lemon/cycle_canceling.h
author deba
Sun, 05 Oct 2008 20:08:13 +0000
changeset 2622 fa2877651022
parent 2593 8eed667ea23c
child 2623 90defb96ee61
permissions -rw-r--r--
Fix _setCoeff
     1 /* -*- C++ -*-
     2  *
     3  * This file is a part of LEMON, a generic C++ optimization library
     4  *
     5  * Copyright (C) 2003-2008
     6  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     7  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     8  *
     9  * Permission to use, modify and distribute this software is granted
    10  * provided that this copyright notice appears in all copies. For
    11  * precise terms see the accompanying LICENSE file.
    12  *
    13  * This software is provided "AS IS" with no warranty of any kind,
    14  * express or implied, and with no claim as to its suitability for any
    15  * purpose.
    16  *
    17  */
    18 
    19 #ifndef LEMON_CYCLE_CANCELING_H
    20 #define LEMON_CYCLE_CANCELING_H
    21 
    22 /// \ingroup min_cost_flow
    23 ///
    24 /// \file
    25 /// \brief Cycle-canceling algorithm for finding a minimum cost flow.
    26 
    27 #include <vector>
    28 #include <lemon/graph_adaptor.h>
    29 #include <lemon/path.h>
    30 
    31 #include <lemon/circulation.h>
    32 #include <lemon/bellman_ford.h>
    33 #include <lemon/min_mean_cycle.h>
    34 
    35 namespace lemon {
    36 
    37   /// \addtogroup min_cost_flow
    38   /// @{
    39 
    40   /// \brief Implementation of a cycle-canceling algorithm for
    41   /// finding a minimum cost flow.
    42   ///
    43   /// \ref CycleCanceling implements a cycle-canceling algorithm for
    44   /// finding a minimum cost flow.
    45   ///
    46   /// \tparam Graph The directed graph type the algorithm runs on.
    47   /// \tparam LowerMap The type of the lower bound map.
    48   /// \tparam CapacityMap The type of the capacity (upper bound) map.
    49   /// \tparam CostMap The type of the cost (length) map.
    50   /// \tparam SupplyMap The type of the supply map.
    51   ///
    52   /// \warning
    53   /// - Edge capacities and costs should be \e non-negative \e integers.
    54   /// - Supply values should be \e signed \e integers.
    55   /// - The value types of the maps should be convertible to each other.
    56   /// - \c CostMap::Value must be signed type.
    57   ///
    58   /// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is
    59   /// used for negative cycle detection with limited iteration number.
    60   /// However \ref CycleCanceling also provides the "Minimum Mean
    61   /// Cycle-Canceling" algorithm, which is \e strongly \e polynomial,
    62   /// but rather slower in practice.
    63   /// To use this version of the algorithm, call \ref run() with \c true
    64   /// parameter.
    65   ///
    66   /// \author Peter Kovacs
    67   template < typename Graph,
    68              typename LowerMap = typename Graph::template EdgeMap<int>,
    69              typename CapacityMap = typename Graph::template EdgeMap<int>,
    70              typename CostMap = typename Graph::template EdgeMap<int>,
    71              typename SupplyMap = typename Graph::template NodeMap<int> >
    72   class CycleCanceling
    73   {
    74     GRAPH_TYPEDEFS(typename Graph);
    75 
    76     typedef typename CapacityMap::Value Capacity;
    77     typedef typename CostMap::Value Cost;
    78     typedef typename SupplyMap::Value Supply;
    79     typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap;
    80     typedef typename Graph::template NodeMap<Supply> SupplyNodeMap;
    81 
    82     typedef ResGraphAdaptor< const Graph, Capacity,
    83                              CapacityEdgeMap, CapacityEdgeMap > ResGraph;
    84     typedef typename ResGraph::Node ResNode;
    85     typedef typename ResGraph::NodeIt ResNodeIt;
    86     typedef typename ResGraph::Edge ResEdge;
    87     typedef typename ResGraph::EdgeIt ResEdgeIt;
    88 
    89   public:
    90 
    91     /// The type of the flow map.
    92     typedef typename Graph::template EdgeMap<Capacity> FlowMap;
    93     /// The type of the potential map.
    94     typedef typename Graph::template NodeMap<Cost> PotentialMap;
    95 
    96   private:
    97 
    98     /// \brief Map adaptor class for handling residual edge costs.
    99     ///
   100     /// Map adaptor class for handling residual edge costs.
