3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_LIST_GRAPH_H
20 #define LEMON_LIST_GRAPH_H
24 ///\brief ListGraph, ListUGraph classes.
26 #include <lemon/bits/base_extender.h>
27 #include <lemon/bits/graph_extender.h>
29 #include <lemon/error.h>
40 int first_in, first_out;
46 int prev_in, prev_out;
47 int next_in, next_out;
50 std::vector<NodeT> nodes;
56 std::vector<EdgeT> edges;
62 typedef ListGraphBase Graph;
65 friend class ListGraphBase;
69 explicit Node(int pid) { id = pid;}
73 Node (Invalid) { id = -1; }
74 bool operator==(const Node& node) const {return id == node.id;}
75 bool operator!=(const Node& node) const {return id != node.id;}
76 bool operator<(const Node& node) const {return id < node.id;}
80 friend class ListGraphBase;
84 explicit Edge(int pid) { id = pid;}
88 Edge (Invalid) { id = -1; }
89 bool operator==(const Edge& edge) const {return id == edge.id;}
90 bool operator!=(const Edge& edge) const {return id != edge.id;}
91 bool operator<(const Edge& edge) const {return id < edge.id;}
97 : nodes(), first_node(-1),
98 first_free_node(-1), edges(), first_free_edge(-1) {}
105 int maxNodeId() const { return nodes.size()-1; }
111 int maxEdgeId() const { return edges.size()-1; }
113 Node source(Edge e) const { return Node(edges[e.id].source); }
114 Node target(Edge e) const { return Node(edges[e.id].target); }
117 void first(Node& node) const {
118 node.id = first_node;
121 void next(Node& node) const {
122 node.id = nodes[node.id].next;
126 void first(Edge& e) const {
129 n!=-1 && nodes[n].first_in == -1;
131 e.id = (n == -1) ? -1 : nodes[n].first_in;
134 void next(Edge& edge) const {
135 if (edges[edge.id].next_in != -1) {
136 edge.id = edges[edge.id].next_in;
139 for(n = nodes[edges[edge.id].target].next;
140 n!=-1 && nodes[n].first_in == -1;
142 edge.id = (n == -1) ? -1 : nodes[n].first_in;
146 void firstOut(Edge &e, const Node& v) const {
147 e.id = nodes[v.id].first_out;
149 void nextOut(Edge &e) const {
150 e.id=edges[e.id].next_out;
153 void firstIn(Edge &e, const Node& v) const {
154 e.id = nodes[v.id].first_in;
156 void nextIn(Edge &e) const {
157 e.id=edges[e.id].next_in;
161 static int id(Node v) { return v.id; }
162 static int id(Edge e) { return e.id; }
164 static Node nodeFromId(int id) { return Node(id);}
165 static Edge edgeFromId(int id) { return Edge(id);}
167 /// Adds a new node to the graph.
169 /// \warning It adds the new node to the front of the list.
170 /// (i.e. the lastly added node becomes the first.)
