lemon/cost_scaling.h
author deba
Sun, 05 Oct 2008 20:08:13 +0000
changeset 2622 fa2877651022
parent 2588 4d3bc1d04c1d
child 2623 90defb96ee61
permissions -rw-r--r--
Fix _setCoeff
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_COST_SCALING_H
    20 #define LEMON_COST_SCALING_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Cost scaling algorithm for finding a minimum cost flow.
    26 
    27 #include <deque>
    28 #include <lemon/graph_adaptor.h>
    29 #include <lemon/graph_utils.h>
    30 #include <lemon/maps.h>
    31 #include <lemon/math.h>
    32 
    33 #include <lemon/circulation.h>
    34 #include <lemon/bellman_ford.h>
    35 
    36 namespace lemon {
    37 
    38   /// \addtogroup min_cost_flow
    39   /// @{
    40 
    41   /// \brief Implementation of the cost scaling algorithm for finding a
    42   /// minimum cost flow.
    43   ///
    44   /// \ref CostScaling implements the cost scaling algorithm performing
    45   /// generalized push-relabel operations for finding a minimum cost
    46   /// flow.
    47   ///
    48   /// \tparam Graph The directed graph type the algorithm runs on.
    49   /// \tparam LowerMap The type of the lower bound map.
    50   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    51   /// \tparam CostMap The type of the cost (length) map.
    52   /// \tparam SupplyMap The type of the supply map.
    53   ///
    54   /// \warning
    55   /// - Edge capacities and costs should be \e non-negative \e integers.
    56   /// - Supply values should be \e signed \e integers.
    57   /// - The value types of the maps should be convertible to each other.
    58   /// - \c CostMap::Value must be signed type.
    59   ///
    60   /// \note Edge costs are multiplied with the number of nodes during
    61   /// the algorithm so overflow problems may arise more easily than with
    62   /// other minimum cost flow algorithms.
    63   /// If it is available, <tt>long long int</tt> type is used instead of
    64   /// <tt>long int</tt> in the inside computations.
    65   ///
    66   /// \author Peter Kovacs
    67   template < typename Graph,
    68              typename LowerMap = typename Graph::template EdgeMap<int>,
    69              typename CapacityMap = typename Graph::template EdgeMap<int>,
    70              typename CostMap = typename Graph::template EdgeMap<int>,
    71              typename SupplyMap = typename Graph::template NodeMap<int> >
    72   class CostScaling
    73   {
    74     GRAPH_TYPEDEFS(typename Graph);
    75 
    76     typedef typename CapacityMap::Value Capacity;
    77     typedef typename CostMap::Value Cost;
    78     typedef typename SupplyMap::Value Supply;
    79     typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
    80     typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
    81 
    82     typedef ResGraphAdaptor< const Graph, Capacity,
    83                              CapacityEdgeMap, CapacityEdgeMap > ResGraph;
    84     typedef typename ResGraph::Edge ResEdge;
    85 
    86 #if defined __GNUC__ && !defined __STRICT_ANSI__
    87     typedef long long int LCost;
    88 #else
    89     typedef long int LCost;
    90 #endif
    91     typedef typename Graph::template EdgeMap<LCost> LargeCostMap;
    92 
    93   public:
    94 
    95     /// The type of the flow map.
    96     typedef typename Graph::template EdgeMap<Capacity> FlowMap;
    97     /// The type of the potential map.
    98     typedef typename Graph::template NodeMap<LCost> PotentialMap;
    99 
   100   private:
   101 
   102     /// \brief Map adaptor class for handling residual edge costs.
   103     ///
   104     /// Map adaptor class for handling residual edge costs.
