src/work/jacint/preflow_hl2.h
author marci
Wed, 18 Feb 2004 15:58:28 +0000
changeset 99 f26897fb91fd
child 101 d2ac583ed195
permissions -rw-r--r--
dfs iterator: DfsIterator4 improved version
     1 // -*- C++ -*-
     2 /*
     3 preflow_hl2.h
     4 by jacint. 
     5 Runs the highest label variant of the preflow push algorithm with 
     6 running time O(n^2\sqrt(m)), with the 'empty level' and with the 
     7 heuristic that the bound b on the active nodes is not increased 
     8 only when b=0, when we put b=2*n-2.
     9 
    10 'A' is a parameter for the empty_level heuristic
    11 
    12 Member functions:
    13 
    14 void run() : runs the algorithm
    15 
    16  The following functions should be used after run() was already run.
    17 
    18 T maxflow() : returns the value of a maximum flow
    19 
    20 T flowonedge(EdgeIt e) : for a fixed maximum flow x it returns x(e) 
    21 
    22 FlowMap allflow() : returns the fixed maximum flow x
    23 
    24 void mincut(CutMap& M) : sets M to the characteristic vector of a 
    25      minimum cut. M should be a map of bools initialized to false.
    26 
    27 void min_mincut(CutMap& M) : sets M to the characteristic vector of the 
    28      minimum min cut. M should be a map of bools initialized to false.
    29 
    30 void max_mincut(CutMap& M) : sets M to the characteristic vector of the 
    31      maximum min cut. M should be a map of bools initialized to false.
    32 
    33 */
    34 
    35 #ifndef PREFLOW_HL2_H
    36 #define PREFLOW_HL2_H
    37 
    38 #define A 1
    39 
    40 #include <vector>
    41 #include <stack>
    42 #include <queue>
    43 
    44 namespace marci {
    45 
    46   template <typename Graph, typename T, 
    47     typename FlowMap=typename Graph::EdgeMap<T>, typename CapMap=typename Graph::EdgeMap<T>, 
    48     typename IntMap=typename Graph::NodeMap<int>, typename TMap=typename Graph::NodeMap<T> >
    49   class preflow_hl2 {
    50     
    51     typedef typename Graph::NodeIt NodeIt;
    52     typedef typename Graph::EdgeIt EdgeIt;
    53     typedef typename Graph::EachNodeIt EachNodeIt;
    54     typedef typename Graph::OutEdgeIt OutEdgeIt;
    55     typedef typename Graph::InEdgeIt InEdgeIt;
    56     
    57     Graph& G;
    58     NodeIt s;
    59     NodeIt t;
    60     FlowMap flow;
    61     CapMap& capacity;  
    62     T value;
    63     
    64   public:
    65 
    66     preflow_hl2(Graph& _G, NodeIt _s, NodeIt _t, CapMap& _capacity) :
    67       G(_G), s(_s), t(_t), flow(_G, 0), capacity(_capacity) { }
    68 
    69 
    70     void run() {
    71  
    72       bool no_end=true;
    73       int n=G.nodeNum(); 
    74       int b=n-2; 
    75       /*
    76 	b is a bound on the highest level of an active node. 
    77 	In the beginning it is at most n-2.
    78       */
    79 
    80       IntMap level(G,n);      
    81       TMap excess(G); 
    82       
    83       std::vector<int> numb(n+1);    
    84       /*
    85 	The number of nodes on level i < n. It is
    86 	initialized to n+1, because of the reverse_bfs-part.
    87       */
    88 
    89       std::vector<std::stack<NodeIt> > stack(2*n-1);    
    90       //Stack of the active nodes in level i.
    91 
    92 
    93       /*Reverse_bfs from t, to find the starting level.*/
    94       level.set(t,0);
    95       std::queue<NodeIt> bfs_queue;
    96       bfs_queue.push(t);
    97 
    98       while (!bfs_queue.empty()) {
    99 
   100 	NodeIt v=bfs_queue.front();	
   101 	bfs_queue.pop();
   102 	int l=level.get(v)+1;
   103 
   104 	for(InEdgeIt e=G.template first<InEdgeIt>(v); e.valid(); ++e) {
   105 	  NodeIt w=G.tail(e);
   106 	  if ( level.get(w) == n ) {
   107 	    bfs_queue.push(w);
   108 	    ++numb[l];
   109 	    level.set(w, l);
   110 	  }
   111 	}
   112       }
   113       
   114       level.set(s,n);
   115 
   116 
   117 
   118       /* Starting flow. It is everywhere 0 at the moment. */     
   119       for(OutEdgeIt e=G.template first<OutEdgeIt>(s); e.valid(); ++e) 
   120 	{
   121 	  if ( capacity.get(e) == 0 ) continue; 
   122 	  NodeIt w=G.head(e);
   123 	  if ( w!=s ) {	  
   124 	    if ( excess.get(w) == 0 && w!=t ) stack[level.get(w)].push(w); 
   125 	    flow.set(e, capacity.get(e)); 
   126 	    excess.set(w, excess.get(w)+capacity.get(e));