174 if(first_free_node==-1) {
176 nodes.push_back(NodeT());
179 first_free_node = nodes[n].next;
182 nodes[n].next = first_node;
183 if(first_node != -1) nodes[first_node].prev = n;
187 nodes[n].first_in = nodes[n].first_out = -1;
192 Edge addEdge(Node u, Node v) {
195 if (first_free_edge == -1) {
197 edges.push_back(EdgeT());
200 first_free_edge = edges[n].next_in;
203 edges[n].source = u.id;
204 edges[n].target = v.id;
206 edges[n].next_out = nodes[u.id].first_out;
207 if(nodes[u.id].first_out != -1) {
208 edges[nodes[u.id].first_out].prev_out = n;
211 edges[n].next_in = nodes[v.id].first_in;
212 if(nodes[v.id].first_in != -1) {
213 edges[nodes[v.id].first_in].prev_in = n;
216 edges[n].prev_in = edges[n].prev_out = -1;
218 nodes[u.id].first_out = nodes[v.id].first_in = n;
223 void erase(const Node& node) {
226 if(nodes[n].next != -1) {
227 nodes[nodes[n].next].prev = nodes[n].prev;
230 if(nodes[n].prev != -1) {
231 nodes[nodes[n].prev].next = nodes[n].next;
233 first_node = nodes[n].next;
236 nodes[n].next = first_free_node;
241 void erase(const Edge& edge) {
244 if(edges[n].next_in!=-1) {
245 edges[edges[n].next_in].prev_in = edges[n].prev_in;
248 if(edges[n].prev_in!=-1) {
249 edges[edges[n].prev_in].next_in = edges[n].next_in;
251 nodes[edges[n].target].first_in = edges[n].next_in;
255 if(edges[n].next_out!=-1) {
256 edges[edges[n].next_out].prev_out = edges[n].prev_out;
259 if(edges[n].prev_out!=-1) {
260 edges[edges[n].prev_out].next_out = edges[n].next_out;
262 nodes[edges[n].source].first_out = edges[n].next_out;
265 edges[n].next_in = first_free_edge;
273 first_node = first_free_node = first_free_edge = -1;
277 void changeTarget(Edge e, Node n)
279 if(edges[e.id].next_in != -1)
280 edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in;
281 if(edges[e.id].prev_in != -1)
282 edges[edges[e.id].prev_in].next_in = edges[e.id].next_in;
283 else nodes[edges[e.id].target].first_in = edges[e.id].next_in;
284 if (nodes[n.id].first_in != -1) {
285 edges[nodes[n.id].first_in].prev_in = e.id;
287 edges[e.id].target = n.id;
288 edges[e.id].prev_in = -1;
289 edges[e.id].next_in = nodes[n.id].first_in;
290 nodes[n.id].first_in = e.id;
292 void changeSource(Edge e, Node n)
294 if(edges[e.id].next_out != -1)
295 edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out;
296 if(edges[e.id].prev_out != -1)
297 edges[edges[e.id].prev_out].next_out = edges[e.id].next_out;
298 else nodes[edges[e.id].source].first_out = edges[e.id].next_out;
299 if (nodes[n.id].first_out != -1) {
300 edges[nodes[n.id].first_out].prev_out = e.id;
302 edges[e.id].source = n.id;
303 edges[e.id].prev_out = -1;
304 edges[e.id].next_out = nodes[n.id].first_out;
305 nodes[n.id].first_out = e.id;
310 typedef GraphExtender<ListGraphBase> ExtendedListGraphBase;
312 /// \addtogroup graphs
315 ///A list graph class.
317 ///This is a simple and fast erasable graph implementation.
319 ///It conforms to the \ref concept::Graph "Graph" concept and it
320 ///also provides several additional useful extra functionalities.
321 ///The most of the member functions and nested classes are
322 ///documented only in the concept class.
323 ///\sa concept::Graph.
325 class ListGraph : public ExtendedListGraphBase {
328 typedef ExtendedListGraphBase Parent;
330 ///Add a new node to the graph.
332 /// \return the new node.
334 Node addNode() { return Parent::addNode(); }
336 ///Add a new edge to the graph.
338 ///Add a new edge to the graph with source node \c s
339 ///and target node \c t.
340 ///\return the new edge.
341 Edge addEdge(const Node& s, const Node& t) {
342 return Parent::addEdge(s, t);
345 /// Changes the target of \c e to \c n
347 /// Changes the target of \c e to \c n
349 ///\note The <tt>Edge</tt>s and <tt>OutEdge</tt>s
350 ///referencing the changed edge remain
351 ///valid. However <tt>InEdge</tt>s are invalidated.
352 void changeTarget(Edge e, Node n) {
353 Parent::changeTarget(e,n);
355 /// Changes the source of \c e to \c n
357 /// Changes the source of \c e to \c n
359 ///\note The <tt>Edge</tt>s and <tt>InEdge</tt>s
360 ///referencing the changed edge remain
361 ///valid. However <tt>OutEdge</tt>s are invalidated.
362 void changeSource(Edge e, Node n) {
363 Parent::changeSource(e,n);
366 /// Invert the direction of an edge.
