src/work/jacint/max_save.h
author marci
Tue, 24 Aug 2004 09:50:33 +0000
changeset 772 f56eb959dd39
child 921 818510fa3d99
permissions -rw-r--r--
Demo directory...
     1 // -*- C++ -*-
     2 #ifndef HUGO_MAX_FLOW_H
     3 #define HUGO_MAX_FLOW_H
     4 
     5 ///\ingroup galgs
     6 ///\file
     7 ///\brief Maximum flow algorithm.
     8 
     9 #define H0 20
    10 #define H1 1
    11 
    12 #include <vector>
    13 #include <queue>
    14 #include <stack>
    15 
    16 #include <graph_wrapper.h>
    17 #include <bfs_iterator.h>
    18 #include <invalid.h>
    19 #include <maps.h>
    20 #include <for_each_macros.h>
    21 
    22 /// \file
    23 /// \brief Dimacs file format reader.
    24 
    25 namespace hugo {
    26 
    27   /// \addtogroup galgs
    28   /// @{
    29 
    30   ///Maximum flow algorithms class.
    31 
    32   ///This class provides various algorithms for finding a flow of
    33   ///maximum value in a directed graph. The \e source node, the \e
    34   ///target node, the \e capacity of the edges and the \e starting \e
    35   ///flow value of the edges can be passed to the algorithm by the
    36   ///constructor. It is possible to change these quantities using the
    37   ///functions \ref resetSource, \ref resetTarget, \ref resetCap and
    38   ///\ref resetFlow. Before any subsequent runs of any algorithm of
    39   ///the class \ref resetFlow should be called, otherwise it will
    40   ///start from a maximum flow.
    41 
    42   ///After running an algorithm of the class, the maximum value of a
    43   ///value can be obtained by calling \ref flowValue(). The minimum
    44   ///value cut can be written into a \c node map of \c bools by
    45   ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes
    46   ///the inclusionwise minimum and maximum of the minimum value
    47   ///cuts, resp.)
    48 
    49   ///\param Graph The undirected graph type the algorithm runs on.
    50   ///\param Num The number type of the capacities and the flow values.
    51   ///\param The type of the capacity map.
    52   ///\param The type of the flow map.
    53 
    54   ///\author Marton Makai, Jacint Szabo
    55   template <typename Graph, typename Num, 
    56 	    typename CapMap=typename Graph::template EdgeMap<Num>, 
    57             typename FlowMap=typename Graph::template EdgeMap<Num> >
    58   class MaxFlow {
    59     
    60     typedef typename Graph::Node Node;
    61     typedef typename Graph::NodeIt NodeIt;
    62     typedef typename Graph::OutEdgeIt OutEdgeIt;
    63     typedef typename Graph::InEdgeIt InEdgeIt;
    64 
    65     typedef typename std::vector<std::stack<Node> > VecStack;
    66     typedef typename Graph::template NodeMap<Node> NNMap;
    67     typedef typename std::vector<Node> VecNode;
    68     
    69     typedef ResGraphWrapper<const Graph, Num, CapMap, FlowMap> ResGW;
    70     typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt;
    71     typedef typename ResGW::Edge ResGWEdge;
    72     //typedef typename ResGW::template NodeMap<bool> ReachedMap;  //fixme
    73     typedef typename Graph::template NodeMap<int> ReachedMap;
    74     
    75     const Graph* g;
    76     Node s;
    77     Node t;
    78     const CapMap* capacity;  
    79     FlowMap* flow;
    80     int n;          //the number of nodes of G
    81 
    82     //level works as a bool map in augmenting path algorithms and is
    83     //used by bfs for storing reached information.  In preflow, it
    84     //shows the levels of nodes. 
    85     ReachedMap level;
    86     
    87     //excess is needed only in preflow
    88     typename Graph::template NodeMap<Num> excess; 
    89 
    90 
    91     //fixme
    92     //   protected:
    93     //     MaxFlow() { }
    94     //     void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
    95     // 	     FlowMap& _flow) 
    96     //       {
    97     // 	g=&_G; 
    98     // 	s=_s; 
    99     // 	t=_t; 
   100     // 	capacity=&_capacity;
   101     // 	flow=&_flow;
   102     // 	n=_G.nodeNum;
   103     // 	level.set (_G); //kellene vmi ilyesmi fv 
   104     // 	excess(_G,0); //itt is
   105     //       }
   106 
   107   public:
   108  
   109     ///Indicates the property of the starting flow. 
   110 
   111     ///Indicates the property of the starting flow. The meanings: 
   112     ///- \c ZERO_FLOW: constant zero flow
   113     ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to
   114     ///the sum of the out-flows in every node except the source and
   115     ///the target.
   116     ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at
   117     ///least the sum of the out-flows in every node except the source.
   118     enum flowEnum{
   119       ZERO_FLOW=0,
   120       GEN_FLOW=1,
   121       PRE_FLOW=2
   122     };
   123 
   124     MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, 
   125 	    FlowMap& _flow) :
   126       g(&_G), s(_s), t(_t), capacity(&_capacity), 
   127       flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {}
   128 
   129     ///Runs a maximum flow algorithm.
   130 
   131     ///Runs a preflow algorithm, which is the fastest maximum flow
   132     ///algorithm up-to-date. The default for \c fe is ZERO_FLOW.
