Implemented virtual functions of class LpCplex.
3 * This file is a part of LEMON, a generic C++ optimization library
5 * Copyright (C) 2003-2006
6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
19 #ifndef LEMON_RANDOM_H
20 #define LEMON_RANDOM_H
31 ///\brief Mersenne Twister random number generator
33 ///\author Balazs Dezso
37 namespace _random_bits {
39 template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
40 struct RandomTraits {};
42 template <typename _Word>
43 struct RandomTraits<_Word, 32> {
46 static const int bits = 32;
48 static const int length = 624;
49 static const int shift = 397;
51 static const Word mul = 0x6c078965u;
52 static const Word arrayInit = 0x012BD6AAu;
53 static const Word arrayMul1 = 0x0019660Du;
54 static const Word arrayMul2 = 0x5D588B65u;
56 static const Word mask = 0x9908B0DFu;
57 static const Word loMask = (1u << 31) - 1;
58 static const Word hiMask = ~loMask;
61 static Word tempering(Word rnd) {
63 rnd ^= (rnd << 7) & 0x9D2C5680u;
64 rnd ^= (rnd << 15) & 0xEFC60000u;
71 template <typename _Word>
72 struct RandomTraits<_Word, 64> {
75 static const int bits = 64;
77 static const int length = 312;
78 static const int shift = 156;
80 static const Word mul = (Word)0x5851F42Du << 32 | (Word)0x4C957F2Du;
81 static const Word arrayInit = (Word)0x00000000u << 32 |(Word)0x012BD6AAu;
82 static const Word arrayMul1 = (Word)0x369DEA0Fu << 32 |(Word)0x31A53F85u;
83 static const Word arrayMul2 = (Word)0x27BB2EE6u << 32 |(Word)0x87B0B0FDu;
85 static const Word mask = (Word)0xB5026F5Au << 32 | (Word)0xA96619E9u;
86 static const Word loMask = ((Word)1u << 31) - 1;
87 static const Word hiMask = ~loMask;
89 static Word tempering(Word rnd) {
90 rnd ^= (rnd >> 29) & ((Word)0x55555555u << 32 | (Word)0x55555555u);
91 rnd ^= (rnd << 17) & ((Word)0x71D67FFFu << 32 | (Word)0xEDA60000u);
92 rnd ^= (rnd << 37) & ((Word)0xFFF7EEE0u << 32 | (Word)0x00000000u);
99 template <typename _Word>
107 static const int bits = RandomTraits<Word>::bits;
109 static const int length = RandomTraits<Word>::length;
110 static const int shift = RandomTraits<Word>::shift;
115 static const Word seedArray[4] = {
116 0x12345u, 0x23456u, 0x34567u, 0x45678u
119 initState(seedArray, seedArray + 4);
122 void initState(Word seed) {
124 static const Word mul = RandomTraits<Word>::mul;
128 Word *curr = state + length - 1;
129 curr[0] = seed; --curr;
130 for (int i = 1; i < length; ++i) {
131 curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i);
136 template <typename Iterator>
137 void initState(Iterator begin, Iterator end) {
139 static const Word init = RandomTraits<Word>::arrayInit;
140 static const Word mul1 = RandomTraits<Word>::arrayMul1;
141 static const Word mul2 = RandomTraits<Word>::arrayMul2;
144 Word *curr = state + length - 1; --curr;
145 Iterator it = begin; int cnt = 0;
150 num = length > end - begin ? length : end - begin;
152 curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1))
159 curr = state + length - 1; curr[0] = state[0];
164 num = length - 1; cnt = length - (curr - state) - 1;
166 curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2))
170 curr = state + length - 1; curr[0] = state[0]; --curr;
175 state[length - 1] = (Word)1 << (bits - 1);
178 void copyState(const RandomCore& other) {
179 std::copy(other.state, other.state + length, state);
180 current = state + (other.current - other.state);
184 if (current == state) fillState();
187 return RandomTraits<Word>::tempering(rnd);
194 static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask };
195 static const Word loMask = RandomTraits<Word>::loMask;
196 static const Word hiMask = RandomTraits<Word>::hiMask;
198 current = state + length;
200 register Word *curr = state + length - 1;
203 num = length - shift;
205 curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
206 curr[- shift] ^ mask[curr[-1] & 1ul];
211 curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
212 curr[length - shift] ^ mask[curr[-1] & 1ul];
215 curr[0] = (((curr[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^
216 curr[length - shift] ^ mask[curr[length - 1] & 1ul];
227 template <typename Result,
228 int shift = (std::numeric_limits<Result>::digits + 1) / 2>
230 static Result mask(const Result& result) {
231 return Masker<Result, (shift + 1) / 2>::
232 mask((Result)(result | (result >> shift)));
236 template <typename Result>
237 struct Masker<Result, 1> {
238 static Result mask(const Result& result) {
239 return (Result)(result | (result >> 1));
243 template <typename Result, typename Word,