368 ///\note The <tt>Edge</tt>s
369 ///referencing the changed edge remain
370 ///valid. However <tt>OutEdge</tt>s and <tt>InEdge</tt>s are invalidated.
371 void reverseEdge(Edge e) {
373 changeTarget(e,source(e));
377 /// \brief Using this it is possible to avoid the superfluous memory
380 ///Using this it is possible to avoid the superfluous memory
381 ///allocation: if you know that the graph you want to build will
382 ///contain at least 10 million nodes then it is worth to reserve
383 ///space for this amount before starting to build the graph.
384 void reserveNode(int n) { nodes.reserve(n); };
386 /// \brief Using this it is possible to avoid the superfluous memory
389 ///Using this it is possible to avoid the superfluous memory
390 ///allocation: see the \ref reserveNode function.
391 void reserveEdge(int n) { edges.reserve(n); };
394 ///Contract two nodes.
396 ///This function contracts two nodes.
398 ///Node \p b will be removed but instead of deleting
399 ///incident edges, they will be joined to \p a.
400 ///The last parameter \p r controls whether to remove loops. \c true
401 ///means that loops will be removed.
403 ///\note The <tt>Edge</tt>s
404 ///referencing a moved edge remain
405 ///valid. However <tt>InEdge</tt>s and <tt>OutEdge</tt>s
406 ///may be invalidated.
407 void contract(Node a, Node b, bool r = true)
409 for(OutEdgeIt e(*this,b);e!=INVALID;) {
412 if(r && target(e)==a) erase(e);
413 else changeSource(e,a);
416 for(InEdgeIt e(*this,b);e!=INVALID;) {
419 if(r && source(e)==a) erase(e);
420 else changeTarget(e,a);
428 ///This function splits a node. First a new node is added to the graph,
429 ///then the source of each outgoing edge of \c n is moved to this new node.
430 ///If \c connect is \c true (this is the default value), then a new edge
431 ///from \c n to the newly created node is also added.
432 ///\return The newly created node.
434 ///\note The <tt>Edge</tt>s
435 ///referencing a moved edge remain
436 ///valid. However <tt>InEdge</tt>s and <tt>OutEdge</tt>s
437 ///may be invalidated.
438 ///\warning This functionality cannot be used together with the Snapshot
440 ///\todo It could be implemented in a bit faster way.
441 Node split(Node n, bool connect = true)
444 for(OutEdgeIt e(*this,n);e!=INVALID;) {
450 if(connect) addEdge(n,b);
456 ///This function splits an edge. First a new node \c b is added to
457 ///the graph, then the original edge is re-targeted to \c
458 ///b. Finally an edge from \c b to the original target is added.
459 ///\return The newly created node.
460 ///\warning This functionality
461 ///cannot be used together with the Snapshot feature.
465 addEdge(b,target(e));
470 ///Class to make a snapshot of the graph and to restore it later.
472 ///Class to make a snapshot of the graph and to restore it later.
474 ///The newly added nodes and edges can be removed using the
475 ///restore() function.
477 ///\warning Edge and node deletions cannot be restored.
478 ///\warning Snapshots cannot be nested.
479 class Snapshot : protected Parent::NodeNotifier::ObserverBase,
480 protected Parent::EdgeNotifier::ObserverBase
484 class UnsupportedOperation : public LogicError {
486 virtual const char* exceptionName() const {
487 return "lemon::ListGraph::Snapshot::UnsupportedOperation";
495 std::list<Node> added_nodes;
496 std::list<Edge> added_edges;
499 virtual void add(const Node& n) {
500 added_nodes.push_back(n);
502 virtual void erase(const Node&)
504 throw UnsupportedOperation();
506 virtual void add(const Edge& n) {
507 added_edges.push_back(n);
509 virtual void erase(const Edge&)
511 throw UnsupportedOperation();
514 ///\bug What is this used for?
516 virtual void build() {}
517 ///\bug What is this used for?
519 virtual void clear() {}
521 void regist(ListGraph &_g) {
523 Parent::NodeNotifier::ObserverBase::attach(g->getNotifier(Node()));
524 Parent::EdgeNotifier::ObserverBase::attach(g->getNotifier(Edge()));
528 Parent::NodeNotifier::ObserverBase::detach();
529 Parent::EdgeNotifier::ObserverBase::detach();
534 ///Default constructur.
