It defines all computational operations and constants which are
    40   /// used in the Floyd-Warshall algorithm. The default implementation
    41   /// is based on the numeric_limits class. If the numeric type does not
    42   /// have infinity value then the maximum value is used as extremal
    43   /// infinity value.
    44   template <
    45     typename Value, 
    46     bool has_infinity = std::numeric_limits<Value>::has_infinity>
    47   struct FloydWarshallDefaultOperationTraits {
    48     /// \brief Gives back the zero value of the type.
    49     static Value zero() {
    50       return static_cast<Value>(0);
    51     }
    52     /// \brief Gives back the positive infinity value of the type.
    53     static Value infinity() {
    54       return std::numeric_limits<Value>::infinity();
    55     }
    56     /// \brief Gives back the sum of the given two elements.
    57     static Value plus(const Value& left, const Value& right) {
    58       return left + right;
    59     }
    60     /// \brief Gives back true only if the first value less than the second.
    61     static bool less(const Value& left, const Value& right) {
    62       return left < right;
    63     }
    64   };
    65 
    66   template <typename Value>
    67   struct FloydWarshallDefaultOperationTraits<Value, false> {
    68     static Value zero() {
    69       return static_cast<Value>(0);
    70     }
    71     static Value infinity() {
    72       return std::numeric_limits<Value>::max();
    73     }
    74     static Value plus(const Value& left, const Value& right) {
    75       if (left == infinity() || right == infinity()) return infinity();
    76       return left + right;
    77     }
    78     static bool less(const Value& left, const Value& right) {
    79       return left < right;
    80     }
    81   };
    82   
    83   /// \brief Default traits class of FloydWarshall class.
    84   ///
    85   /// Default traits class of FloydWarshall class.
    86   /// \param _Graph Graph type.
    87   /// \param _LegthMap Type of length map.
    88   template<class _Graph, class _LengthMap>
    89   struct FloydWarshallDefaultTraits {
    90     /// The graph type the algorithm runs on. 
    91     typedef _Graph Graph;
    92 
    93     /// \brief The type of the map that stores the edge lengths.
    94     ///
    95     /// The type of the map that stores the edge lengths.
    96     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
    97     typedef _LengthMap LengthMap;
    98 
    99     // The type of the length of the edges.
   100     typedef typename _LengthMap::Value Value;
   101 
   102     /// \brief Operation traits for belmann-ford algorithm.
   103     ///
   104     /// It defines the infinity type on the given Value type
   105     /// and the used operation.
   106     /// \see FloydWarshallDefaultOperationTraits
   107     typedef FloydWarshallDefaultOperationTraits<Value> OperationTraits;
   108  
   109     /// \brief The type of the matrix map that stores the last edges of the 
   110     /// shortest paths.
   111     /// 
   112     /// The type of the map that stores the last edges of the shortest paths.
   113     /// It must be a matrix map with \c Graph::Edge value type.
   114     ///
   115     typedef DynamicMatrixMap<Graph, typename Graph::Node, 
   116 			     typename Graph::Edge> PredMap;
   117 
   118     /// \brief Instantiates a PredMap.
   119     /// 
   120     /// This function instantiates a \ref PredMap. 
   121     /// \param G is the graph, to which we would like to define the PredMap.
   122     /// \todo The graph alone may be insufficient for the initialization
   123     static PredMap *createPredMap(const _Graph& graph) {
   124       return new PredMap(graph);
   125     }
   126 
   127     /// \brief The type of the map that stores the dists of the nodes.
   128     ///
   129     /// The type of the map that stores the dists of the nodes.
   130     /// It must meet the \ref concept::WriteMatrixMap "WriteMatrixMap" concept.
   131     ///
   132     typedef DynamicMatrixMap<Graph, typename Graph::Node, Value> DistMap;
   133 
   134     /// \brief Instantiates a DistMap.
   135     ///
   136     /// This function instantiates a \ref DistMap. 