244 int rest = std::numeric_limits<Result>::digits, int shift = 0,
245 bool last = rest <= std::numeric_limits<Word>::digits>
246 struct IntConversion {
247 static const int bits = std::numeric_limits<Word>::digits;
249 static Result convert(RandomCore<Word>& rnd) {
250 return (Result)(rnd() >> (bits - rest)) << shift;
255 template <typename Result, typename Word, int rest, int shift>
256 struct IntConversion<Result, Word, rest, shift, false> {
257 static const int bits = std::numeric_limits<Word>::digits;
259 static Result convert(RandomCore<Word>& rnd) {
260 return ((Result)rnd() << shift) |
261 IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd);
266 template <typename Result, typename Word,
267 bool one_word = std::numeric_limits<Word>::digits <
268 std::numeric_limits<Result>::digits>
270 static Result map(RandomCore<Word>& rnd, const Result& bound) {
271 Word max = (Word)(bound - 1);
272 Result mask = Masker<Result>::mask(bound - 1);
275 num = IntConversion<Result, Word>::convert(rnd) & mask;
281 template <typename Result, typename Word>
282 struct Mapping<Result, Word, false> {
283 static Result map(RandomCore<Word>& rnd, const Result& bound) {
284 Word max = (Word)(bound - 1);
285 Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2>
295 template <typename Result, int exp, bool pos = (exp >= 0)>
296 struct ShiftMultiplier {
297 static const Result multiplier() {
298 Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
300 if ((exp & 1) == 1) res *= (Result)2.0;
305 template <typename Result, int exp>
306 struct ShiftMultiplier<Result, exp, false> {
307 static const Result multiplier() {
308 Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
310 if ((exp & 1) == 1) res *= (Result)0.5;
315 template <typename Result>
316 struct ShiftMultiplier<Result, 0, true> {
317 static const Result multiplier() {
322 template <typename Result>
323 struct ShiftMultiplier<Result, -20, true> {
324 static const Result multiplier() {
325 return (Result)(1.0/1048576.0);
329 template <typename Result>
330 struct ShiftMultiplier<Result, -32, true> {
331 static const Result multiplier() {
332 return (Result)(1.0/424967296.0);
336 template <typename Result>
337 struct ShiftMultiplier<Result, -53, true> {
338 static const Result multiplier() {
339 return (Result)(1.0/9007199254740992.0);
343 template <typename Result>
344 struct ShiftMultiplier<Result, -64, true> {
345 static const Result multiplier() {
346 return (Result)(1.0/18446744073709551616.0);
350 template <typename Result, int exp>
352 static Result shift(const Result& result) {
353 return result * ShiftMultiplier<Result, exp>::multiplier();
357 template <typename Result, typename Word,
358 int rest = std::numeric_limits<Result>::digits, int shift = 0,
359 bool last = rest <= std::numeric_limits<Word>::digits>
360 struct RealConversion{
361 static const int bits = std::numeric_limits<Word>::digits;
363 static Result convert(RandomCore<Word>& rnd) {
364 return Shifting<Result, - shift - rest>::
365 shift((Result)(rnd() >> (bits - rest)));
369 template <typename Result, typename Word, int rest, int shift>
370 struct RealConversion<Result, Word, rest, shift, false> {
371 static const int bits = std::numeric_limits<Word>::digits;
373 static Result convert(RandomCore<Word>& rnd) {
374 return Shifting<Result, - shift - bits>::shift((Result)rnd()) +
375 RealConversion<Result, Word, rest-bits, shift + bits>::convert(rnd);
379 template <typename Result, typename Word>
382 template <typename Iterator>
383 static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) {
384 std::vector<Word> ws;
385 for (Iterator it = begin; it != end; ++it) {
386 ws.push_back((Word)*it);
388 rnd.initState(ws.begin(), ws.end());
391 static void init(RandomCore<Word>& rnd, Result seed) {
396 template <typename Word>
397 struct BoolConversion {
398 static bool convert(RandomCore<Word>& rnd) {
399 return (rnd() & 1) == 1;
407 /// \brief Mersenne Twister random number generator
409 /// The Mersenne Twister is a twisted generalized feedback
410 /// shift-register generator of Matsumoto and Nishimura. The period
411 /// of this generator is \f$ 2^{19937} - 1 \f$ and it is
412 /// equi-distributed in 623 dimensions for 32-bit numbers. The time
413 /// performance of this generator is comparable to the commonly used
416 /// This implementation is specialized for both 32-bit and 64-bit
417 /// architectures. The generators differ sligthly in the
418 /// initialization and generation phase so they produce two
419 /// completly different sequences.