536 ///Default constructur.
537 ///To actually make a snapshot you must call save().
540 ///Constructor that immediately makes a snapshot.
542 ///This constructor immediately makes a snapshot of the graph.
543 ///\param _g The graph we make a snapshot of.
544 Snapshot(ListGraph &_g) {
547 ///\bug Is it necessary?
556 ///Make a snapshot of the graph.
558 ///This function can be called more than once. In case of a repeated
559 ///call, the previous snapshot gets lost.
560 ///\param _g The graph we make the snapshot of.
561 void save(ListGraph &_g)
571 ///Undo the changes until the last snapshot.
573 ///Undo the changes until last snapshot created by save().
575 ///\todo This function might be called undo().
579 while(!added_edges.empty()) {
580 old_g.erase(added_edges.front());
581 added_edges.pop_front();
583 while(!added_nodes.empty()) {
584 old_g.erase(added_nodes.front());
585 added_nodes.pop_front();
594 /**************** Undirected List Graph ****************/
596 typedef UGraphExtender<UndirGraphExtender<ListGraphBase> >
597 ExtendedListUGraphBase;
599 /// \addtogroup graphs
602 ///An undirected list graph class.
604 ///This is a simple and fast erasable undirected graph implementation.
606 ///It conforms to the
607 ///\ref concept::UGraph "UGraph" concept.
609 ///\sa concept::UGraph.
611 ///\todo Snapshot, reverseEdge(), changeTarget(), changeSource(), contract()
612 ///haven't been implemented yet.
614 class ListUGraph : public ExtendedListUGraphBase {
616 typedef ExtendedListUGraphBase Parent;
617 /// \brief Add a new node to the graph.
619 /// \return the new node.
621 Node addNode() { return Parent::addNode(); }
623 /// \brief Add a new edge to the graph.
625 /// Add a new edge to the graph with source node \c s
626 /// and target node \c t.
627 /// \return the new undirected edge.
628 UEdge addEdge(const Node& s, const Node& t) {
629 return Parent::addEdge(s, t);
631 /// \brief Changes the target of \c e to \c n
633 /// Changes the target of \c e to \c n
635 /// \note The <tt>Edge</tt>'s and <tt>OutEdge</tt>'s
636 /// referencing the changed edge remain
637 /// valid. However <tt>InEdge</tt>'s are invalidated.
638 void changeTarget(UEdge e, Node n) {
639 Parent::changeTarget(e,n);
641 /// Changes the source of \c e to \c n
643 /// Changes the source of \c e to \c n
645 ///\note The <tt>Edge</tt>'s and <tt>InEdge</tt>'s
646 ///referencing the changed edge remain
647 ///valid. However <tt>OutEdge</tt>'s are invalidated.
648 void changeSource(UEdge e, Node n) {
649 Parent::changeSource(e,n);
651 /// \brief Contract two nodes.
653 /// This function contracts two nodes.
655 /// Node \p b will be removed but instead of deleting
656 /// its neighboring edges, they will be joined to \p a.
657 /// The last parameter \p r controls whether to remove loops. \c true
658 /// means that loops will be removed.
