src/work/marci/lp/lp_solver_wrapper.h
author deba
Wed, 09 Mar 2005 14:15:22 +0000
changeset 1208 f486d30e4e7b
parent 1014 aae850a2394d
permissions -rw-r--r--
Easy input-output function for common graphs.
Modified Exception handling in graph_reader.
     1 // -*- c++ -*-
     2 #ifndef LEMON_LP_SOLVER_WRAPPER_H
     3 #define LEMON_LP_SOLVER_WRAPPER_H
     4 
     5 ///\ingroup misc
     6 ///\file
     7 ///\brief Dijkstra algorithm.
     8 
     9 // #include <stdio.h>
    10 #include <stdlib.h>
    11 // #include <stdio>
    12 //#include <stdlib>
    13 extern "C" {
    14 #include "glpk.h"
    15 }
    16 
    17 #include <iostream>
    18 #include <vector>
    19 #include <string>
    20 #include <list>
    21 #include <memory>
    22 #include <utility>
    23 
    24 //#include <sage_graph.h>
    25 //#include <lemon/list_graph.h>
    26 //#include <lemon/graph_wrapper.h>
    27 #include <lemon/invalid.h>
    28 //#include <bfs_dfs.h>
    29 //#include <stp.h>
    30 //#include <lemon/max_flow.h>
    31 //#include <augmenting_flow.h>
    32 //#include <iter_map.h>
    33 
    34 using std::cout;
    35 using std::cin;
    36 using std::endl;
    37 
    38 namespace lemon {
    39 
    40   
    41   /// \addtogroup misc
    42   /// @{
    43 
    44   /// \brief A partitioned vector with iterable classes.
    45   ///
    46   /// This class implements a container in which the data is stored in an 
    47   /// stl vector, the range is partitioned into sets and each set is 
    48   /// doubly linked in a list. 
    49   /// That is, each class is iterable by lemon iterators, and any member of 
    50   /// the vector can bo moved to an other class.
    51   template <typename T>
    52   class IterablePartition {
    53   protected:
    54     struct Node {
    55       T data;
    56       int prev; //invalid az -1
    57       int next; 
    58     };
    59     std::vector<Node> nodes;
    60     struct Tip {
    61       int first;
    62       int last;
    63     };
    64     std::vector<Tip> tips;
    65   public:
    66     /// The classes are indexed by integers from \c 0 to \c classNum()-1.
    67     int classNum() const { return tips.size(); }
    68     /// This lemon style iterator iterates through a class. 
    69     class ClassIt;
    70     /// Constructor. The number of classes is to be given which is fixed 
    71     /// over the life of the container. 
    72     /// The partition classes are indexed from 0 to class_num-1. 
    73     IterablePartition(int class_num) { 
    74       for (int i=0; i<class_num; ++i) {
    75 	Tip t;
    76 	t.first=t.last=-1;
    77 	tips.push_back(t);
    78       }
    79     }
    80   protected:
    81     void befuz(ClassIt it, int class_id) {
    82       if (tips[class_id].first==-1) {
    83 	if (tips[class_id].last==-1) {
    84 	  nodes[it.i].prev=nodes[it.i].next=-1;
    85 	  tips[class_id].first=tips[class_id].last=it.i;
    86 	}
    87       } else {
    88 	nodes[it.i].prev=tips[class_id].last;
    89 	nodes[it.i].next=-1;
    90 	nodes[tips[class_id].last].next=it.i;
    91 	tips[class_id].last=it.i;
    92       }
    93     }
    94     void kifuz(ClassIt it, int class_id) {
    95       if (tips[class_id].first==it.i) {
    96 	if (tips[class_id].last==it.i) {
    97 	  tips[class_id].first=tips[class_id].last=-1;
    98 	} else {
    99 	  tips[class_id].first=nodes[it.i].next;
   100 	  nodes[nodes[it.i].next].prev=-1;
   101 	}
   102       } else {
   103 	if (tips[class_id].last==it.i) {
   104 	  tips[class_id].last=nodes[it.i].prev;
   105 	  nodes[nodes[it.i].prev].next=-1;
   106 	} else {
   107 	  nodes[nodes[it.i].next].prev=nodes[it.i].prev;
   108 	  nodes[nodes[it.i].prev].next=nodes[it.i].next;
   109 	}
   110       }
   111     }
   112   public:
   113     /// A new element with data \c t is pushed into the vector and into class 
   114     /// \c class_id.
