lemon/edmonds_karp.h
author deba
Sun, 30 Dec 2007 18:23:32 +0000
changeset 2550 f26368148b9c
parent 2522 616c019215c4
child 2553 bfced05fa852
permissions -rw-r--r--
Changing degree of tournament tree
Bug fix in union find
Small efficiency improvment in bipartite matchings
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2007
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_EDMONDS_KARP_H
    20 #define LEMON_EDMONDS_KARP_H
    21 
    22 /// \file
    23 /// \ingroup max_flow
    24 /// \brief Implementation of the Edmonds-Karp algorithm.
    25 
    26 #include <lemon/tolerance.h>
    27 #include <vector>
    28 
    29 namespace lemon {
    30 
    31   /// \brief Default traits class of EdmondsKarp class.
    32   ///
    33   /// Default traits class of EdmondsKarp class.
    34   /// \param _Graph Graph type.
    35   /// \param _CapacityMap Type of capacity map.
    36   template <typename _Graph, typename _CapacityMap>
    37   struct EdmondsKarpDefaultTraits {
    38 
    39     /// \brief The graph type the algorithm runs on. 
    40     typedef _Graph Graph;
    41 
    42     /// \brief The type of the map that stores the edge capacities.
    43     ///
    44     /// The type of the map that stores the edge capacities.
    45     /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
    46     typedef _CapacityMap CapacityMap;
    47 
    48     /// \brief The type of the length of the edges.
    49     typedef typename CapacityMap::Value Value;
    50 
    51     /// \brief The map type that stores the flow values.
    52     ///
    53     /// The map type that stores the flow values. 
    54     /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
    55     typedef typename Graph::template EdgeMap<Value> FlowMap;
    56 
    57     /// \brief Instantiates a FlowMap.
    58     ///
    59     /// This function instantiates a \ref FlowMap. 
    60     /// \param graph The graph, to which we would like to define the flow map.
    61     static FlowMap* createFlowMap(const Graph& graph) {
    62       return new FlowMap(graph);
    63     }
    64 
    65     /// \brief The tolerance used by the algorithm
    66     ///
    67     /// The tolerance used by the algorithm to handle inexact computation.
    68     typedef Tolerance<Value> Tolerance;
    69 
    70   };
    71 
    72   /// \ingroup max_flow
    73   ///
    74   /// \brief Edmonds-Karp algorithms class.
    75   ///
    76   /// This class provides an implementation of the \e Edmonds-Karp \e
    77   /// algorithm producing a flow of maximum value in a directed
    78   /// graphs. The Edmonds-Karp algorithm is slower than the Preflow
    79   /// algorithm but it has an advantage of the step-by-step execution
    80   /// control with feasible flow solutions. The \e source node, the \e
    81   /// target node, the \e capacity of the edges and the \e starting \e
    82   /// flow value of the edges should be passed to the algorithm
    83   /// through the constructor.
    84   ///
    85   /// The time complexity of the algorithm is \f$ O(nm^2) \f$ in
    86   /// worst case.  Always try the preflow algorithm instead of this if
    87   /// you just want to compute the optimal flow.
    88   ///
    89   /// \param _Graph The directed graph type the algorithm runs on.
    90   /// \param _CapacityMap The capacity map type.
    91   /// \param _Traits Traits class to set various data types used by
    92   /// the algorithm.  The default traits class is \ref
    93   /// EdmondsKarpDefaultTraits.  See \ref EdmondsKarpDefaultTraits for the
    94   /// documentation of a Edmonds-Karp traits class. 
    95   ///
    96   /// \author Balazs Dezso 
    97 #ifdef DOXYGEN
    98   template <typename _Graph, typename _CapacityMap, typename _Traits>
    99 #else 
   100   template <typename _Graph,
   101 	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
   102             typename _Traits = EdmondsKarpDefaultTraits<_Graph, _CapacityMap> >
   103 #endif
   104   class EdmondsKarp {
   105   public:
   106 
   107     typedef _Traits Traits;
   108     typedef typename Traits::Graph Graph;
   109     typedef typename Traits::CapacityMap CapacityMap;
   110     typedef typename Traits::Value Value; 
   111 
   112     typedef typename Traits::FlowMap FlowMap;
   113     typedef typename Traits::Tolerance Tolerance;
   114 
   115     /// \brief \ref Exception for the case when the source equals the target.
   116     ///
   117     /// \ref Exception for the case when the source equals the target.