421 /// The generator gives back random numbers of serveral types. To
422 /// get a random number from a range of a floating point type you
423 /// can use one form of the \c operator() or the \c real() member
424 /// function. If you want to get random number from the {0, 1, ...,
425 /// n-1} integer range use the \c operator[] or the \c integer()
426 /// method. And to get random number from the whole range of an
427 /// integer type you can use the argumentless \c integer() or \c
428 /// uinteger() functions. After all you can get random bool with
429 /// equal chance of true and false or given probability of true
430 /// result with the \c boolean() member functions.
433 /// // The commented code is identical to the other
434 /// double a = rnd(); // [0.0, 1.0)
435 /// // double a = rnd.real(); // [0.0, 1.0)
436 /// double b = rnd(100.0); // [0.0, 100.0)
437 /// // double b = rnd.real(100.0); // [0.0, 100.0)
438 /// double c = rnd(1.0, 2.0); // [1.0, 2.0)
439 /// // double c = rnd.real(1.0, 2.0); // [1.0, 2.0)
440 /// int d = rnd[100000]; // 0..99999
441 /// // int d = rnd.integer(100000); // 0..99999
442 /// int e = rnd[6] + 1; // 1..6
443 /// // int e = rnd.integer(1, 1 + 6); // 1..6
444 /// int b = rnd.uinteger<int>(); // 0 .. 2^31 - 1
445 /// int c = rnd.integer<int>(); // - 2^31 .. 2^31 - 1
446 /// bool g = rnd.boolean(); // P(g = true) = 0.5
447 /// bool h = rnd.boolean(0.8); // P(h = true) = 0.8
450 /// The lemon provides a global instance of the random number
451 /// generator which name is \ref lemon::rnd "rnd". Usually it is a
452 /// good programming convenience to use this global generator to get
455 /// \author Balazs Dezso
460 typedef unsigned long Word;
462 _random_bits::RandomCore<Word> core;
466 /// \brief Constructor
468 /// Constructor with constant seeding.
469 Random() { core.initState(); }
471 /// \brief Constructor
473 /// Constructor with seed. The current number type will be converted
474 /// to the architecture word type.
475 template <typename Number>
476 Random(Number seed) {
477 _random_bits::Initializer<Number, Word>::init(core, seed);
480 /// \brief Constructor
482 /// Constructor with array seeding. The given range should contain
483 /// any number type and the numbers will be converted to the
484 /// architecture word type.
485 template <typename Iterator>
486 Random(Iterator begin, Iterator end) {
487 typedef typename std::iterator_traits<Iterator>::value_type Number;
488 _random_bits::Initializer<Number, Word>::init(core, begin, end);
491 /// \brief Copy constructor
493 /// Copy constructor. The generated sequence will be identical to
494 /// the other sequence. It can be used to save the current state
495 /// of the generator and later use it to generate the same
497 Random(const Random& other) {
498 core.copyState(other.core);
501 /// \brief Assign operator
503 /// Assign operator. The generated sequence will be identical to
504 /// the other sequence. It can be used to save the current state
505 /// of the generator and later use it to generate the same
507 Random& operator=(const Random& other) {
508 if (&other != this) {
509 core.copyState(other.core);
514 /// \brief Returns a random real number from the range [0, 1)
516 /// It returns a random real number from the range [0, 1). The
517 /// default Number type is double.