660 /// \note The <tt>Edge</tt>s
661 /// referencing a moved edge remain
663 void contract(Node a, Node b, bool r = true) {
664 for(IncEdgeIt e(*this, b); e!=INVALID;) {
665 IncEdgeIt f = e; ++f;
666 if (r && runningNode(e) == a) {
668 } else if (source(e) == b) {
680 class ListBpUGraphBase {
683 class NodeSetError : public LogicError {
684 virtual const char* exceptionName() const {
685 return "lemon::ListBpUGraph::NodeSetError";
692 int first_edge, prev, next;
696 int aNode, prev_out, next_out;
697 int bNode, prev_in, next_in;
700 std::vector<NodeT> aNodes;
701 std::vector<NodeT> bNodes;
703 std::vector<UEdgeT> edges;
706 int first_free_anode;
709 int first_free_bnode;
716 friend class ListBpUGraphBase;
720 explicit Node(int _id) : id(_id) {}
723 Node(Invalid) { id = -1; }
724 bool operator==(const Node i) const {return id==i.id;}
725 bool operator!=(const Node i) const {return id!=i.id;}
726 bool operator<(const Node i) const {return id<i.id;}
730 friend class ListBpUGraphBase;
734 explicit UEdge(int _id) { id = _id;}
737 UEdge (Invalid) { id = -1; }
738 bool operator==(const UEdge i) const {return id==i.id;}
739 bool operator!=(const UEdge i) const {return id!=i.id;}
740 bool operator<(const UEdge i) const {return id<i.id;}
744 : first_anode(-1), first_free_anode(-1),
745 first_bnode(-1), first_free_bnode(-1),
746 first_free_edge(-1) {}
748 void firstANode(Node& node) const {
749 node.id = first_anode != -1 ? (first_anode << 1) : -1;
751 void nextANode(Node& node) const {
752 node.id = aNodes[node.id >> 1].next;
755 void firstBNode(Node& node) const {
756 node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1;
758 void nextBNode(Node& node) const {
759 node.id = bNodes[node.id >> 1].next;
762 void first(Node& node) const {
763 if (first_anode != -1) {
764 node.id = (first_anode << 1);
765 } else if (first_bnode != -1) {
766 node.id = (first_bnode << 1) + 1;
771 void next(Node& node) const {
773 node.id = aNodes[node.id >> 1].next;
775 if (first_bnode != -1) {
776 node.id = (first_bnode << 1) + 1;
780 node.id = bNodes[node.id >> 1].next;
784 void first(UEdge& edge) const {
785 int aNodeId = first_anode;
786 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
787 aNodeId = aNodes[aNodeId].next != -1 ?
788 aNodes[aNodeId].next >> 1 : -1;
791 edge.id = aNodes[aNodeId].first_edge;
796 void next(UEdge& edge) const {
797 int aNodeId = edges[edge.id].aNode >> 1;
798 edge.id = edges[edge.id].next_out;
800 aNodeId = aNodes[aNodeId].next != -1 ?
801 aNodes[aNodeId].next >> 1 : -1;
802 while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) {
803 aNodeId = aNodes[aNodeId].next != -1 ?
804 aNodes[aNodeId].next >> 1 : -1;
807 edge.id = aNodes[aNodeId].first_edge;
814 void firstFromANode(UEdge& edge, const Node& node) const {
815 LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
816 edge.id = aNodes[node.id >> 1].first_edge;
818 void nextFromANode(UEdge& edge) const {
819 edge.id = edges[edge.id].next_out;
822 void firstFromBNode(UEdge& edge, const Node& node) const {
823 LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
824 edge.id = bNodes[node.id >> 1].first_edge;
826 void nextFromBNode(UEdge& edge) const {
827 edge.id = edges[edge.id].next_in;
830 static int id(const Node& node) {
833 static Node nodeFromId(int id) {
836 int maxNodeId() const {
837 return aNodes.size() > bNodes.size() ?