   105     template <typename Map>
   106     class ResidualCostMap : public MapBase<ResEdge, typename Map::Value>
   107     {
   108     private:
   109 
   110       const Map &_cost_map;
   111 
   112     public:
   113 
   114       ///\e
   115       ResidualCostMap(const Map &cost_map) :
   116         _cost_map(cost_map) {}
   117 
   118       ///\e
   119       typename Map::Value operator[](const ResEdge &e) const {
   120         return ResGraph::forward(e) ?  _cost_map[e] : -_cost_map[e];
   121       }
   122 
   123     }; //class ResidualCostMap
   124 
   125     /// \brief Map adaptor class for handling reduced edge costs.
   126     ///
   127     /// Map adaptor class for handling reduced edge costs.
   128     class ReducedCostMap : public MapBase<Edge, LCost>
   129     {
   130     private:
   131 
   132       const Graph &_gr;
   133       const LargeCostMap &_cost_map;
   134       const PotentialMap &_pot_map;
   135 
   136     public:
   137 
   138       ///\e
   139       ReducedCostMap( const Graph &gr,
   140                       const LargeCostMap &cost_map,
   141                       const PotentialMap &pot_map ) :
   142         _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
   143 
   144       ///\e
   145       LCost operator[](const Edge &e) const {
   146         return _cost_map[e] + _pot_map[_gr.source(e)]
   147                             - _pot_map[_gr.target(e)];
   148       }
   149 
   150     }; //class ReducedCostMap
   151 
   152   private:
   153 
   154     // Scaling factor
   155     static const int ALPHA = 4;
   156 
   157     // Paramters for heuristics
   158     static const int BF_HEURISTIC_EPSILON_BOUND = 5000;
   159     static const int BF_HEURISTIC_BOUND_FACTOR  = 3;
   160 
   161   private:
   162 
   163     // The directed graph the algorithm runs on
   164     const Graph &_graph;
   165     // The original lower bound map
   166     const LowerMap *_lower;
   167     // The modified capacity map
   168     CapacityEdgeMap _capacity;
   169     // The original cost map
   170     const CostMap &_orig_cost;
   171     // The scaled cost map
   172     LargeCostMap _cost;
   173     // The modified supply map
   174     SupplyNodeMap _supply;
   175     bool _valid_supply;
   176 
   177     // Edge map of the current flow
   178     FlowMap *_flow;
   179     bool _local_flow;
   180     // Node map of the current potentials
   181     PotentialMap *_potential;
   182     bool _local_potential;
   183 
   184     // The residual graph
   185     ResGraph *_res_graph;
   186     // The residual cost map
   187     ResidualCostMap<LargeCostMap> _res_cost;
   188     // The reduced cost map
   189     ReducedCostMap *_red_cost;
   190     // The excess map
   191     SupplyNodeMap _excess;
   192     // The epsilon parameter used for cost scaling
   193     LCost _epsilon;
   194 
   195   public:
   196 
   197     /// \brief General constructor (with lower bounds).
   198     ///
   199     /// General constructor (with lower bounds).
   200     ///
   201     /// \param graph The directed graph the algorithm runs on.
   202     /// \param lower The lower bounds of the edges.
   203     /// \param capacity The capacities (upper bounds) of the edges.
   204     /// \param cost The cost (length) values of the edges.
   205     /// \param supply The supply values of the nodes (signed).
   206     CostScaling( const Graph &graph,
   207                  const LowerMap &lower,
   208                  const CapacityMap &capacity,
   209                  const CostMap &cost,
   210                  const SupplyMap &supply ) :
   211       _graph(graph), _lower(&lower), _capacity(graph), _orig_cost(cost),
   212       _cost(graph), _supply(graph), _flow(0), _local_flow(false),
   213       _potential(0), _local_potential(false), _res_cost(_cost),
   214       _excess(graph, 0)
   215     {
   216       // Removing non-zero lower bounds
   217       _capacity = subMap(capacity, lower);
   218       Supply sum = 0;
   219       for (NodeIt n(_graph); n != INVALID; ++n) {
   220         Supply s = supply[n];
   221         for (InEdgeIt e(_graph, n); e != INVALID; ++e)
   222           s += lower[e];
   223         for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
   224           s -= lower[e];
   225         _supply[n] = s;
   226         sum += s;
   227       }
   228       _valid_supply = sum == 0;
   229     }
   230 
   231     /// \brief General constructor (without lower bounds).