518 template <typename Number>
520 return _random_bits::RealConversion<Number, Word>::convert(core);
524 return real<double>();
527 /// \brief Returns a random real number the range [0, b)
529 /// It returns a random real number from the range [0, b).
530 template <typename Number>
531 Number real(Number b) {
532 return real<Number>() * b;
535 /// \brief Returns a random real number from the range [a, b)
537 /// It returns a random real number from the range [a, b).
538 template <typename Number>
539 Number real(Number a, Number b) {
540 return real<Number>() * (b - a) + a;
543 /// \brief Returns a random real number from the range [0, 1)
545 /// It returns a random double from the range [0, 1).
546 double operator()() {
547 return real<double>();
550 /// \brief Returns a random real number from the range [0, b)
552 /// It returns a random real number from the range [0, b).
553 template <typename Number>
554 Number operator()(Number b) {
555 return real<Number>() * b;
558 /// \brief Returns a random real number from the range [a, b)
560 /// It returns a random real number from the range [a, b).
561 template <typename Number>
562 Number operator()(Number a, Number b) {
563 return real<Number>() * (b - a) + a;
566 /// \brief Returns a random integer from a range
568 /// It returns a random integer from the range {0, 1, ..., b - 1}.
569 template <typename Number>
570 Number integer(Number b) {
571 return _random_bits::Mapping<Number, Word>::map(core, b);
574 /// \brief Returns a random integer from a range
576 /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
577 template <typename Number>
578 Number integer(Number a, Number b) {
579 return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
582 /// \brief Returns a random integer from a range
584 /// It returns a random integer from the range {0, 1, ..., b - 1}.
585 template <typename Number>
586 Number operator[](Number b) {
587 return _random_bits::Mapping<Number, Word>::map(core, b);
590 /// \brief Returns a random non-negative integer
592 /// It returns a random non-negative integer uniformly from the
593 /// whole range of the current \c Number type. The default result
594 /// type of this function is unsigned int.
595 template <typename Number>
597 return _random_bits::IntConversion<Number, Word>::convert(core);
600 unsigned int uinteger() {
601 return uinteger<unsigned int>();
604 /// \brief Returns a random integer
606 /// It returns a random integer uniformly from the whole range of
607 /// the current \c Number type. The default result type of this
609 template <typename Number>
611 static const int nb = std::numeric_limits<Number>::digits +
612 (std::numeric_limits<Number>::is_signed ? 1 : 0);
613 return _random_bits::IntConversion<Number, Word, nb>::convert(core);
617 return integer<int>();
620 /// \brief Returns a random bool
622 /// It returns a random bool
624 return _random_bits::BoolConversion<Word>::convert(core);
627 ///\name Nonuniform distributions
632 /// \brief Returns a random bool
634 /// It returns a random bool with given probability of true result
635 bool boolean(double p) {
636 return operator()() < p;
639 /// Standard Gauss distribution
641 /// Standard Gauss distribution.
642 /// \note The Cartesian form of the Box-Muller
643 /// transformation is used to generate a random normal distribution.
644 /// \todo Consider using the "ziggurat" method instead.
649 V1=2*real<double>()-1;
650 V2=2*real<double>()-1;
653 return std::sqrt(-2*std::log(S)/S)*V1;
655 /// Gauss distribution with given standard deviation and mean 0
659 double gauss(double std_dev)
661 return gauss()*std_dev;
663 /// Gauss distribution with given mean and standard deviation
667 double gauss(double mean,double std_dev)
669 return gauss()*std_dev+mean;
672 /// Exponential distribution with given mean
674 /// This function generates an exponential distribution random number
675 /// with mean <tt>1/lambda</tt>.
677 double exponential(double lambda=1.0)
679 return -log(real<double>())/lambda;