   133     ///\pre The starting flow must be a 
   134     /// - constant zero flow if \c fe is \c ZERO_FLOW,
   135     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
   136     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
   137     void run( flowEnum fe=ZERO_FLOW ) {
   138       preflow(fe);
   139     }
   140     
   141     ///Runs a preflow algorithm.
   142 
   143     ///Runs a preflow algorithm. The preflow algorithms provide the
   144     ///fastest way to compute a maximum flow in a directed graph.
   145     ///\pre The starting flow must be a 
   146     /// - constant zero flow if \c fe is \c ZERO_FLOW,
   147     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
   148     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
   149     void preflow(flowEnum fe) {
   150       preflowPhase1(fe);
   151       preflowPhase2();
   152     }
   153     // Heuristics: 
   154     //   2 phase
   155     //   gap
   156     //   list 'level_list' on the nodes on level i implemented by hand
   157     //   stack 'active' on the active nodes on level i
   158     //   runs heuristic 'highest label' for H1*n relabels
   159     //   runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label'
   160     //   Parameters H0 and H1 are initialized to 20 and 1.
   161 
   162     ///Runs the first phase of the preflow algorithm.
   163     
   164     ///The preflow algorithm consists of two phases, this method runs the
   165     ///first phase. After the first phase the maximum flow value and a
   166     ///minimum value cut can already be computed, though a maximum flow
   167     ///is net yet obtained. So after calling this method \ref flowValue
   168     ///and \ref actMinCut gives proper results. 
   169     ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not
   170     ///give minimum value cuts unless calling \ref preflowPhase2.
   171     ///\pre The starting flow must be a 
   172     /// - constant zero flow if \c fe is \c ZERO_FLOW,
   173     /// - an arbitary flow if \c fe is \c GEN_FLOW, 
   174     /// - an arbitary preflow if \c fe is \c PRE_FLOW.
   175     void preflowPhase1( flowEnum fe );
   176 
   177     ///Runs the second phase of the preflow algorithm.
   178     
   179     ///The preflow algorithm consists of two phases, this method runs
   180     ///the second phase. After calling \ref preflowPhase1 and then
   181     ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut,
   182     ///\ref minMinCut and \ref maxMinCut give proper results.
   183     ///\pre \ref preflowPhase1 must be called before.
   184     void preflowPhase2();
   185 
   186     /// Starting from a flow, this method searches for an augmenting path 
   187     /// according to the Edmonds-Karp algorithm 
   188     /// and augments the flow on if any. 
   189     /// The return value shows if the augmentation was successful.
   190     bool augmentOnShortestPath();
   191 
   192     /// Starting from a flow, this method searches for an augmenting blockin 
   193     /// flow according to Dinits' algorithm and augments the flow on if any. 
   194     /// The blocking flow is computed in a physically constructed 
   195     /// residual graph of type \c Mutablegraph.
   196     /// The return value show sif the augmentation was succesful.
   197     template<typename MutableGraph> bool augmentOnBlockingFlow();
   198 
   199     /// The same as \c augmentOnBlockingFlow<MutableGraph> but the 
   200     /// residual graph is not constructed physically.
   201     /// The return value shows if the augmentation was succesful.
   202     bool augmentOnBlockingFlow2();
   203 
   204     /// Returns the actual flow value.
   205     /// More precisely, it returns the negative excess of s, thus 
   206     /// this works also for preflows.
   207     ///Can be called already after \ref preflowPhase1.
   208 
   209     Num flowValue() { 
   210       Num a=0;
   211       FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e];
   212       FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e];
   213       return a;
   214       //marci figyu: excess[t] epp ezt adja preflow 0. fazisa utan
   215     }
   216 
   217     ///Returns a minimum value cut after calling \ref preflowPhase1.
   218 
   219     ///After the first phase of the preflow algorithm the maximum flow
   220     ///value and a minimum value cut can already be computed. This
   221     ///method can be called after running \ref preflowPhase1 for
   222     ///obtaining a minimum value cut.
   223     ///\warning: Gives proper result only right after calling \ref
   224     ///preflowPhase1.
   225     ///\todo We have to make some status variable which shows the actual state 
   226     /// of the class. This enables us to determine which methods are valid 
   227     /// for MinCut computation
   228     template<typename _CutMap>
   229     void actMinCut(_CutMap& M) {
   230       NodeIt v;
   231       for(g->first(v); g->valid(v); g->next(v)) {
   232 	if ( level[v] < n ) {
   233 	  M.set(v,false);
   234 	} else {
   235 	  M.set(v,true);
   236 	}
   237       }
   238     }
   239     
   240     ///Returns the inclusionwise minimum of the minimum value cuts.
   241 
   242     ///Sets \c M to the characteristic vector of the minimum value cut
   243     ///which is inclusionwise minimum. It is computed by processing
   244     ///a bfs from the source node \c s in the residual graph.
   245     ///\pre M should be a node map of bools initialized to false.
   246     ///\pre \c flow must be a maximum flow.