   137     /// \param G is the graph, to which we would like to define the 
   138     /// \ref DistMap
   139     static DistMap *createDistMap(const _Graph& graph) {
   140       return new DistMap(graph);
   141     }
   142 
   143   };
   144   
   145   /// \brief FloydWarshall algorithm class.
   146   ///
   147   /// \ingroup flowalgs
   148   /// This class provides an efficient implementation of \c FloydWarshall 
   149   /// algorithm. The edge lengths are passed to the algorithm using a
   150   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
   151   /// kind of length.
   152   ///
   153   /// The algorithm solves the shortest path problem for each pairs
   154   /// of node when the edges can have negative length but the graph should
   155   /// not contain circle with negative sum of length. If we can assume
   156   /// that all edge is non-negative in the graph then the dijkstra algorithm
   157   /// should be used from each node rather and if the graph is sparse and
   158   /// there are negative circles then the johson algorithm.
   159   ///
   160   /// The complexity of this algorithm is O(n^3 + e).
   161   ///
   162   /// The type of the length is determined by the
   163   /// \ref concept::ReadMap::Value "Value" of the length map.
   164   ///
   165   /// \param _Graph The graph type the algorithm runs on. The default value
   166   /// is \ref ListGraph. The value of _Graph is not used directly by
   167   /// FloydWarshall, it is only passed to \ref FloydWarshallDefaultTraits.
   168   /// \param _LengthMap This read-only EdgeMap determines the lengths of the
   169   /// edges. It is read once for each edge, so the map may involve in
   170   /// relatively time consuming process to compute the edge length if
   171   /// it is necessary. The default map type is \ref
   172   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
   173   /// of _LengthMap is not used directly by FloydWarshall, it is only passed 
   174   /// to \ref FloydWarshallDefaultTraits.  \param _Traits Traits class to set
   175   /// various data types used by the algorithm.  The default traits
   176   /// class is \ref FloydWarshallDefaultTraits
   177   /// "FloydWarshallDefaultTraits<_Graph,_LengthMap>".  See \ref
   178   /// FloydWarshallDefaultTraits for the documentation of a FloydWarshall 
   179   /// traits class.
   180   ///
   181   /// \author Balazs Dezso
   182 
   183 #ifdef DOXYGEN
   184   template <typename _Graph, typename _LengthMap typename _Traits >
   185 #else
   186   template <typename _Graph=ListGraph,
   187 	    typename _LengthMap=typename _Graph::template EdgeMap<int>,
   188 	    typename _Traits=FloydWarshallDefaultTraits<_Graph,_LengthMap> >
   189 #endif
   190   class FloydWarshall {
   191   public:
   192     
   193     /// \brief \ref Exception for uninitialized parameters.
   194     ///
   195     /// This error represents problems in the initialization
   196     /// of the parameters of the algorithms.
   197 
   198     class UninitializedParameter : public lemon::UninitializedParameter {
   199     public:
   200       virtual const char* exceptionName() const {
   201 	return "lemon::FloydWarshall::UninitializedParameter";
   202       }
   203     };
   204 
   205     typedef _Traits Traits;
   206     ///The type of the underlying graph.
   207     typedef typename _Traits::Graph Graph;
   208 
   209     typedef typename Graph::Node Node;
   210     typedef typename Graph::NodeIt NodeIt;
   211     typedef typename Graph::Edge Edge;
   212     typedef typename Graph::EdgeIt EdgeIt;
   213     
   214     /// \brief The type of the length of the edges.
   215     typedef typename _Traits::LengthMap::Value Value;
   216     /// \brief The type of the map that stores the edge lengths.
   217     typedef typename _Traits::LengthMap LengthMap;
   218     /// \brief The type of the map that stores the last
   219     /// edges of the shortest paths. The type of the PredMap
   220     /// is a matrix map for Edges
   221     typedef typename _Traits::PredMap PredMap;
   222     /// \brief The type of the map that stores the dists of the nodes.