   115     ClassIt push_back(const T& t, int class_id) { 
   116       Node n;
   117       n.data=t;
   118       nodes.push_back(n);
   119       int i=nodes.size()-1;
   120       befuz(i, class_id);
   121       return i;
   122     }
   123     /// A member is moved to an other class.
   124     void set(ClassIt it, int old_class_id, int new_class_id) {
   125       kifuz(it.i, old_class_id);
   126       befuz(it.i, new_class_id);
   127     }
   128     /// Returns the data pointed by \c it.
   129     T& operator[](ClassIt it) { return nodes[it.i].data; }
   130     /// Returns the data pointed by \c it.
   131     const T& operator[](ClassIt it) const { return nodes[it.i].data; }
   132     ///.
   133     class ClassIt {
   134       friend class IterablePartition;
   135     protected:
   136       int i;
   137     public:
   138       /// Default constructor.
   139       ClassIt() { }
   140       /// This constructor constructs an iterator which points
   141       /// to the member of th container indexed by the integer _i.
   142       ClassIt(const int& _i) : i(_i) { }
   143       /// Invalid constructor.
   144       ClassIt(const Invalid&) : i(-1) { }
   145     };
   146     /// First member of class \c class_id.
   147     ClassIt& first(ClassIt& it, int class_id) const {
   148       it.i=tips[class_id].first;
   149       return it;
   150     }
   151     /// Next member.
   152     ClassIt& next(ClassIt& it) const {
   153       it.i=nodes[it.i].next;
   154       return it;
   155     }
   156     /// True iff the iterator is valid.
   157     bool valid(const ClassIt& it) const { return it.i!=-1; }
   158   };
   159   
   160   /// \brief Wrappers for LP solvers
   161   /// 
   162   /// This class implements a lemon wrapper for glpk.
   163   /// Later other LP-solvers will be wrapped into lemon.
   164   /// The aim of this class is to give a general surface to different 
   165   /// solvers, i.e. it makes possible to write algorithms using LP's, 
   166   /// in which the solver can be changed to an other one easily.
   167   class LPSolverWrapper {
   168   public:
   169 
   170 //   class Row {
   171 //   protected:
   172 //     int i;
   173 //   public:
   174 //     Row() { }
   175 //     Row(const Invalid&) : i(0) { }
   176 //     Row(const int& _i) : i(_i) { }
   177 //     operator int() const { return i; }
   178 //   };
   179 //   class RowIt : public Row {
   180 //   public:
   181 //     RowIt(const Row& row) : Row(row) { }
   182 //   };
   183 
   184 //   class Col {
   185 //   protected:
   186 //     int i;
   187 //   public:
   188 //     Col() { }
   189 //     Col(const Invalid&) : i(0) { }
   190 //     Col(const int& _i) : i(_i) { }
   191 //     operator int() const { return i; }
   192 //   };
   193 //   class ColIt : public Col {
   194 //     ColIt(const Col& col) : Col(col) { }
   195 //   };
   196 
   197   public:
   198     ///.
   199     LPX* lp;
   200     ///.
   201     typedef IterablePartition<int>::ClassIt RowIt;
   202     ///.
   203     IterablePartition<int> row_iter_map;
   204     ///.
   205     typedef IterablePartition<int>::ClassIt ColIt;
   206     ///.
   207     IterablePartition<int> col_iter_map;
   208     //std::vector<int> row_id_to_lp_row_id;
   209     //std::vector<int> col_id_to_lp_col_id;
   210     ///.
   211     const int VALID_ID;
   212     ///.
   213     const int INVALID_ID;
   214 
   215   public:
   216     ///.
   217     LPSolverWrapper() : lp(lpx_create_prob()), 
   218 			row_iter_map(2), 
   219 			col_iter_map(2), 
   220 			//row_id_to_lp_row_id(), col_id_to_lp_col_id(), 
   221 			VALID_ID(0), INVALID_ID(1) {
   222       lpx_set_int_parm(lp, LPX_K_DUAL, 1);
   223     }
   224     ///.
   225     ~LPSolverWrapper() {
   226       lpx_delete_prob(lp);
   227     }
   228     ///.
   229     void setMinimize() { 
   230       lpx_set_obj_dir(lp, LPX_MIN);
   231     }
   232     ///.
   233     void setMaximize() { 
   234       lpx_set_obj_dir(lp, LPX_MAX);
   235     }
   236     ///.