   247     template<typename _CutMap>
   248     void minMinCut(_CutMap& M) {
   249     
   250       std::queue<Node> queue;
   251       
   252       M.set(s,true);      
   253       queue.push(s);
   254 
   255       while (!queue.empty()) {
   256         Node w=queue.front();
   257 	queue.pop();
   258 
   259 	OutEdgeIt e;
   260 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   261 	  Node v=g->head(e);
   262 	  if (!M[v] && (*flow)[e] < (*capacity)[e] ) {
   263 	    queue.push(v);
   264 	    M.set(v, true);
   265 	  }
   266 	} 
   267 
   268 	InEdgeIt f;
   269 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   270 	  Node v=g->tail(f);
   271 	  if (!M[v] && (*flow)[f] > 0 ) {
   272 	    queue.push(v);
   273 	    M.set(v, true);
   274 	  }
   275 	} 
   276       }
   277     }
   278 
   279 
   280     ///Returns the inclusionwise maximum of the minimum value cuts.
   281 
   282     ///Sets \c M to the characteristic vector of the minimum value cut
   283     ///which is inclusionwise maximum. It is computed by processing a
   284     ///backward bfs from the target node \c t in the residual graph.
   285     ///\pre M should be a node map of bools initialized to false.
   286     ///\pre \c flow must be a maximum flow.
   287     template<typename _CutMap>
   288     void maxMinCut(_CutMap& M) {
   289 
   290       NodeIt v;
   291       for(g->first(v) ; g->valid(v); g->next(v)) {
   292 	M.set(v, true);
   293       }
   294 
   295       std::queue<Node> queue;
   296       
   297       M.set(t,false);        
   298       queue.push(t);
   299 
   300       while (!queue.empty()) {
   301         Node w=queue.front();
   302 	queue.pop();
   303 
   304 
   305 	InEdgeIt e;
   306 	for(g->first(e,w) ; g->valid(e); g->next(e)) {
   307 	  Node v=g->tail(e);
   308 	  if (M[v] && (*flow)[e] < (*capacity)[e] ) {
   309 	    queue.push(v);
   310 	    M.set(v, false);
   311 	  }
   312 	}
   313 	
   314 	OutEdgeIt f;
   315 	for(g->first(f,w) ; g->valid(f); g->next(f)) {
   316 	  Node v=g->head(f);
   317 	  if (M[v] && (*flow)[f] > 0 ) {
   318 	    queue.push(v);
   319 	    M.set(v, false);
   320 	  }
   321 	}
   322       }
   323     }
   324 
   325 
   326     ///Returns a minimum value cut.
   327 
   328     ///Sets \c M to the characteristic vector of a minimum value cut.
   329     ///\pre M should be a node map of bools initialized to false.
   330     ///\pre \c flow must be a maximum flow.
   331     template<typename CutMap>
   332     void minCut(CutMap& M) { minMinCut(M); }
   333 
   334     ///Resets the source node to \c _s.
   335 
   336     ///Resets the source node to \c _s.
   337     ///
   338     void resetSource(Node _s) { s=_s; }
   339 
   340 
   341     ///Resets the target node to \c _t.
   342 
   343     ///Resets the target node to \c _t.
   344     ///
   345     void resetTarget(Node _t) { t=_t; }
   346    
   347     /// Resets the edge map of the capacities to _cap.
   348 
   349     /// Resets the edge map of the capacities to _cap.
   350     ///
   351     void resetCap(const CapMap& _cap) { capacity=&_cap; }
   352     
   353     /// Resets the edge map of the flows to _flow.
   354 
   355     /// Resets the edge map of the flows to _flow.
   356     ///
   357     void resetFlow(FlowMap& _flow) { flow=&_flow; }
   358 
   359 
   360   private:
   361 
   362     int push(Node w, VecStack& active) {
   363       
   364       int lev=level[w];
   365       Num exc=excess[w];
   366       int newlevel=n;       //bound on the next level of w
   367 	  
   368       OutEdgeIt e;
   369       for(g->first(e,w); g->valid(e); g->next(e)) {
   370 	    
   371 	if ( (*flow)[e] >= (*capacity)[e] ) continue; 
   372 	Node v=g->head(e);            
   373 	    
   374 	if( lev > level[v] ) { //Push is allowed now
   375 	  
   376 	  if ( excess[v]<=0 && v!=t && v!=s ) {
   377 	    int lev_v=level[v];
   378 	    active[lev_v].push(v);
   379 	  }
   380 	  
   381 	  Num cap=(*capacity)[e];
   382 	  Num flo=(*flow)[e];
   383 	  Num remcap=cap-flo;
   384 	  
   385 	  if ( remcap >= exc ) { //A nonsaturating push.
   386 	    
   387 	    flow->set(e, flo+exc);
   388 	    excess.set(v, excess[v]+exc);
   389 	    exc=0;
   390 	    break; 
   391 	    
   392 	  } else { //A saturating push.
   393 	    flow->set(e, cap);
   394 	    excess.set(v, excess[v]+remcap);
   395 	    exc-=remcap;
   396 	  }
   397 	} else if ( newlevel > level[v] ) newlevel = level[v];
   398       } //for out edges wv 
   399       
   400       if ( exc > 0 ) {	
   401 	InEdgeIt e;
   402 	for(g->first(e,w); g->valid(e); g->next(e)) {
   403 	  
   404 	  if( (*flow)[e] <= 0 ) continue; 
   405 	  Node v=g->tail(e); 
   406 	  
   407 	  if( lev > level[v] ) { //Push is allowed now
   408 	    
   409 	    if ( excess[v]<=0 && v!=t && v!=s ) {
   410 	      int lev_v=level[v];
   411 	      active[lev_v].push(v);
   412 	    }
   413 	    
   414 	    Num flo=(*flow)[e];
   415 	    
   416 	    if ( flo >= exc ) { //A nonsaturating push.