   223     /// The type of the DistMap is a matrix map for Values
   224     typedef typename _Traits::DistMap DistMap;
   225     /// \brief The operation traits.
   226     typedef typename _Traits::OperationTraits OperationTraits;
   227   private:
   228     /// Pointer to the underlying graph.
   229     const Graph *graph;
   230     /// Pointer to the length map
   231     const LengthMap *length;
   232     ///Pointer to the map of predecessors edges.
   233     PredMap *_pred;
   234     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   235     bool local_pred;
   236     ///Pointer to the map of distances.
   237     DistMap *_dist;
   238     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   239     bool local_dist;
   240 
   241     /// Creates the maps if necessary.
   242     void create_maps() {
   243       if(!_pred) {
   244 	local_pred = true;
   245 	_pred = Traits::createPredMap(*graph);
   246       }
   247       if(!_dist) {
   248 	local_dist = true;
   249 	_dist = Traits::createDistMap(*graph);
   250       }
   251     }
   252     
   253   public :
   254  
   255     /// \name Named template parameters
   256 
   257     ///@{
   258 
   259     template <class T>
   260     struct DefPredMapTraits : public Traits {
   261       typedef T PredMap;
   262       static PredMap *createPredMap(const Graph& graph) {
   263 	throw UninitializedParameter();
   264       }
   265     };
   266 
   267     /// \brief \ref named-templ-param "Named parameter" for setting PredMap 
   268     /// type
   269     /// \ref named-templ-param "Named parameter" for setting PredMap type
   270     ///
   271     template <class T>
   272     struct DefPredMap 
   273       : public FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > {
   274       typedef FloydWarshall< Graph, LengthMap, DefPredMapTraits<T> > Create;
   275     };
   276     
   277     template <class T>
   278     struct DefDistMapTraits : public Traits {
   279       typedef T DistMap;
   280       static DistMap *createDistMap(const Graph& graph) {
   281 	throw UninitializedParameter();
   282       }
   283     };
   284     /// \brief \ref named-templ-param "Named parameter" for setting DistMap 
   285     /// type
   286     ///
   287     /// \ref named-templ-param "Named parameter" for setting DistMap type
   288     ///
   289     template <class T>
   290     struct DefDistMap 
   291       : public FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > {
   292       typedef FloydWarshall< Graph, LengthMap, DefDistMapTraits<T> > Create;
   293     };
   294     
   295     template <class T>
   296     struct DefOperationTraitsTraits : public Traits {
   297       typedef T OperationTraits;
   298     };
   299     
   300     /// \brief \ref named-templ-param "Named parameter" for setting 
   301     /// OperationTraits type
   302     ///
   303     /// \ref named-templ-param "Named parameter" for setting PredMap type
   304     template <class T>
   305     struct DefOperationTraits
   306       : public FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> > {
   307       typedef FloydWarshall< Graph, LengthMap, DefOperationTraitsTraits<T> >
   308       Create;
   309     };
   310     
   311     ///@}
   312 
   313   protected:
   314 
   315     FloydWarshall() {}
   316 
   317   public:      
   318 
   319     typedef FloydWarshall Create;
   320     
   321     /// \brief Constructor.
   322     ///
   323     /// \param _graph the graph the algorithm will run on.
   324     /// \param _length the length map used by the algorithm.
   325     FloydWarshall(const Graph& _graph, const LengthMap& _length) :
   326       graph(&_graph), length(&_length),
   327       _pred(0), local_pred(false),
   328       _dist(0), local_dist(false) {}
   329     
   330     ///Destructor.
   331     ~FloydWarshall() {
   332       if(local_pred) delete _pred;
   333       if(local_dist) delete _dist;
   334     }
   335 
   336     /// \brief Sets the length map.
   337     ///
   338     /// Sets the length map.
   339     /// \return \c (*this)
   340     FloydWarshall &lengthMap(const LengthMap &m) {
   341       length = &m;
   342       return *this;
   343     }
   344 
   345     /// \brief Sets the map storing the predecessor edges.