   232     ///
   233     /// General constructor (without lower bounds).
   234     ///
   235     /// \param graph The directed graph the algorithm runs on.
   236     /// \param capacity The capacities (upper bounds) of the edges.
   237     /// \param cost The cost (length) values of the edges.
   238     /// \param supply The supply values of the nodes (signed).
   239     CostScaling( const Graph &graph,
   240                  const CapacityMap &capacity,
   241                  const CostMap &cost,
   242                  const SupplyMap &supply ) :
   243       _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
   244       _cost(graph), _supply(supply), _flow(0), _local_flow(false),
   245       _potential(0), _local_potential(false), _res_cost(_cost),
   246       _excess(graph, 0)
   247     {
   248       // Checking the sum of supply values
   249       Supply sum = 0;
   250       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   251       _valid_supply = sum == 0;
   252     }
   253 
   254     /// \brief Simple constructor (with lower bounds).
   255     ///
   256     /// Simple constructor (with lower bounds).
   257     ///
   258     /// \param graph The directed graph the algorithm runs on.
   259     /// \param lower The lower bounds of the edges.
   260     /// \param capacity The capacities (upper bounds) of the edges.
   261     /// \param cost The cost (length) values of the edges.
   262     /// \param s The source node.
   263     /// \param t The target node.
   264     /// \param flow_value The required amount of flow from node \c s
   265     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   266     CostScaling( const Graph &graph,
   267                  const LowerMap &lower,
   268                  const CapacityMap &capacity,
   269                  const CostMap &cost,
   270                  Node s, Node t,
   271                  Supply flow_value ) :
   272       _graph(graph), _lower(&lower), _capacity(graph), _orig_cost(cost),
   273       _cost(graph), _supply(graph), _flow(0), _local_flow(false),
   274       _potential(0), _local_potential(false), _res_cost(_cost),
   275       _excess(graph, 0)
   276     {
   277       // Removing nonzero lower bounds
   278       _capacity = subMap(capacity, lower);
   279       for (NodeIt n(_graph); n != INVALID; ++n) {
   280         Supply sum = 0;
   281         if (n == s) sum =  flow_value;
   282         if (n == t) sum = -flow_value;
   283         for (InEdgeIt e(_graph, n); e != INVALID; ++e)
   284           sum += lower[e];
   285         for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
   286           sum -= lower[e];
   287         _supply[n] = sum;
   288       }
   289       _valid_supply = true;
   290     }
   291 
   292     /// \brief Simple constructor (without lower bounds).
   293     ///
   294     /// Simple constructor (without lower bounds).
   295     ///
   296     /// \param graph The directed graph the algorithm runs on.
   297     /// \param capacity The capacities (upper bounds) of the edges.
   298     /// \param cost The cost (length) values of the edges.
   299     /// \param s The source node.
   300     /// \param t The target node.
   301     /// \param flow_value The required amount of flow from node \c s
   302     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   303     CostScaling( const Graph &graph,
   304                  const CapacityMap &capacity,
   305                  const CostMap &cost,
   306                  Node s, Node t,
   307                  Supply flow_value ) :
   308       _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost),
   309       _cost(graph), _supply(graph, 0), _flow(0), _local_flow(false),
   310       _potential(0), _local_potential(false), _res_cost(_cost),
   311       _excess(graph, 0)
   312     {
   313       _supply[s] =  flow_value;
   314       _supply[t] = -flow_value;
   315       _valid_supply = true;
   316     }
   317 
   318     /// Destructor.
   319     ~CostScaling() {
   320       if (_local_flow) delete _flow;
   321       if (_local_potential) delete _potential;
   322       delete _res_graph;
   323       delete _red_cost;
   324     }
   325 
   326     /// \brief Set the flow map.
   327     ///
   328     /// Set the flow map.