   417 	      
   418 	      flow->set(e, flo-exc);
   419 	      excess.set(v, excess[v]+exc);
   420 	      exc=0;
   421 	      break; 
   422 	    } else {  //A saturating push.
   423 	      
   424 	      excess.set(v, excess[v]+flo);
   425 	      exc-=flo;
   426 	      flow->set(e,0);
   427 	    }  
   428 	  } else if ( newlevel > level[v] ) newlevel = level[v];
   429 	} //for in edges vw
   430 	
   431       } // if w still has excess after the out edge for cycle
   432       
   433       excess.set(w, exc);
   434       
   435       return newlevel;
   436     }
   437 
   438 
   439     void preflowPreproc ( flowEnum fe, VecStack& active, 
   440 			  VecNode& level_list, NNMap& left, NNMap& right ) {
   441 
   442 			    std::queue<Node> bfs_queue;
   443       
   444 			    switch ( fe ) {
   445 			    case ZERO_FLOW: 
   446 			      {
   447 				//Reverse_bfs from t, to find the starting level.
   448 				level.set(t,0);
   449 				bfs_queue.push(t);
   450 	
   451 				while (!bfs_queue.empty()) {
   452 	    
   453 				  Node v=bfs_queue.front();	
   454 				  bfs_queue.pop();
   455 				  int l=level[v]+1;
   456 	    
   457 				  InEdgeIt e;
   458 				  for(g->first(e,v); g->valid(e); g->next(e)) {
   459 				    Node w=g->tail(e);
   460 				    if ( level[w] == n && w != s ) {
   461 				      bfs_queue.push(w);
   462 				      Node first=level_list[l];
   463 				      if ( g->valid(first) ) left.set(first,w);
   464 				      right.set(w,first);
   465 				      level_list[l]=w;
   466 				      level.set(w, l);
   467 				    }
   468 				  }
   469 				}
   470 	  
   471 				//the starting flow
   472 				OutEdgeIt e;
   473 				for(g->first(e,s); g->valid(e); g->next(e)) 
   474 				  {
   475 				    Num c=(*capacity)[e];
   476 				    if ( c <= 0 ) continue;
   477 				    Node w=g->head(e);
   478 				    if ( level[w] < n ) {	  
   479 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   480 				      flow->set(e, c); 
   481 				      excess.set(w, excess[w]+c);
   482 				    }
   483 				  }
   484 				break;
   485 			      }
   486 	
   487 			    case GEN_FLOW:
   488 			    case PRE_FLOW:
   489 			      {
   490 				//Reverse_bfs from t in the residual graph, 
   491 				//to find the starting level.
   492 				level.set(t,0);
   493 				bfs_queue.push(t);
   494 	  
   495 				while (!bfs_queue.empty()) {
   496 	    
   497 				  Node v=bfs_queue.front();	
   498 				  bfs_queue.pop();
   499 				  int l=level[v]+1;
   500 	    
   501 				  InEdgeIt e;
   502 				  for(g->first(e,v); g->valid(e); g->next(e)) {
   503 				    if ( (*capacity)[e] <= (*flow)[e] ) continue;
   504 				    Node w=g->tail(e);
   505 				    if ( level[w] == n && w != s ) {
   506 				      bfs_queue.push(w);
   507 				      Node first=level_list[l];
   508 				      if ( g->valid(first) ) left.set(first,w);
   509 				      right.set(w,first);
   510 				      level_list[l]=w;
   511 				      level.set(w, l);
   512 				    }
   513 				  }
   514 	    
   515 				  OutEdgeIt f;
   516 				  for(g->first(f,v); g->valid(f); g->next(f)) {
   517 				    if ( 0 >= (*flow)[f] ) continue;
   518 				    Node w=g->head(f);
   519 				    if ( level[w] == n && w != s ) {
   520 				      bfs_queue.push(w);
   521 				      Node first=level_list[l];
   522 				      if ( g->valid(first) ) left.set(first,w);
   523 				      right.set(w,first);
   524 				      level_list[l]=w;
   525 				      level.set(w, l);
   526 				    }
   527 				  }
   528 				}
   529 	  
   530 	  
   531 				//the starting flow
   532 				OutEdgeIt e;
   533 				for(g->first(e,s); g->valid(e); g->next(e)) 
   534 				  {
   535 				    Num rem=(*capacity)[e]-(*flow)[e];
   536 				    if ( rem <= 0 ) continue;
   537 				    Node w=g->head(e);
   538 				    if ( level[w] < n ) {	  
   539 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   540 				      flow->set(e, (*capacity)[e]); 
   541 				      excess.set(w, excess[w]+rem);
   542 				    }
   543 				  }
   544 	  
   545 				InEdgeIt f;
   546 				for(g->first(f,s); g->valid(f); g->next(f)) 
   547 				  {
   548 				    if ( (*flow)[f] <= 0 ) continue;
   549 				    Node w=g->tail(f);
   550 				    if ( level[w] < n ) {	  