   237     ColIt addCol() {
   238       int i=lpx_add_cols(lp, 1);  
   239       ColIt col_it;
   240       col_iter_map.first(col_it, INVALID_ID);
   241       if (col_iter_map.valid(col_it)) { //van hasznalhato hely
   242 	col_iter_map.set(col_it, INVALID_ID, VALID_ID);
   243 	col_iter_map[col_it]=i;
   244 	//col_id_to_lp_col_id[col_iter_map[col_it]]=i;
   245       } else { //a cucc vegere kell inzertalni mert nincs szabad hely
   246 	//col_id_to_lp_col_id.push_back(i);
   247 	//int j=col_id_to_lp_col_id.size()-1;
   248 	col_it=col_iter_map.push_back(i, VALID_ID);
   249       }
   250 //    edge_index_map.set(e, i);
   251 //    lpx_set_col_bnds(lp, i, LPX_DB, 0.0, 1.0);
   252 //    lpx_set_obj_coef(lp, i, cost[e]);    
   253       return col_it;
   254     }
   255     ///.
   256     RowIt addRow() {
   257       int i=lpx_add_rows(lp, 1);  
   258       RowIt row_it;
   259       row_iter_map.first(row_it, INVALID_ID);
   260       if (row_iter_map.valid(row_it)) { //van hasznalhato hely
   261 	row_iter_map.set(row_it, INVALID_ID, VALID_ID);
   262 	row_iter_map[row_it]=i;
   263       } else { //a cucc vegere kell inzertalni mert nincs szabad hely
   264 	row_it=row_iter_map.push_back(i, VALID_ID);
   265       }
   266       return row_it;
   267     }
   268     //pair<RowIt, double>-bol kell megadni egy std range-et
   269     ///.
   270     template <typename Begin, typename End>
   271     void setColCoeffs(const ColIt& col_it, 
   272 		      Begin begin, End end) {
   273       int mem_length=1+lpx_get_num_rows(lp);
   274       int* indices = new int[mem_length];
   275       double* doubles = new double[mem_length];
   276       int length=0;
   277       for ( ; begin!=end; ++begin) {
   278 	++length;
   279 	indices[length]=row_iter_map[begin->first];
   280 	doubles[length]=begin->second;
   281       }
   282       lpx_set_mat_col(lp, col_iter_map[col_it], length, indices, doubles);
   283       delete [] indices;
   284       delete [] doubles;
   285     }
   286     //pair<ColIt, double>-bol kell megadni egy std range-et
   287     ///.
   288     template <typename Begin, typename End>
   289     void setRowCoeffs(const RowIt& row_it, 
   290 		      Begin begin, End end) {
   291       int mem_length=1+lpx_get_num_cols(lp);
   292       int* indices = new int[mem_length];
   293       double* doubles = new double[mem_length];
   294       int length=0;
   295       for ( ; begin!=end; ++begin) {
   296 	++length;
   297 	indices[length]=col_iter_map[begin->first];
   298 	doubles[length]=begin->second;
   299       }
   300       lpx_set_mat_row(lp, row_iter_map[row_it], length, indices, doubles);
   301       delete [] indices;
   302       delete [] doubles;
   303     }
   304     ///.
   305     void eraseCol(const ColIt& col_it) {
   306       col_iter_map.set(col_it, VALID_ID, INVALID_ID);
   307       int cols[2];
   308       cols[1]=col_iter_map[col_it];
   309       lpx_del_cols(lp, 1, cols);
   310       col_iter_map[col_it]=0; //glpk specifikus
   311       ColIt it;
   312       for (col_iter_map.first(it, VALID_ID); 
   313 	   col_iter_map.valid(it); col_iter_map.next(it)) {
   314 	if (col_iter_map[it]>cols[1]) --col_iter_map[it];
   315       }
   316     }
   317     ///.
   318     void eraseRow(const RowIt& row_it) {
   319       row_iter_map.set(row_it, VALID_ID, INVALID_ID);
   320       int rows[2];
   321       rows[1]=row_iter_map[row_it];
   322       lpx_del_rows(lp, 1, rows);
   323       row_iter_map[row_it]=0; //glpk specifikus
   324       RowIt it;
   325       for (row_iter_map.first(it, VALID_ID); 
   326 	   row_iter_map.valid(it); row_iter_map.next(it)) {
   327 	if (row_iter_map[it]>rows[1]) --row_iter_map[it];
   328       }
   329     }
   330     ///.
   331     void setColBounds(const ColIt& col_it, int bound_type, 
   332 		      double lo, double up) {
   333       lpx_set_col_bnds(lp, col_iter_map[col_it], bound_type, lo, up);
   334     }
   335     ///.
   336     double getObjCoef(const ColIt& col_it) { 
   337       return lpx_get_obj_coef(lp, col_iter_map[col_it]);
   338     }
   339     ///.