   329     ///
   330     /// \return \c (*this)
   331     CostScaling& flowMap(FlowMap &map) {
   332       if (_local_flow) {
   333         delete _flow;
   334         _local_flow = false;
   335       }
   336       _flow = &map;
   337       return *this;
   338     }
   339 
   340     /// \brief Set the potential map.
   341     ///
   342     /// Set the potential map.
   343     ///
   344     /// \return \c (*this)
   345     CostScaling& potentialMap(PotentialMap &map) {
   346       if (_local_potential) {
   347         delete _potential;
   348         _local_potential = false;
   349       }
   350       _potential = &map;
   351       return *this;
   352     }
   353 
   354     /// \name Execution control
   355 
   356     /// @{
   357 
   358     /// \brief Run the algorithm.
   359     ///
   360     /// Run the algorithm.
   361     ///
   362     /// \return \c true if a feasible flow can be found.
   363     bool run() {
   364       return init() && start();
   365     }
   366 
   367     /// @}
   368 
   369     /// \name Query Functions
   370     /// The result of the algorithm can be obtained using these
   371     /// functions.\n
   372     /// \ref lemon::CostScaling::run() "run()" must be called before
   373     /// using them.
   374 
   375     /// @{
   376 
   377     /// \brief Return a const reference to the edge map storing the
   378     /// found flow.
   379     ///
   380     /// Return a const reference to the edge map storing the found flow.
   381     ///
   382     /// \pre \ref run() must be called before using this function.
   383     const FlowMap& flowMap() const {
   384       return *_flow;
   385     }
   386 
   387     /// \brief Return a const reference to the node map storing the
   388     /// found potentials (the dual solution).
   389     ///
   390     /// Return a const reference to the node map storing the found
   391     /// potentials (the dual solution).
   392     ///
   393     /// \pre \ref run() must be called before using this function.
   394     const PotentialMap& potentialMap() const {
   395       return *_potential;
   396     }
   397 
   398     /// \brief Return the flow on the given edge.
   399     ///
   400     /// Return the flow on the given edge.
   401     ///
   402     /// \pre \ref run() must be called before using this function.
   403     Capacity flow(const Edge& edge) const {
   404       return (*_flow)[edge];
   405     }
   406 
   407     /// \brief Return the potential of the given node.
   408     ///
   409     /// Return the potential of the given node.
   410     ///
   411     /// \pre \ref run() must be called before using this function.
   412     Cost potential(const Node& node) const {
   413       return (*_potential)[node];
   414     }
   415 
   416     /// \brief Return the total cost of the found flow.
   417     ///
   418     /// Return the total cost of the found flow. The complexity of the
   419     /// function is \f$ O(e) \f$.
   420     ///
   421     /// \pre \ref run() must be called before using this function.
   422     Cost totalCost() const {
   423       Cost c = 0;
   424       for (EdgeIt e(_graph); e != INVALID; ++e)
   425         c += (*_flow)[e] * _orig_cost[e];
   426       return c;
   427     }
   428 
   429     /// @}
   430 
   431   private:
   432 
   433     /// Initialize the algorithm.
   434     bool init() {
   435       if (!_valid_supply) return false;
   436 
   437       // Initializing flow and potential maps
   438       if (!_flow) {
   439         _flow = new FlowMap(_graph);
   440         _local_flow = true;
   441       }
   442       if (!_potential) {
   443         _potential = new PotentialMap(_graph);
   444         _local_potential = true;
   445       }
   446 
   447       _red_cost = new ReducedCostMap(_graph, _cost, *_potential);
   448       _res_graph = new ResGraph(_graph, _capacity, *_flow);
   449 
   450       // Initializing the scaled cost map and the epsilon parameter
   451       Cost max_cost = 0;
   452       int node_num = countNodes(_graph);
   453       for (EdgeIt e(_graph); e != INVALID; ++e) {
   454         _cost[e] = LCost(_orig_cost[e]) * node_num * ALPHA;
   455         if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e];
   456       }
   457       _epsilon = max_cost * node_num;
   458 
   459       // Finding a feasible flow using Circulation
   460       Circulation< Graph, ConstMap<Edge, Capacity>, CapacityEdgeMap,
   461                    SupplyMap >
   462         circulation( _graph, constMap<Edge>(Capacity(0)), _capacity,
   463                      _supply );
   464       return circulation.flowMap(*_flow).run();
   465     }
   466 
   467 
   468     /// Execute the algorithm.