   551 				      if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w);
   552 				      excess.set(w, excess[w]+(*flow)[f]);
   553 				      flow->set(f, 0); 
   554 				    }
   555 				  }  
   556 				break;
   557 			      } //case PRE_FLOW
   558 			    }
   559 			  } //preflowPreproc
   560 
   561 
   562 
   563     void relabel(Node w, int newlevel, VecStack& active,  
   564 		 VecNode& level_list, NNMap& left, 
   565 		 NNMap& right, int& b, int& k, bool what_heur ) 
   566     {
   567 
   568       Num lev=level[w];	
   569       
   570       Node right_n=right[w];
   571       Node left_n=left[w];
   572       
   573       //unlacing starts
   574       if ( g->valid(right_n) ) {
   575 	if ( g->valid(left_n) ) {
   576 	  right.set(left_n, right_n);
   577 	  left.set(right_n, left_n);
   578 	} else {
   579 	  level_list[lev]=right_n;   
   580 	  left.set(right_n, INVALID);
   581 	} 
   582       } else {
   583 	if ( g->valid(left_n) ) {
   584 	  right.set(left_n, INVALID);
   585 	} else { 
   586 	  level_list[lev]=INVALID;   
   587 	} 
   588       } 
   589       //unlacing ends
   590 		
   591       if ( !g->valid(level_list[lev]) ) {
   592 	      
   593 	//gapping starts
   594 	for (int i=lev; i!=k ; ) {
   595 	  Node v=level_list[++i];
   596 	  while ( g->valid(v) ) {
   597 	    level.set(v,n);
   598 	    v=right[v];
   599 	  }
   600 	  level_list[i]=INVALID;
   601 	  if ( !what_heur ) {
   602 	    while ( !active[i].empty() ) {
   603 	      active[i].pop();    //FIXME: ezt szebben kene
   604 	    }
   605 	  }	     
   606 	}
   607 	
   608 	level.set(w,n);
   609 	b=lev-1;
   610 	k=b;
   611 	//gapping ends
   612 	
   613       } else {
   614 	
   615 	if ( newlevel == n ) level.set(w,n); 
   616 	else {
   617 	  level.set(w,++newlevel);
   618 	  active[newlevel].push(w);
   619 	  if ( what_heur ) b=newlevel;
   620 	  if ( k < newlevel ) ++k;      //now k=newlevel
   621 	  Node first=level_list[newlevel];
   622 	  if ( g->valid(first) ) left.set(first,w);
   623 	  right.set(w,first);
   624 	  left.set(w,INVALID);
   625 	  level_list[newlevel]=w;
   626 	}
   627       }
   628       
   629     } //relabel
   630 
   631 
   632     template<typename MapGraphWrapper> 
   633     class DistanceMap {
   634     protected:
   635       const MapGraphWrapper* g;
   636       typename MapGraphWrapper::template NodeMap<int> dist; 
   637     public:
   638       DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { }
   639       void set(const typename MapGraphWrapper::Node& n, int a) { 
   640 	dist.set(n, a); 
   641       }
   642       int operator[](const typename MapGraphWrapper::Node& n) 
   643       { return dist[n]; }
   644       //       int get(const typename MapGraphWrapper::Node& n) const { 
   645       // 	return dist[n]; }
   646       //       bool get(const typename MapGraphWrapper::Edge& e) const { 
   647       // 	return (dist.get(g->tail(e))<dist.get(g->head(e))); }
   648       bool operator[](const typename MapGraphWrapper::Edge& e) const { 
   649 	return (dist[g->tail(e)]<dist[g->head(e)]); 
   650       }
   651     };
   652     
   653   };
   654 
   655 
   656   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   657   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase1( flowEnum fe ) 
   658   {
   659       
   660     int heur0=(int)(H0*n);  //time while running 'bound decrease' 
   661     int heur1=(int)(H1*n);  //time while running 'highest label'
   662     int heur=heur1;         //starting time interval (#of relabels)
   663     int numrelabel=0;
   664      
   665     bool what_heur=1;       
   666     //It is 0 in case 'bound decrease' and 1 in case 'highest label'
   667 
   668     bool end=false;     
   669     //Needed for 'bound decrease', true means no active nodes are above bound b.
   670 
   671     int k=n-2;  //bound on the highest level under n containing a node
   672     int b=k;    //bound on the highest level under n of an active node
   673       
   674     VecStack active(n);
   675       
   676     NNMap left(*g, INVALID);
   677     NNMap right(*g, INVALID);
   678     VecNode level_list(n,INVALID);
   679     //List of the nodes in level i<n, set to n.