   346     ///
   347     /// Sets the map storing the predecessor edges.
   348     /// If you don't use this function before calling \ref run(),
   349     /// it will allocate one. The destuctor deallocates this
   350     /// automatically allocated map, of course.
   351     /// \return \c (*this)
   352     FloydWarshall &predMap(PredMap &m) {
   353       if(local_pred) {
   354 	delete _pred;
   355 	local_pred=false;
   356       }
   357       _pred = &m;
   358       return *this;
   359     }
   360 
   361     /// \brief Sets the map storing the distances calculated by the algorithm.
   362     ///
   363     /// Sets the map storing the distances calculated by the algorithm.
   364     /// If you don't use this function before calling \ref run(),
   365     /// it will allocate one. The destuctor deallocates this
   366     /// automatically allocated map, of course.
   367     /// \return \c (*this)
   368     FloydWarshall &distMap(DistMap &m) {
   369       if(local_dist) {
   370 	delete _dist;
   371 	local_dist=false;
   372       }
   373       _dist = &m;
   374       return *this;
   375     }
   376 
   377     ///\name Execution control
   378     /// The simplest way to execute the algorithm is to use
   379     /// one of the member functions called \c run(...).
   380     /// \n
   381     /// If you need more control on the execution,
   382     /// Finally \ref start() will perform the actual path
   383     /// computation.
   384 
   385     ///@{
   386 
   387     /// \brief Initializes the internal data structures.
   388     /// 
   389     /// Initializes the internal data structures.
   390     void init() {
   391       create_maps();
   392       for (NodeIt it(*graph); it != INVALID; ++it) {
   393 	for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   394 	  _pred->set(it, jt, INVALID);
   395 	  _dist->set(it, jt, it == jt ? 
   396 		     OperationTraits::zero() : OperationTraits::infinity());
   397 	}
   398       }
   399       for (EdgeIt it(*graph); it != INVALID; ++it) {
   400 	Node source = graph->source(it);
   401 	Node target = graph->target(it);	
   402 	if (OperationTraits::less((*length)[it], (*_dist)(source, target))) {
   403 	  _dist->set(source, target, (*length)[it]);
   404 	  _pred->set(source, target, it);
   405 	}
   406       }
   407     }
   408     
   409     /// \brief Executes the algorithm.
   410     ///
   411     /// This method runs the %FloydWarshall algorithm in order to compute 
   412     /// the shortest path to each node pairs. The algorithm 
   413     /// computes 
   414     /// - The shortest path tree for each node.
   415     /// - The distance between each node pairs.
   416     void start() {
   417       for (NodeIt kt(*graph); kt != INVALID; ++kt) {
   418 	for (NodeIt it(*graph); it != INVALID; ++it) {
   419 	  for (NodeIt jt(*graph); jt != INVALID; ++jt) {
   420 	    Value relaxed = OperationTraits::plus((*_dist)(it, kt),
   421 						  (*_dist)(kt, jt));
   422 	    if (OperationTraits::less(relaxed, (*_dist)(it, jt))) {
   423 	      _dist->set(it, jt, relaxed);
   424 	      _pred->set(it, jt, (*_pred)(kt, jt));
   425 	    }
   426 	  }
   427 	}
   428       }
   429     }
   430     
   431     /// \brief Runs %FloydWarshall algorithm.
   432     ///    
   433     /// This method runs the %FloydWarshall algorithm from a each node
   434     /// in order to compute the shortest path to each node pairs. 
   435     /// The algorithm computes
   436     /// - The shortest path tree for each node.
   437     /// - The distance between each node pairs.
   438     ///
   439     /// \note d.run(s) is just a shortcut of the following code.
   440     /// \code
   441     ///  d.init();
   442     ///  d.start();
   443     /// \endcode
   444     void run() {
   445       init();
   446       start();
   447     }
   448     
   449     ///@}
   450 
   451     /// \name Query Functions
   452     /// The result of the %FloydWarshall algorithm can be obtained using these
   453     /// functions.\n
   454     /// Before the use of these functions,
   455     /// either run() or start() must be called.