   127 	  } 
   128 	}
   129 
   130       /* 
   131 	 End of preprocessing 
   132       */
   133 
   134 
   135 
   136       /*
   137 	Push/relabel on the highest level active nodes.
   138       */	
   139       /*While there exists an active node.*/
   140       while (b) { 
   141 	if ( stack[b].empty() ) {
   142 	  if ( b==1 ) {
   143 	    if ( !no_end ) break; 
   144 	    else {
   145 	      b=2*n-2;
   146 	      no_end=false;
   147 	    }
   148 	  } 
   149 	  --b;
   150 	} else {
   151 	  
   152 	  no_end=true;
   153 	  
   154 	  NodeIt w=stack[b].top();        //w is a highest label active node.
   155 	  stack[b].pop();           
   156 	  int lev=level.get(w);
   157 	  int exc=excess.get(w);
   158 	  int newlevel=2*n-2;      //In newlevel we bound the next level of w.
   159 	  
   160 	  //  if ( level.get(w) < n ) { //Nem tudom ez mukodik-e
   161 	  for(OutEdgeIt e=G.template first<OutEdgeIt>(w); e.valid(); ++e) {
   162 	    
   163 	    if ( flow.get(e) == capacity.get(e) ) continue; 
   164 	    NodeIt v=G.head(e);            
   165 	    //e=wv	    
   166 	    
   167 	    if( lev > level.get(v) ) {      
   168 	      /*Push is allowed now*/
   169 	      
   170 	      if ( excess.get(v)==0 && v != s && v !=t ) 
   171 		stack[level.get(v)].push(v); 
   172 	      /*v becomes active.*/
   173 	      
   174 	      int cap=capacity.get(e);
   175 	      int flo=flow.get(e);
   176 	      int remcap=cap-flo;
   177 	      
   178 	      if ( remcap >= exc ) {       
   179 		/*A nonsaturating push.*/
   180 		
   181 		flow.set(e, flo+exc);
   182 		excess.set(v, excess.get(v)+exc);
   183 		exc=0;
   184 		break; 
   185 		
   186 	      } else { 
   187 		/*A saturating push.*/
   188 		
   189 		flow.set(e, cap );
   190 		excess.set(v, excess.get(v)+remcap);
   191 		exc-=remcap;
   192 	      }
   193 	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
   194 	    
   195 	  } //for out edges wv 
   196 	
   197 	
   198 	if ( exc > 0 ) {	
   199 	  for( InEdgeIt e=G.template first<InEdgeIt>(w); e.valid(); ++e) {
   200 	    
   201 	    if( flow.get(e) == 0 ) continue; 
   202 	    NodeIt v=G.tail(e);  
   203 	    //e=vw
   204 	    
   205 	    if( lev > level.get(v) ) {  
   206 	      /*Push is allowed now*/
   207 	      
   208 	      if ( excess.get(v)==0 && v != s && v !=t) 
   209 		stack[level.get(v)].push(v); 
   210 	      /*v becomes active.*/
   211 	      
   212 	      int flo=flow.get(e);
   213 	      
   214 	      if ( flo >= exc ) { 
   215 		/*A nonsaturating push.*/
   216 		
   217 		flow.set(e, flo-exc);
   218 		excess.set(v, excess.get(v)+exc);
   219 		exc=0;
   220 		break; 
   221 	      } else {                                               
   222 		/*A saturating push.*/
   223 		
   224 		excess.set(v, excess.get(v)+flo);
   225 		exc-=flo;
   226 		flow.set(e,0);
   227 	      }  
   228 	    } else if ( newlevel > level.get(v) ) newlevel = level.get(v);
   229 	    
   230 	  } //for in edges vw
   231 	  
   232 	} // if w still has excess after the out edge for cycle
   233 	 
   234 	  excess.set(w, exc);
   235 	  
   236 
   237 	  /*
   238 	    Relabel
   239 	  */
   240 	  
   241 	  if ( exc > 0 ) {
   242 	    //now 'lev' is the old level of w
   243 	    level.set(w,++newlevel);
   244 	    
   245 	    if ( lev < n ) {
   246 	      --numb[lev];
   247 
   248 	      if ( !numb[lev] && lev < A*n ) {  //If the level of w gets empty. 