   340     void setRowBounds(const RowIt& row_it, int bound_type, 
   341 		      double lo, double up) {
   342       lpx_set_row_bnds(lp, row_iter_map[row_it], bound_type, lo, up);
   343     }
   344     ///.
   345     void setObjCoef(const ColIt& col_it, double obj_coef) { 
   346       lpx_set_obj_coef(lp, col_iter_map[col_it], obj_coef);
   347     }
   348     ///.
   349     void solveSimplex() { lpx_simplex(lp); }
   350     ///.
   351     void solvePrimalSimplex() { lpx_simplex(lp); }
   352     ///.
   353     void solveDualSimplex() { lpx_simplex(lp); }
   354     ///.
   355     double getPrimal(const ColIt& col_it) {
   356       return lpx_get_col_prim(lp, col_iter_map[col_it]);
   357     }
   358     ///.
   359     double getObjVal() { return lpx_get_obj_val(lp); }
   360     ///.
   361     int rowNum() const { return lpx_get_num_rows(lp); }
   362     ///.
   363     int colNum() const { return lpx_get_num_cols(lp); }
   364     ///.
   365     int warmUp() { return lpx_warm_up(lp); }
   366     ///.
   367     void printWarmUpStatus(int i) {
   368       switch (i) {
   369 	case LPX_E_OK: cout << "LPX_E_OK" << endl; break;
   370 	case LPX_E_EMPTY: cout << "LPX_E_EMPTY" << endl; break;	
   371 	case LPX_E_BADB: cout << "LPX_E_BADB" << endl; break;
   372 	case LPX_E_SING: cout << "LPX_E_SING" << endl; break;
   373       }
   374     }
   375     ///.
   376     int getPrimalStatus() { return lpx_get_prim_stat(lp); }
   377     ///.
   378     void printPrimalStatus(int i) {
   379       switch (i) {
   380 	case LPX_P_UNDEF: cout << "LPX_P_UNDEF" << endl; break;
   381 	case LPX_P_FEAS: cout << "LPX_P_FEAS" << endl; break;	
   382 	case LPX_P_INFEAS: cout << "LPX_P_INFEAS" << endl; break;
   383 	case LPX_P_NOFEAS: cout << "LPX_P_NOFEAS" << endl; break;
   384       }
   385     }
   386     ///.
   387     int getDualStatus() { return lpx_get_dual_stat(lp); }
   388     ///.
   389     void printDualStatus(int i) {
   390       switch (i) {
   391 	case LPX_D_UNDEF: cout << "LPX_D_UNDEF" << endl; break;
   392 	case LPX_D_FEAS: cout << "LPX_D_FEAS" << endl; break;	
   393 	case LPX_D_INFEAS: cout << "LPX_D_INFEAS" << endl; break;
   394 	case LPX_D_NOFEAS: cout << "LPX_D_NOFEAS" << endl; break;
   395       }
   396     }
   397     /// Returns the status of the slack variable assigned to row \c row_it.
   398     int getRowStat(const RowIt& row_it) { 
   399       return lpx_get_row_stat(lp, row_iter_map[row_it]); 
   400     }
   401     ///.
   402     void printRowStatus(int i) {
   403       switch (i) {
   404 	case LPX_BS: cout << "LPX_BS" << endl; break;
   405 	case LPX_NL: cout << "LPX_NL" << endl; break;	
   406 	case LPX_NU: cout << "LPX_NU" << endl; break;
   407 	case LPX_NF: cout << "LPX_NF" << endl; break;
   408 	case LPX_NS: cout << "LPX_NS" << endl; break;
   409       }
   410     }
   411     /// Returns the status of the variable assigned to column \c col_it.
   412     int getColStat(const ColIt& col_it) { 
   413       return lpx_get_col_stat(lp, col_iter_map[col_it]); 
   414     }
   415     ///.
   416     void printColStatus(int i) {
   417       switch (i) {
   418 	case LPX_BS: cout << "LPX_BS" << endl; break;
   419 	case LPX_NL: cout << "LPX_NL" << endl; break;	
   420 	case LPX_NU: cout << "LPX_NU" << endl; break;
   421 	case LPX_NF: cout << "LPX_NF" << endl; break;
   422 	case LPX_NS: cout << "LPX_NS" << endl; break;
   423       }
   424     }
   425   };
   426   
   427   /// @}
   428 
   429 } //namespace lemon
   430 
   431 #endif //LEMON_LP_SOLVER_WRAPPER_H