   680 
   681     NodeIt v;
   682     for(g->first(v); g->valid(v); g->next(v)) level.set(v,n);
   683     //setting each node to level n
   684       
   685     switch ( fe ) {
   686     case PRE_FLOW:
   687       {
   688 	//counting the excess
   689 	NodeIt v;
   690 	for(g->first(v); g->valid(v); g->next(v)) {
   691 	  Num exc=0;
   692 	  
   693 	  InEdgeIt e;
   694 	  for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e];
   695 	  OutEdgeIt f;
   696 	  for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f];
   697 	    
   698 	  excess.set(v,exc);	  
   699 	    
   700 	  //putting the active nodes into the stack
   701 	  int lev=level[v];
   702 	  if ( exc > 0 && lev < n && v != t ) active[lev].push(v);
   703 	}
   704 	break;
   705       }
   706     case GEN_FLOW:
   707       {
   708 	//Counting the excess of t
   709 	Num exc=0;
   710 	  
   711 	InEdgeIt e;
   712 	for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e];
   713 	OutEdgeIt f;
   714 	for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f];
   715 	  
   716 	excess.set(t,exc);	
   717 	  
   718 	break;
   719       }
   720     default:
   721       break;
   722     }
   723       
   724     preflowPreproc( fe, active, level_list, left, right );
   725     //End of preprocessing 
   726       
   727       
   728     //Push/relabel on the highest level active nodes.
   729     while ( true ) {
   730       if ( b == 0 ) {
   731 	if ( !what_heur && !end && k > 0 ) {
   732 	  b=k;
   733 	  end=true;
   734 	} else break;
   735       }
   736 	
   737       if ( active[b].empty() ) --b; 
   738       else {
   739 	end=false;  
   740 	Node w=active[b].top();
   741 	active[b].pop();
   742 	int newlevel=push(w,active);
   743 	if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, 
   744 				     left, right, b, k, what_heur);
   745 	  
   746 	++numrelabel; 
   747 	if ( numrelabel >= heur ) {
   748 	  numrelabel=0;
   749 	  if ( what_heur ) {
   750 	    what_heur=0;
   751 	    heur=heur0;
   752 	    end=false;
   753 	  } else {
   754 	    what_heur=1;
   755 	    heur=heur1;
   756 	    b=k; 
   757 	  }
   758 	}
   759       } 
   760     } 
   761   }
   762 
   763 
   764 
   765   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   766   void MaxFlow<Graph, Num, CapMap, FlowMap>::preflowPhase2() 
   767   {
   768       
   769     int k=n-2;  //bound on the highest level under n containing a node
   770     int b=k;    //bound on the highest level under n of an active node
   771       
   772     VecStack active(n);
   773     level.set(s,0);
   774     std::queue<Node> bfs_queue;
   775     bfs_queue.push(s);
   776 	    
   777     while (!bfs_queue.empty()) {
   778 	
   779       Node v=bfs_queue.front();	
   780       bfs_queue.pop();
   781       int l=level[v]+1;
   782 	      
   783       InEdgeIt e;
   784       for(g->first(e,v); g->valid(e); g->next(e)) {
   785 	if ( (*capacity)[e] <= (*flow)[e] ) continue;
   786 	Node u=g->tail(e);
   787 	if ( level[u] >= n ) { 
   788 	  bfs_queue.push(u);
   789 	  level.set(u, l);
   790 	  if ( excess[u] > 0 ) active[l].push(u);
   791 	}
   792       }
   793 	
   794       OutEdgeIt f;
   795       for(g->first(f,v); g->valid(f); g->next(f)) {
   796 	if ( 0 >= (*flow)[f] ) continue;
   797 	Node u=g->head(f);
   798 	if ( level[u] >= n ) { 
   799 	  bfs_queue.push(u);
   800 	  level.set(u, l);
   801 	  if ( excess[u] > 0 ) active[l].push(u);
   802 	}
   803       }
   804     }
   805     b=n-2;
   806 
   807     while ( true ) {
   808 	
   809       if ( b == 0 ) break;
   810 
   811       if ( active[b].empty() ) --b; 
   812       else {
   813 	Node w=active[b].top();
   814 	active[b].pop();
   815 	int newlevel=push(w,active);	  
   816 
   817 	//relabel
   818 	if ( excess[w] > 0 ) {
   819 	  level.set(w,++newlevel);
   820 	  active[newlevel].push(w);
   821 	  b=newlevel;
   822 	}
   823       }  // if stack[b] is nonempty
   824     } // while(true)
   825   }
   826 
   827 
   828 
   829   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   830   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnShortestPath() 
   831   {
   832     ResGW res_graph(*g, *capacity, *flow);
   833     bool _augment=false;
   834       
   835     //ReachedMap level(res_graph);
   836     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   837     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   838     bfs.pushAndSetReached(s);
   839 	
   840     typename ResGW::template NodeMap<ResGWEdge> pred(res_graph); 
   841     pred.set(s, INVALID);
   842       
   843     typename ResGW::template NodeMap<Num> free(res_graph);
   844 	
   845     //searching for augmenting path
   846     while ( !bfs.finished() ) { 
   847       ResGWOutEdgeIt e=bfs;
   848       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