   101     class ResidualCostMap : public MapBase<ResEdge, Cost>
   102     {
   103     private:
   104 
   105       const CostMap &_cost_map;
   106 
   107     public:
   108 
   109       ///\e
   110       ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
   111 
   112       ///\e
   113       Cost operator[](const ResEdge &e) const {
   114         return ResGraph::forward(e) ? _cost_map[e] : -_cost_map[e];
   115       }
   116 
   117     }; //class ResidualCostMap
   118 
   119   private:
   120 
   121     // The maximum number of iterations for the first execution of the
   122     // Bellman-Ford algorithm. It should be at least 2.
   123     static const int BF_FIRST_LIMIT  = 2;
   124     // The iteration limit for the Bellman-Ford algorithm is multiplied
   125     // by BF_LIMIT_FACTOR/100 in every round.
   126     static const int BF_LIMIT_FACTOR = 150;
   127 
   128   private:
   129 
   130     // The directed graph the algorithm runs on
   131     const Graph &_graph;
   132     // The original lower bound map
   133     const LowerMap *_lower;
   134     // The modified capacity map
   135     CapacityEdgeMap _capacity;
   136     // The original cost map
   137     const CostMap &_cost;
   138     // The modified supply map
   139     SupplyNodeMap _supply;
   140     bool _valid_supply;
   141 
   142     // Edge map of the current flow
   143     FlowMap *_flow;
   144     bool _local_flow;
   145     // Node map of the current potentials
   146     PotentialMap *_potential;
   147     bool _local_potential;
   148 
   149     // The residual graph
   150     ResGraph *_res_graph;
   151     // The residual cost map
   152     ResidualCostMap _res_cost;
   153 
   154   public:
   155 
   156     /// \brief General constructor (with lower bounds).
   157     ///
   158     /// General constructor (with lower bounds).
   159     ///
   160     /// \param graph The directed graph the algorithm runs on.
   161     /// \param lower The lower bounds of the edges.
   162     /// \param capacity The capacities (upper bounds) of the edges.
   163     /// \param cost The cost (length) values of the edges.
   164     /// \param supply The supply values of the nodes (signed).
   165     CycleCanceling( const Graph &graph,
   166                     const LowerMap &lower,
   167                     const CapacityMap &capacity,
   168                     const CostMap &cost,
   169                     const SupplyMap &supply ) :
   170       _graph(graph), _lower(&lower), _capacity(graph), _cost(cost),
   171       _supply(graph), _flow(0), _local_flow(false),
   172       _potential(0), _local_potential(false), _res_cost(_cost)
   173     {
   174       // Removing non-zero lower bounds
   175       _capacity = subMap(capacity, lower);
   176       Supply sum = 0;
   177       for (NodeIt n(_graph); n != INVALID; ++n) {
   178         Supply s = supply[n];
   179         for (InEdgeIt e(_graph, n); e != INVALID; ++e)
   180           s += lower[e];
   181         for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
   182           s -= lower[e];
   183         sum += (_supply[n] = s);
   184       }
   185       _valid_supply = sum == 0;
   186     }
   187 
   188     /// \brief General constructor (without lower bounds).
   189     ///
   190     /// General constructor (without lower bounds).
   191     ///
   192     /// \param graph The directed graph the algorithm runs on.
   193     /// \param capacity The capacities (upper bounds) of the edges.
   194     /// \param cost The cost (length) values of the edges.
   195     /// \param supply The supply values of the nodes (signed).
   196     CycleCanceling( const Graph &graph,
   197                     const CapacityMap &capacity,
   198                     const CostMap &cost,
   199                     const SupplyMap &supply ) :
   200       _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
   201       _supply(supply), _flow(0), _local_flow(false),
   202       _potential(0), _local_potential(false), _res_cost(_cost)
   203     {
   204       // Checking the sum of supply values
   205       Supply sum = 0;
   206       for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
   207       _valid_supply = sum == 0;
   208     }
   209 
   210     /// \brief Simple constructor (with lower bounds).
   211     ///
   212     /// Simple constructor (with lower bounds).
   213     ///
   214     /// \param graph The directed graph the algorithm runs on.
   215     /// \param lower The lower bounds of the edges.
   216     /// \param capacity The capacities (upper bounds) of the edges.
   217     /// \param cost The cost (length) values of the edges.
   218     /// \param s The source node.
   219     /// \param t The target node.