   118     ///
   119     class InvalidArgument : public lemon::LogicError {
   120     public:
   121       virtual const char* what() const throw() {
   122 	return "lemon::EdmondsKarp::InvalidArgument";
   123       }
   124     };
   125 
   126 
   127   private:
   128 
   129     GRAPH_TYPEDEFS(typename Graph);
   130     typedef typename Graph::template NodeMap<Edge> PredMap;
   131     
   132     const Graph& _graph;
   133     const CapacityMap* _capacity;
   134 
   135     Node _source, _target;
   136 
   137     FlowMap* _flow;
   138     bool _local_flow;
   139 
   140     PredMap* _pred;
   141     std::vector<Node> _queue;
   142     
   143     Tolerance _tolerance;
   144     Value _flow_value;
   145 
   146     void createStructures() {
   147       if (!_flow) {
   148 	_flow = Traits::createFlowMap(_graph);
   149 	_local_flow = true;
   150       }
   151       if (!_pred) {
   152 	_pred = new PredMap(_graph);
   153       }
   154       _queue.resize(countNodes(_graph));
   155     }
   156 
   157     void destroyStructures() {
   158       if (_local_flow) {
   159 	delete _flow;
   160       }
   161       if (_pred) {
   162 	delete _pred;
   163       }
   164     }
   165     
   166   public:
   167 
   168     ///\name Named template parameters
   169 
   170     ///@{
   171 
   172     template <typename _FlowMap>
   173     struct DefFlowMapTraits : public Traits {
   174       typedef _FlowMap FlowMap;
   175       static FlowMap *createFlowMap(const Graph&) {
   176 	throw UninitializedParameter();
   177       }
   178     };
   179 
   180     /// \brief \ref named-templ-param "Named parameter" for setting
   181     /// FlowMap type
   182     ///
   183     /// \ref named-templ-param "Named parameter" for setting FlowMap
   184     /// type
   185     template <typename _FlowMap>
   186     struct DefFlowMap 
   187       : public EdmondsKarp<Graph, CapacityMap, DefFlowMapTraits<_FlowMap> > {
   188       typedef EdmondsKarp<Graph, CapacityMap, DefFlowMapTraits<_FlowMap> > 
   189       Create;
   190     };
   191 
   192 
   193     /// @}
   194 
   195   protected:
   196     
   197     EdmondsKarp() {}
   198 
   199   public:
   200 
   201     /// \brief The constructor of the class.
   202     ///
   203     /// The constructor of the class. 
   204     /// \param graph The directed graph the algorithm runs on. 
   205     /// \param capacity The capacity of the edges. 
   206     /// \param source The source node.
   207     /// \param target The target node.
   208     EdmondsKarp(const Graph& graph, const CapacityMap& capacity,
   209 		Node source, Node target)
   210       : _graph(graph), _capacity(&capacity), _source(source), _target(target),
   211 	_flow(0), _local_flow(false), _pred(0), _tolerance(), _flow_value()
   212     {
   213       if (_source == _target) {
   214         throw InvalidArgument();
   215       }
   216     }
   217 
   218     /// \brief Destrcutor.
   219     ///
   220     /// Destructor.
   221     ~EdmondsKarp() {
   222       destroyStructures();
   223     }
   224 
   225     /// \brief Sets the capacity map.
   226     ///
   227     /// Sets the capacity map.
   228     /// \return \c (*this)
   229     EdmondsKarp& capacityMap(const CapacityMap& map) {
   230       _capacity = &map;
   231       return *this;
   232     }
   233 
   234     /// \brief Sets the flow map.
   235     ///
   236     /// Sets the flow map.
   237     /// \return \c (*this)
   238     EdmondsKarp& flowMap(FlowMap& map) {
   239       if (_local_flow) {
   240 	delete _flow;
   241 	_local_flow = false;
   242       }
   243       _flow = &map;
   244       return *this;
   245     }
   246 
   247     /// \brief Returns the flow map.
   248     ///
   249     /// \return The flow map.
   250     const FlowMap& flowMap() {
   251       return *_flow;
   252     }
   253 
   254     /// \brief Sets the source node.
   255     ///
   256     /// Sets the source node.
   257     /// \return \c (*this)
   258     EdmondsKarp& source(const Node& node) {
   259       _source = node;
   260       return *this;
   261     }
   262 
   263     /// \brief Sets the target node.
   264     ///
   265     /// Sets the target node.
   266     /// \return \c (*this)
   267     EdmondsKarp& target(const Node& node) {
   268       _target = node;
   269       return *this;
   270     }
   271 
   272     /// \brief Sets the tolerance used by algorithm.
   273     ///
   274     /// Sets the tolerance used by algorithm.