   849 	Node v=res_graph.tail(e);
   850 	Node w=res_graph.head(e);
   851 	pred.set(w, e);
   852 	if (res_graph.valid(pred[v])) {
   853 	  free.set(w, std::min(free[v], res_graph.resCap(e)));
   854 	} else {
   855 	  free.set(w, res_graph.resCap(e)); 
   856 	}
   857 	if (res_graph.head(e)==t) { _augment=true; break; }
   858       }
   859 	
   860       ++bfs;
   861     } //end of searching augmenting path
   862 
   863     if (_augment) {
   864       Node n=t;
   865       Num augment_value=free[t];
   866       while (res_graph.valid(pred[n])) { 
   867 	ResGWEdge e=pred[n];
   868 	res_graph.augment(e, augment_value); 
   869 	n=res_graph.tail(e);
   870       }
   871     }
   872 
   873     return _augment;
   874   }
   875 
   876 
   877 
   878 
   879 
   880 
   881 
   882 
   883 
   884   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
   885   template<typename MutableGraph> 
   886   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow() 
   887   {      
   888     typedef MutableGraph MG;
   889     bool _augment=false;
   890 
   891     ResGW res_graph(*g, *capacity, *flow);
   892 
   893     //bfs for distances on the residual graph
   894     //ReachedMap level(res_graph);
   895     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
   896     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
   897     bfs.pushAndSetReached(s);
   898     typename ResGW::template NodeMap<int> 
   899       dist(res_graph); //filled up with 0's
   900 
   901     //F will contain the physical copy of the residual graph
   902     //with the set of edges which are on shortest paths
   903     MG F;
   904     typename ResGW::template NodeMap<typename MG::Node> 
   905       res_graph_to_F(res_graph);
   906     {
   907       typename ResGW::NodeIt n;
   908       for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) {
   909 	res_graph_to_F.set(n, F.addNode());
   910       }
   911     }
   912 
   913     typename MG::Node sF=res_graph_to_F[s];
   914     typename MG::Node tF=res_graph_to_F[t];
   915     typename MG::template EdgeMap<ResGWEdge> original_edge(F);
   916     typename MG::template EdgeMap<Num> residual_capacity(F);
   917 
   918     while ( !bfs.finished() ) { 
   919       ResGWOutEdgeIt e=bfs;
   920       if (res_graph.valid(e)) {
   921 	if (bfs.isBNodeNewlyReached()) {
   922 	  dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
   923 	  typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
   924 	  original_edge.update();
   925 	  original_edge.set(f, e);
   926 	  residual_capacity.update();
   927 	  residual_capacity.set(f, res_graph.resCap(e));
   928 	} else {
   929 	  if (dist[res_graph.head(e)]==(dist[res_graph.tail(e)]+1)) {
   930 	    typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.tail(e)], res_graph_to_F[res_graph.head(e)]);
   931 	    original_edge.update();
   932 	    original_edge.set(f, e);
   933 	    residual_capacity.update();
   934 	    residual_capacity.set(f, res_graph.resCap(e));
   935 	  }
   936 	}
   937       }
   938       ++bfs;
   939     } //computing distances from s in the residual graph
   940 
   941     bool __augment=true;
   942 
   943     while (__augment) {
   944       __augment=false;
   945       //computing blocking flow with dfs
   946       DfsIterator< MG, typename MG::template NodeMap<bool> > dfs(F);
   947       typename MG::template NodeMap<typename MG::Edge> pred(F);
   948       pred.set(sF, INVALID);
   949       //invalid iterators for sources
   950 
   951       typename MG::template NodeMap<Num> free(F);
   952 
   953       dfs.pushAndSetReached(sF);      
   954       while (!dfs.finished()) {
   955 	++dfs;
   956 	if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) {
   957 	  if (dfs.isBNodeNewlyReached()) {
   958 	    typename MG::Node v=F.aNode(dfs);
   959 	    typename MG::Node w=F.bNode(dfs);
   960 	    pred.set(w, dfs);
   961 	    if (F.valid(pred[v])) {
   962 	      free.set(w, std::min(free[v], residual_capacity[dfs]));
   963 	    } else {
   964 	      free.set(w, residual_capacity[dfs]); 
   965 	    }
   966 	    if (w==tF) { 
   967 	      __augment=true; 
   968 	      _augment=true;
   969 	      break; 
   970 	    }
   971 	      
   972 	  } else {
   973 	    F.erase(/*typename MG::OutEdgeIt*/(dfs));
   974 	  }
   975 	} 
   976       }
   977 
   978       if (__augment) {
   979 	typename MG::Node n=tF;
   980 	Num augment_value=free[tF];
   981 	while (F.valid(pred[n])) { 
   982 	  typename MG::Edge e=pred[n];
   983 	  res_graph.augment(original_edge[e], augment_value); 
   984 	  n=F.tail(e);
   985 	  if (residual_capacity[e]==augment_value) 
   986 	    F.erase(e); 
   987 	  else 
   988 	    residual_capacity.set(e, residual_capacity[e]-augment_value);
   989 	}
   990       }
   991 	
   992     }
   993             
   994     return _augment;
   995   }
   996 
   997 