   469     bool start() {
   470       std::deque<Node> active_nodes;
   471       typename Graph::template NodeMap<bool> hyper(_graph, false);
   472 
   473       int node_num = countNodes(_graph);
   474       for ( ; _epsilon >= 1; _epsilon = _epsilon < ALPHA && _epsilon > 1 ?
   475                                         1 : _epsilon / ALPHA )
   476       {
   477         // Performing price refinement heuristic using Bellman-Ford
   478         // algorithm
   479         if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
   480           typedef ShiftMap< ResidualCostMap<LargeCostMap> > ShiftCostMap;
   481           ShiftCostMap shift_cost(_res_cost, _epsilon);
   482           BellmanFord<ResGraph, ShiftCostMap> bf(*_res_graph, shift_cost);
   483           bf.init(0);
   484           bool done = false;
   485           int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num));
   486           for (int i = 0; i < K && !done; ++i)
   487             done = bf.processNextWeakRound();
   488           if (done) {
   489             for (NodeIt n(_graph); n != INVALID; ++n)
   490               (*_potential)[n] = bf.dist(n);
   491             continue;
   492           }
   493         }
   494 
   495         // Saturating edges not satisfying the optimality condition
   496         Capacity delta;
   497         for (EdgeIt e(_graph); e != INVALID; ++e) {
   498           if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   499             delta = _capacity[e] - (*_flow)[e];
   500             _excess[_graph.source(e)] -= delta;
   501             _excess[_graph.target(e)] += delta;
   502             (*_flow)[e] = _capacity[e];
   503           }
   504           if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   505             _excess[_graph.target(e)] -= (*_flow)[e];
   506             _excess[_graph.source(e)] += (*_flow)[e];
   507             (*_flow)[e] = 0;
   508           }
   509         }
   510 
   511         // Finding active nodes (i.e. nodes with positive excess)
   512         for (NodeIt n(_graph); n != INVALID; ++n)
   513           if (_excess[n] > 0) active_nodes.push_back(n);
   514 
   515         // Performing push and relabel operations
   516         while (active_nodes.size() > 0) {
   517           Node n = active_nodes[0], t;
   518           bool relabel_enabled = true;
   519 
   520           // Performing push operations if there are admissible edges
   521           if (_excess[n] > 0) {
   522             for (OutEdgeIt e(_graph, n); e != INVALID; ++e) {
   523               if (_capacity[e] - (*_flow)[e] > 0 && (*_red_cost)[e] < 0) {
   524                 delta = _capacity[e] - (*_flow)[e] <= _excess[n] ?