   456     
   457     ///@{
   458 
   459     /// \brief Copies the shortest path to \c t into \c p
   460     ///    
   461     /// This function copies the shortest path to \c t into \c p.
   462     /// If it \c t is a source itself or unreachable, then it does not
   463     /// alter \c p.
   464     /// \todo Is it the right way to handle unreachable nodes?
   465     /// \return Returns \c true if a path to \c t was actually copied to \c p,
   466     /// \c false otherwise.
   467     /// \sa DirPath
   468     template <typename Path>
   469     bool getPath(Path &p, Node source, Node target) {
   470       if (connected(source, target)) {
   471 	p.clear();
   472 	typename Path::Builder b(target);
   473 	for(b.setStartNode(target); pred(source, target) != INVALID;
   474 	    target = predNode(target)) {
   475 	  b.pushFront(pred(source, target));
   476 	}
   477 	b.commit();
   478 	return true;
   479       }
   480       return false;
   481     }
   482 	  
   483     /// \brief The distance between two nodes.
   484     ///
   485     /// Returns the distance between two nodes.
   486     /// \pre \ref run() must be called before using this function.
   487     /// \warning If node \c v in unreachable from the root the return value
   488     /// of this funcion is undefined.
   489     Value dist(Node source, Node target) const { 
   490       return (*_dist)(source, target); 
   491     }
   492 
   493     /// \brief Returns the 'previous edge' of the shortest path tree.
   494     ///
   495     /// For the node \c node it returns the 'previous edge' of the shortest 
   496     /// path tree to direction of the node \c root 
   497     /// i.e. it returns the last edge of a shortest path from the node \c root 
   498     /// to \c node. It is \ref INVALID if \c node is unreachable from the root
   499     /// or if \c node=root. The shortest path tree used here is equal to the 
   500     /// shortest path tree used in \ref predNode(). 
   501     /// \pre \ref run() must be called before using this function.
   502     /// \todo predEdge could be a better name.
   503     Edge pred(Node root, Node node) const { 
   504       return (*_pred)(root, node); 
   505     }
   506 
   507     /// \brief Returns the 'previous node' of the shortest path tree.
   508     ///
   509     /// For a node \c node it returns the 'previous node' of the shortest path 
   510     /// tree to direction of the node \c root, i.e. it returns the last but 
   511     /// one node from a shortest path from the \c root to \c node. It is 
   512     /// INVALID if \c node is unreachable from the root or if \c node=root. 
   513     /// The shortest path tree used here is equal to the 
   514     /// shortest path tree used in \ref pred().  
   515     /// \pre \ref run() must be called before using this function.
   516     Node predNode(Node root, Node node) const { 
   517       return (*_pred)(root, node) == INVALID ? 
   518       INVALID : graph->source((*_pred)(root, node)); 
   519     }
   520     
   521     /// \brief Returns a reference to the matrix node map of distances.
   522     ///
   523     /// Returns a reference to the matrix node map of distances. 
   524     ///
   525     /// \pre \ref run() must be called before using this function.
   526     const DistMap &distMap() const { return *_dist;}
   527  
   528     /// \brief Returns a reference to the shortest path tree map.
   529     ///
   530     /// Returns a reference to the matrix node map of the edges of the
   531     /// shortest path tree.
   532     /// \pre \ref run() must be called before using this function.
   533     const PredMap &predMap() const { return *_pred;}
   534  
   535     /// \brief Checks if a node is reachable from the root.
   536     ///
   537     /// Returns \c true if \c v is reachable from the root.
   538     /// \pre \ref run() must be called before using this function.
   539     ///
   540     bool connected(Node source, Node target) { 
   541       return (*_dist)(source, target) != OperationTraits::infinity(); 
   542     }
   543     
   544     ///@}
   545   };
   546  
   547 } //END OF NAMESPACE LEMON
   548 
   549 #endif
   550