   998 
   999 
  1000 
  1001 
  1002   template <typename Graph, typename Num, typename CapMap, typename FlowMap>
  1003   bool MaxFlow<Graph, Num, CapMap, FlowMap>::augmentOnBlockingFlow2() 
  1004   {
  1005     bool _augment=false;
  1006 
  1007     ResGW res_graph(*g, *capacity, *flow);
  1008       
  1009     //ReachedMap level(res_graph);
  1010     FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0);
  1011     BfsIterator<ResGW, ReachedMap> bfs(res_graph, level);
  1012 
  1013     bfs.pushAndSetReached(s);
  1014     DistanceMap<ResGW> dist(res_graph);
  1015     while ( !bfs.finished() ) { 
  1016       ResGWOutEdgeIt e=bfs;
  1017       if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) {
  1018 	dist.set(res_graph.head(e), dist[res_graph.tail(e)]+1);
  1019       }
  1020       ++bfs;
  1021     } //computing distances from s in the residual graph
  1022 
  1023       //Subgraph containing the edges on some shortest paths
  1024     ConstMap<typename ResGW::Node, bool> true_map(true);
  1025     typedef SubGraphWrapper<ResGW, ConstMap<typename ResGW::Node, bool>, 
  1026       DistanceMap<ResGW> > FilterResGW;
  1027     FilterResGW filter_res_graph(res_graph, true_map, dist);
  1028 
  1029     //Subgraph, which is able to delete edges which are already 
  1030     //met by the dfs
  1031     typename FilterResGW::template NodeMap<typename FilterResGW::OutEdgeIt> 
  1032       first_out_edges(filter_res_graph);
  1033     typename FilterResGW::NodeIt v;
  1034     for(filter_res_graph.first(v); filter_res_graph.valid(v); 
  1035 	filter_res_graph.next(v)) 
  1036       {
  1037  	typename FilterResGW::OutEdgeIt e;
  1038  	filter_res_graph.first(e, v);
  1039  	first_out_edges.set(v, e);
  1040       }
  1041     typedef ErasingFirstGraphWrapper<FilterResGW, typename FilterResGW::
  1042       template NodeMap<typename FilterResGW::OutEdgeIt> > ErasingResGW;
  1043     ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges);
  1044 
  1045     bool __augment=true;
  1046 
  1047     while (__augment) {
  1048 
  1049       __augment=false;
  1050       //computing blocking flow with dfs
  1051       DfsIterator< ErasingResGW, 
  1052 	typename ErasingResGW::template NodeMap<bool> > 
  1053 	dfs(erasing_res_graph);
  1054       typename ErasingResGW::
  1055 	template NodeMap<typename ErasingResGW::OutEdgeIt> 
  1056 	pred(erasing_res_graph); 
  1057       pred.set(s, INVALID);
  1058       //invalid iterators for sources
  1059 
  1060       typename ErasingResGW::template NodeMap<Num> 
  1061 	free1(erasing_res_graph);
  1062 
  1063       dfs.pushAndSetReached(
  1064 			    typename ErasingResGW::Node(
  1065 							typename FilterResGW::Node(
  1066 										   typename ResGW::Node(s)
  1067 										   )
  1068 							)
  1069 			    );
  1070       while (!dfs.finished()) {
  1071 	++dfs;
  1072 	if (erasing_res_graph.valid(
  1073 				    typename ErasingResGW::OutEdgeIt(dfs))) 
  1074  	  { 
  1075   	    if (dfs.isBNodeNewlyReached()) {
  1076 	  
  1077  	      typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs);
  1078  	      typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs);
  1079 
  1080  	      pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs));
  1081  	      if (erasing_res_graph.valid(pred[v])) {
  1082  		free1.set(w, std::min(free1[v], res_graph.resCap(
  1083 								 typename ErasingResGW::OutEdgeIt(dfs))));
  1084  	      } else {
  1085  		free1.set(w, res_graph.resCap(
  1086 					      typename ErasingResGW::OutEdgeIt(dfs))); 
  1087  	      }
  1088 	      
  1089  	      if (w==t) { 
  1090  		__augment=true; 
  1091  		_augment=true;
  1092  		break; 
  1093  	      }
  1094  	    } else {
  1095  	      erasing_res_graph.erase(dfs);
  1096 	    }
  1097 	  }
  1098       }	
  1099 
  1100       if (__augment) {
  1101 	typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t));
  1102 	// 	  typename ResGW::NodeMap<Num> a(res_graph);
  1103 	// 	  typename ResGW::Node b;
  1104 	// 	  Num j=a[b];
  1105 	// 	  typename FilterResGW::NodeMap<Num> a1(filter_res_graph);
  1106 	// 	  typename FilterResGW::Node b1;
  1107 	// 	  Num j1=a1[b1];
  1108 	// 	  typename ErasingResGW::NodeMap<Num> a2(erasing_res_graph);
  1109 	// 	  typename ErasingResGW::Node b2;
  1110 	// 	  Num j2=a2[b2];
  1111 	Num augment_value=free1[n];
  1112 	while (erasing_res_graph.valid(pred[n])) { 
  1113 	  typename ErasingResGW::OutEdgeIt e=pred[n];
  1114 	  res_graph.augment(e, augment_value);
  1115 	  n=erasing_res_graph.tail(e);
  1116 	  if (res_graph.resCap(e)==0)
  1117 	    erasing_res_graph.erase(e);
  1118 	}
  1119       }
  1120       
  1121     } //while (__augment) 
  1122             
  1123     return _augment;
  1124   }
  1125 
  1126 
  1127 
  1128   /// @}
  1129   
  1130 } //END OF NAMESPACE HUGO
  1131 
  1132 #endif //HUGO_MAX_FLOW_H
  1133 
  1134 
  1135 
  1136