   525                         _capacity[e] - (*_flow)[e] : _excess[n];
   526                 t = _graph.target(e);
   527 
   528                 // Push-look-ahead heuristic
   529                 Capacity ahead = -_excess[t];
   530                 for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) {
   531                   if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
   532                     ahead += _capacity[oe] - (*_flow)[oe];
   533                 }
   534                 for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) {
   535                   if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
   536                     ahead += (*_flow)[ie];
   537                 }
   538                 if (ahead < 0) ahead = 0;
   539 
   540                 // Pushing flow along the edge
   541                 if (ahead < delta) {
   542                   (*_flow)[e] += ahead;
   543                   _excess[n] -= ahead;
   544                   _excess[t] += ahead;
   545                   active_nodes.push_front(t);
   546                   hyper[t] = true;
   547                   relabel_enabled = false;
   548                   break;
   549                 } else {
   550                   (*_flow)[e] += delta;
   551                   _excess[n] -= delta;
   552                   _excess[t] += delta;
   553                   if (_excess[t] > 0 && _excess[t] <= delta)
   554                     active_nodes.push_back(t);
   555                 }
   556 
   557                 if (_excess[n] == 0) break;
   558               }
   559             }
   560           }
   561 
   562           if (_excess[n] > 0) {
   563             for (InEdgeIt e(_graph, n); e != INVALID; ++e) {
   564               if ((*_flow)[e] > 0 && -(*_red_cost)[e] < 0) {
   565                 delta = (*_flow)[e] <= _excess[n] ? (*_flow)[e] : _excess[n];
   566                 t = _graph.source(e);
   567 
   568                 // Push-look-ahead heuristic
   569                 Capacity ahead = -_excess[t];
   570                 for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) {
   571                   if (_capacity[oe] - (*_flow)[oe] > 0 && (*_red_cost)[oe] < 0)
   572                     ahead += _capacity[oe] - (*_flow)[oe];
   573                 }
   574                 for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) {
   575                   if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < 0)
   576                     ahead += (*_flow)[ie];
   577                 }
   578                 if (ahead < 0) ahead = 0;
   579 
   580                 // Pushing flow along the edge
   581                 if (ahead < delta) {
   582                   (*_flow)[e] -= ahead;
   583                   _excess[n] -= ahead;
   584                   _excess[t] += ahead;
   585                   active_nodes.push_front(t);
   586                   hyper[t] = true;
   587                   relabel_enabled = false;
   588                   break;
   589                 } else {
   590                   (*_flow)[e] -= delta;
   591                   _excess[n] -= delta;
   592                   _excess[t] += delta;
   593                   if (_excess[t] > 0 && _excess[t] <= delta)
   594                     active_nodes.push_back(t);
   595                 }
   596 
   597                 if (_excess[n] == 0) break;
   598               }
   599             }
   600           }
   601 
   602           if (relabel_enabled && (_excess[n] > 0 || hyper[n])) {
   603             // Performing relabel operation if the node is still active
   604             LCost min_red_cost = std::numeric_limits<LCost>::max();
   605             for (OutEdgeIt oe(_graph, n); oe != INVALID; ++oe) {
   606               if ( _capacity[oe] - (*_flow)[oe] > 0 &&
   607                    (*_red_cost)[oe] < min_red_cost )
   608                 min_red_cost = (*_red_cost)[oe];
   609             }
   610             for (InEdgeIt ie(_graph, n); ie != INVALID; ++ie) {
   611               if ((*_flow)[ie] > 0 && -(*_red_cost)[ie] < min_red_cost)
   612                 min_red_cost = -(*_red_cost)[ie];
   613             }
   614             (*_potential)[n] -= min_red_cost + _epsilon;
   615             hyper[n] = false;
   616           }
   617 
   618           // Removing active nodes with non-positive excess
   619           while ( active_nodes.size() > 0 &&
   620                   _excess[active_nodes[0]] <= 0 &&
   621                   !hyper[active_nodes[0]] ) {
   622             active_nodes.pop_front();
   623           }
   624         }
   625       }
   626 
   627       // Computing node potentials for the original costs
   628       ResidualCostMap<CostMap> res_cost(_orig_cost);
   629       BellmanFord< ResGraph, ResidualCostMap<CostMap> >
   630         bf(*_res_graph, res_cost);
   631       bf.init(0); bf.start();
   632       for (NodeIt n(_graph); n != INVALID; ++n)
   633         (*_potential)[n] = bf.dist(n);
   634 
   635       // Handling non-zero lower bounds
   636       if (_lower) {
   637         for (EdgeIt e(_graph); e != INVALID; ++e)
   638           (*_flow)[e] += (*_lower)[e];
   639       }
   640       return true;
   641     }
   642 
   643   }; //class CostScaling
   644 
   645   ///@}
   646 
   647 } //namespace lemon
   648 
   649 #endif //LEMON_COST_SCALING_H