   275     EdmondsKarp& tolerance(const Tolerance& tolerance) const {
   276       _tolerance = tolerance;
   277       return *this;
   278     } 
   279 
   280     /// \brief Returns the tolerance used by algorithm.
   281     ///
   282     /// Returns the tolerance used by algorithm.
   283     const Tolerance& tolerance() const {
   284       return tolerance;
   285     } 
   286 
   287     /// \name Execution control The simplest way to execute the
   288     /// algorithm is to use the \c run() member functions.
   289     /// \n
   290     /// If you need more control on initial solution or
   291     /// execution then you have to call one \ref init() function and then
   292     /// the start() or multiple times the \c augment() member function.  
   293     
   294     ///@{
   295 
   296     /// \brief Initializes the algorithm
   297     /// 
   298     /// It sets the flow to empty flow.
   299     void init() {
   300       createStructures();
   301       for (EdgeIt it(_graph); it != INVALID; ++it) {
   302         _flow->set(it, 0);
   303       }
   304       _flow_value = 0;
   305     }
   306     
   307     /// \brief Initializes the algorithm
   308     /// 
   309     /// Initializes the flow to the \c flowMap. The \c flowMap should
   310     /// contain a feasible flow, ie. in each node excluding the source
   311     /// and the target the incoming flow should be equal to the
   312     /// outgoing flow.
   313     template <typename FlowMap>
   314     void flowInit(const FlowMap& flowMap) {
   315       createStructures();
   316       for (EdgeIt e(_graph); e != INVALID; ++e) {
   317 	_flow->set(e, flowMap[e]);
   318       }
   319       _flow_value = 0;
   320       for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   321         _flow_value += (*_flow)[jt];
   322       }
   323       for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   324         _flow_value -= (*_flow)[jt];
   325       }
   326     }
   327 
   328     /// \brief Initializes the algorithm
   329     /// 
   330     /// Initializes the flow to the \c flowMap. The \c flowMap should
   331     /// contain a feasible flow, ie. in each node excluding the source
   332     /// and the target the incoming flow should be equal to the
   333     /// outgoing flow.  
   334     /// \return %False when the given flowMap does not contain
   335     /// feasible flow.
   336     template <typename FlowMap>
   337     bool checkedFlowInit(const FlowMap& flowMap) {
   338       createStructures();
   339       for (EdgeIt e(_graph); e != INVALID; ++e) {
   340 	_flow->set(e, flowMap[e]);
   341       }
   342       for (NodeIt it(_graph); it != INVALID; ++it) {
   343         if (it == _source || it == _target) continue;
   344         Value outFlow = 0;
   345         for (OutEdgeIt jt(_graph, it); jt != INVALID; ++jt) {
   346           outFlow += (*_flow)[jt];
   347         }
   348         Value inFlow = 0;
   349         for (InEdgeIt jt(_graph, it); jt != INVALID; ++jt) {
   350           inFlow += (*_flow)[jt];
   351         }
   352         if (_tolerance.different(outFlow, inFlow)) {
   353           return false;
   354         }
   355       }
   356       for (EdgeIt it(_graph); it != INVALID; ++it) {
   357         if (_tolerance.less((*_flow)[it], 0)) return false;
   358         if (_tolerance.less((*_capacity)[it], (*_flow)[it])) return false;
   359       }
   360       _flow_value = 0;
   361       for (OutEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   362         _flow_value += (*_flow)[jt];
   363       }
   364       for (InEdgeIt jt(_graph, _source); jt != INVALID; ++jt) {
   365         _flow_value -= (*_flow)[jt];
   366       }
   367       return true;
   368     }
   369 
   370     /// \brief Augment the solution on an edge shortest path.
   371     /// 
   372     /// Augment the solution on an edge shortest path. It search an
   373     /// edge shortest path between the source and the target
   374     /// in the residual graph with the bfs algoritm.
   375     /// Then it increase the flow on this path with the minimal residual
   376     /// capacity on the path. If there is not such path it gives back
   377     /// false.
   378     /// \return %False when the augmenting is not success so the
   379     /// current flow is a feasible and optimal solution.