838 aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1;
841 static int id(const UEdge& edge) {
844 static UEdge uEdgeFromId(int id) {
847 int maxUEdgeId() const {
851 static int aNodeId(const Node& node) {
854 static Node fromANodeId(int id) {
855 return Node(id << 1);
857 int maxANodeId() const {
858 return aNodes.size();
861 static int bNodeId(const Node& node) {
864 static Node fromBNodeId(int id) {
865 return Node((id << 1) + 1);
867 int maxBNodeId() const {
868 return bNodes.size();
871 Node aNode(const UEdge& edge) const {
872 return Node(edges[edge.id].aNode);
874 Node bNode(const UEdge& edge) const {
875 return Node(edges[edge.id].bNode);
878 static bool aNode(const Node& node) {
879 return (node.id & 1) == 0;
882 static bool bNode(const Node& node) {
883 return (node.id & 1) == 1;
888 if (first_free_anode == -1) {
889 aNodeId = aNodes.size();
890 aNodes.push_back(NodeT());
892 aNodeId = first_free_anode;
893 first_free_anode = aNodes[first_free_anode].next;
895 if (first_anode != -1) {
896 aNodes[aNodeId].next = first_anode << 1;
897 aNodes[first_anode].prev = aNodeId << 1;
899 aNodes[aNodeId].next = -1;
901 aNodes[aNodeId].prev = -1;
902 first_anode = aNodeId;
903 aNodes[aNodeId].first_edge = -1;
904 return Node(aNodeId << 1);
909 if (first_free_bnode == -1) {
910 bNodeId = bNodes.size();
911 bNodes.push_back(NodeT());
913 bNodeId = first_free_bnode;
914 first_free_bnode = bNodes[first_free_bnode].next;
916 if (first_bnode != -1) {
917 bNodes[bNodeId].next = (first_bnode << 1) + 1;
918 bNodes[first_bnode].prev = (bNodeId << 1) + 1;
920 bNodes[bNodeId].next = -1;
922 first_bnode = bNodeId;
923 bNodes[bNodeId].first_edge = -1;
924 return Node((bNodeId << 1) + 1);
927 UEdge addEdge(const Node& source, const Node& target) {
928 LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError());
930 if (first_free_edge != -1) {
931 edgeId = first_free_edge;
932 first_free_edge = edges[edgeId].next_out;
934 edgeId = edges.size();
935 edges.push_back(UEdgeT());
937 if ((source.id & 1) == 0) {
938 edges[edgeId].aNode = source.id;
939 edges[edgeId].bNode = target.id;
941 edges[edgeId].aNode = target.id;
942 edges[edgeId].bNode = source.id;
944 edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge;
945 edges[edgeId].prev_out = -1;
946 if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) {
947 edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId;
949 aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId;
950 edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge;
951 edges[edgeId].prev_in = -1;
952 if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) {
953 edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId;
955 bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId;
956 return UEdge(edgeId);
959 void erase(const Node& node) {
961 int aNodeId = node.id >> 1;
962 if (aNodes[aNodeId].prev != -1) {
963 aNodes[aNodes[aNodeId].prev >> 1].next = aNodes[aNodeId].next;
965 first_anode = aNodes[aNodeId].next >> 1;
967 if (aNodes[aNodeId].next != -1) {
968 aNodes[aNodes[aNodeId].next >> 1].prev = aNodes[aNodeId].prev;
970 aNodes[aNodeId].next = first_free_anode;
971 first_free_anode = aNodeId;
973 int bNodeId = node.id >> 1;
974 if (bNodes[bNodeId].prev != -1) {
975 bNodes[bNodes[bNodeId].prev >> 1].next = bNodes[bNodeId].next;
977 first_bnode = bNodes[bNodeId].next >> 1;
979 if (bNodes[bNodeId].next != -1) {
980 bNodes[bNodes[bNodeId].next >> 1].prev = bNodes[bNodeId].prev;
982 bNodes[bNodeId].next = first_free_bnode;
983 first_free_bnode = bNodeId;
987 void erase(const UEdge& edge) {
989 if (edges[edge.id].prev_out != -1) {
990 edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out;
992 aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out;
994 if (edges[edge.id].next_out != -1) {
995 edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out;
998 if (edges[edge.id].prev_in != -1) {
999 edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in;
1001 bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in;
1003 if (edges[edge.id].next_in != -1) {
1004 edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in;
1007 edges[edge.id].next_out = first_free_edge;
1008 first_free_edge = edge.id;
1016 first_free_anode = -1;
1018 first_free_bnode = -1;
1019 first_free_edge = -1;
1025 typedef BpUGraphExtender< ListBpUGraphBase > ExtendedListBpUGraphBase;
1029 /// \brief A smart bipartite undirected graph class.
1031 /// This is a bipartite undirected graph implementation.
1032 /// It is conforms to the \ref concept::ErasableBpUGraph "ErasableBpUGraph"
1034 /// \sa concept::BpUGraph.
1036 class ListBpUGraph : public ExtendedListBpUGraphBase {};