   249 		
   250 		for (EachNodeIt v=G.template first<EachNodeIt>(); v.valid() ; ++v) {
   251 		  if (level.get(v) > lev && level.get(v) < n ) level.set(v,n);  
   252 		}
   253 		for (int i=lev+1 ; i!=n ; ++i) numb[i]=0; 
   254 		if ( newlevel < n ) newlevel=n; 
   255 	      } else { 
   256 		if ( newlevel < n ) ++numb[newlevel]; 
   257 	      }
   258 	    } 
   259 	    
   260 	    stack[newlevel].push(w);
   261 
   262 	  }
   263 
   264 	} // if stack[b] is nonempty
   265 
   266       } // while(b)
   267 
   268 
   269       value = excess.get(t);
   270       /*Max flow value.*/
   271 
   272 
   273     } //void run()
   274 
   275 
   276 
   277 
   278 
   279     /*
   280       Returns the maximum value of a flow.
   281      */
   282 
   283     T maxflow() {
   284       return value;
   285     }
   286 
   287 
   288 
   289     /*
   290       For the maximum flow x found by the algorithm, it returns the flow value on Edge e, i.e. x(e). 
   291     */
   292 
   293     T flowonedge(EdgeIt e) {
   294       return flow.get(e);
   295     }
   296 
   297 
   298 
   299     /*
   300       Returns the maximum flow x found by the algorithm.
   301     */
   302 
   303     FlowMap allflow() {
   304       return flow;
   305     }
   306 
   307 
   308 
   309 
   310     /*
   311       Returns the minimum min cut, by a bfs from s in the residual graph.
   312     */
   313     
   314     template<typename CutMap>
   315     void mincut(CutMap& M) {
   316     
   317       std::queue<NodeIt> queue;
   318       
   319       M.set(s,true);      
   320       queue.push(s);
   321 
   322       while (!queue.empty()) {
   323         NodeIt w=queue.front();
   324 	queue.pop();
   325 
   326 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   327 	  NodeIt v=G.head(e);
   328 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   329 	    queue.push(v);
   330 	    M.set(v, true);
   331 	  }
   332 	} 
   333 
   334 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   335 	  NodeIt v=G.tail(e);
   336 	  if (!M.get(v) && flow.get(e) > 0 ) {
   337 	    queue.push(v);
   338 	    M.set(v, true);
   339 	  }
   340 	} 
   341 
   342       }
   343 
   344     }
   345 
   346 
   347 
   348     /*
   349       Returns the maximum min cut, by a reverse bfs 
   350       from t in the residual graph.
   351     */
   352     
   353     template<typename CutMap>
   354     void max_mincut(CutMap& M) {
   355     
   356       std::queue<NodeIt> queue;
   357       
   358       M.set(t,true);        
   359       queue.push(t);
   360 
   361       while (!queue.empty()) {
   362         NodeIt w=queue.front();
   363 	queue.pop();
   364 
   365 	for(InEdgeIt e=G.template first<InEdgeIt>(w) ; e.valid(); ++e) {
   366 	  NodeIt v=G.tail(e);
   367 	  if (!M.get(v) && flow.get(e) < capacity.get(e) ) {
   368 	    queue.push(v);
   369 	    M.set(v, true);
   370 	  }
   371 	}
   372 
   373 	for(OutEdgeIt e=G.template first<OutEdgeIt>(w) ; e.valid(); ++e) {
   374 	  NodeIt v=G.head(e);
   375 	  if (!M.get(v) && flow.get(e) > 0 ) {
   376 	    queue.push(v);
   377 	    M.set(v, true);
   378 	  }
   379 	}
   380       }
   381 
   382       for(EachNodeIt v=G.template first<EachNodeIt>() ; v.valid(); ++v) {
   383 	M.set(v, !M.get(v));
   384       }
   385 
   386     }
   387 
   388 
   389 
   390     template<typename CutMap>
   391     void min_mincut(CutMap& M) {
   392       mincut(M);
   393     }
   394 
   395 
   396 
   397   };
   398 }//namespace marci
   399 #endif 
   400 
   401 
   402 
   403