   380     bool augment() {
   381       for (NodeIt n(_graph); n != INVALID; ++n) {
   382 	_pred->set(n, INVALID);
   383       }
   384       
   385       int first = 0, last = 1;
   386       
   387       _queue[0] = _source;
   388       _pred->set(_source, OutEdgeIt(_graph, _source));
   389 
   390       while (first != last && (*_pred)[_target] == INVALID) {
   391 	Node n = _queue[first++];
   392 	
   393 	for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   394 	  Value rem = (*_capacity)[e] - (*_flow)[e];
   395 	  Node t = _graph.target(e);
   396 	  if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
   397 	    _pred->set(t, e);
   398 	    _queue[last++] = t;
   399 	  }
   400 	}
   401 	for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   402 	  Value rem = (*_flow)[e];
   403 	  Node t = _graph.source(e);
   404 	  if (_tolerance.positive(rem) && (*_pred)[t] == INVALID) {
   405 	    _pred->set(t, e);
   406 	    _queue[last++] = t;
   407 	  }
   408 	}
   409       }
   410 
   411       if ((*_pred)[_target] != INVALID) {
   412 	Node n = _target;
   413 	Edge e = (*_pred)[n];
   414 
   415 	Value prem = (*_capacity)[e] - (*_flow)[e];
   416 	n = _graph.source(e);
   417 	while (n != _source) {
   418 	  e = (*_pred)[n];
   419 	  if (_graph.target(e) == n) {
   420 	    Value rem = (*_capacity)[e] - (*_flow)[e];
   421 	    if (rem < prem) prem = rem;
   422 	    n = _graph.source(e);
   423 	  } else {
   424 	    Value rem = (*_flow)[e];
   425 	    if (rem < prem) prem = rem;
   426 	    n = _graph.target(e);   
   427 	  } 
   428 	}
   429 
   430 	n = _target;
   431 	e = (*_pred)[n];
   432 
   433 	_flow->set(e, (*_flow)[e] + prem);
   434 	n = _graph.source(e);
   435 	while (n != _source) {
   436 	  e = (*_pred)[n];
   437 	  if (_graph.target(e) == n) {
   438 	    _flow->set(e, (*_flow)[e] + prem);
   439 	    n = _graph.source(e);
   440 	  } else {
   441 	    _flow->set(e, (*_flow)[e] - prem);
   442 	    n = _graph.target(e);   
   443 	  } 
   444 	}
   445 
   446 	_flow_value += prem;	
   447 	return true;
   448       } else {
   449 	return false;
   450       }
   451     }
   452 
   453     /// \brief Executes the algorithm
   454     ///
   455     /// It runs augmenting phases until the optimal solution is reached. 
   456     void start() {
   457       while (augment()) {}
   458     }
   459 
   460     /// \brief runs the algorithm.
   461     /// 
   462     /// It is just a shorthand for:
   463     ///
   464     ///\code 
   465     /// ek.init();
   466     /// ek.start();
   467     ///\endcode
   468     void run() {
   469       init();
   470       start();
   471     }
   472 
   473     /// @}
   474 
   475     /// \name Query Functions
   476     /// The result of the Edmonds-Karp algorithm can be obtained using these
   477     /// functions.\n
   478     /// Before the use of these functions,
   479     /// either run() or start() must be called.
   480     
   481     ///@{
   482 
   483     /// \brief Returns the value of the maximum flow.
   484     ///
   485     /// Returns the value of the maximum flow by returning the excess
   486     /// of the target node \c t. This value equals to the value of
   487     /// the maximum flow already after the first phase.
   488     Value flowValue() const {
   489       return _flow_value;
   490     }
   491 
   492 
   493     /// \brief Returns the flow on the edge.
   494     ///
   495     /// Sets the \c flowMap to the flow on the edges. This method can
   496     /// be called after the second phase of algorithm.
   497     Value flow(const Edge& edge) const {
   498       return (*_flow)[edge];
   499     }
   500 
   501     /// \brief Returns true when the node is on the source side of minimum cut.
   502     ///
   503 
   504     /// Returns true when the node is on the source side of minimum
   505     /// cut. This method can be called both after running \ref
   506     /// startFirstPhase() and \ref startSecondPhase().
   507     bool minCut(const Node& node) const {
   508       return (*_pred)[node] != INVALID;
   509     }
   510 
   511     /// \brief Returns a minimum value cut.
   512     ///
   513     /// Sets \c cut to the characteristic vector of a minimum value cut
   514     /// It simply calls the minMinCut member.
   515     /// \retval cut Write node bool map. 
   516     template <typename CutMap>
   517     void minCutMap(CutMap& cutMap) const {
   518       for (NodeIt n(_graph); n != INVALID; ++n) {
   519 	cutMap.set(n, (*_pred)[n] != INVALID);
   520       }
   521       cutMap.set(_source, true);
   522     }    
   523 
   524     /// @}
   525 
   526   };
   527 
   528 }
   529 
   530 #endif