   220     /// \param flow_value The required amount of flow from node \c s
   221     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   222     CycleCanceling( const Graph &graph,
   223                     const LowerMap &lower,
   224                     const CapacityMap &capacity,
   225                     const CostMap &cost,
   226                     Node s, Node t,
   227                     Supply flow_value ) :
   228       _graph(graph), _lower(&lower), _capacity(graph), _cost(cost),
   229       _supply(graph), _flow(0), _local_flow(false),
   230       _potential(0), _local_potential(false), _res_cost(_cost)
   231     {
   232       // Removing non-zero lower bounds
   233       _capacity = subMap(capacity, lower);
   234       for (NodeIt n(_graph); n != INVALID; ++n) {
   235         Supply sum = 0;
   236         if (n == s) sum =  flow_value;
   237         if (n == t) sum = -flow_value;
   238         for (InEdgeIt e(_graph, n); e != INVALID; ++e)
   239           sum += lower[e];
   240         for (OutEdgeIt e(_graph, n); e != INVALID; ++e)
   241           sum -= lower[e];
   242         _supply[n] = sum;
   243       }
   244       _valid_supply = true;
   245     }
   246 
   247     /// \brief Simple constructor (without lower bounds).
   248     ///
   249     /// Simple constructor (without lower bounds).
   250     ///
   251     /// \param graph The directed graph the algorithm runs on.
   252     /// \param capacity The capacities (upper bounds) of the edges.
   253     /// \param cost The cost (length) values of the edges.
   254     /// \param s The source node.
   255     /// \param t The target node.
   256     /// \param flow_value The required amount of flow from node \c s
   257     /// to node \c t (i.e. the supply of \c s and the demand of \c t).
   258     CycleCanceling( const Graph &graph,
   259                     const CapacityMap &capacity,
   260                     const CostMap &cost,
   261                     Node s, Node t,
   262                     Supply flow_value ) :
   263       _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost),
   264       _supply(graph, 0), _flow(0), _local_flow(false),
   265       _potential(0), _local_potential(false), _res_cost(_cost)
   266     {
   267       _supply[s] =  flow_value;
   268       _supply[t] = -flow_value;
   269       _valid_supply = true;
   270     }
   271 
   272     /// Destructor.
   273     ~CycleCanceling() {
   274       if (_local_flow) delete _flow;
   275       if (_local_potential) delete _potential;
   276       delete _res_graph;
   277     }
   278 
   279     /// \brief Set the flow map.
   280     ///
   281     /// Set the flow map.
   282     ///
   283     /// \return \c (*this)
   284     CycleCanceling& flowMap(FlowMap &map) {
   285       if (_local_flow) {
   286         delete _flow;
   287         _local_flow = false;
   288       }
   289       _flow = &map;
   290       return *this;
   291     }
   292 
   293     /// \brief Set the potential map.
   294     ///
   295     /// Set the potential map.
   296     ///
   297     /// \return \c (*this)
   298     CycleCanceling& potentialMap(PotentialMap &map) {
   299       if (_local_potential) {
   300         delete _potential;
   301         _local_potential = false;
   302       }
   303       _potential = &map;
   304       return *this;
   305     }
   306 
   307     /// \name Execution control
   308 
   309     /// @{
   310 
   311     /// \brief Run the algorithm.
   312     ///
   313     /// Run the algorithm.
   314     ///
   315     /// \param min_mean_cc Set this parameter to \c true to run the
   316     /// "Minimum Mean Cycle-Canceling" algorithm, which is strongly
   317     /// polynomial, but rather slower in practice.
   318     ///
   319     /// \return \c true if a feasible flow can be found.
   320     bool run(bool min_mean_cc = false) {
   321       return init() && start(min_mean_cc);
   322     }
   323 
   324     /// @}
   325 
   326     /// \name Query Functions
   327     /// The result of the algorithm can be obtained using these
   328     /// functions.\n
   329     /// \ref lemon::CycleCanceling::run() "run()" must be called before
   330     /// using them.
   331 
   332     /// @{
   333 
   334     /// \brief Return a const reference to the edge map storing the
   335     /// found flow.
   336     ///
   337     /// Return a const reference to the edge map storing the found flow.
   338     ///
   339     /// \pre \ref run() must be called before using this function.
   340     const FlowMap& flowMap() const {
   341       return *_flow;
   342     }
   343 
   344     /// \brief Return a const reference to the node map storing the
   345     /// found potentials (the dual solution).
   346     ///
   347     /// Return a const reference to the node map storing the found
   348     /// potentials (the dual solution).
   349     ///
   350     /// \pre \ref run() must be called before using this function.
   351     const PotentialMap& potentialMap() const {
   352       return *_potential;
   353     }
   354 
   355     /// \brief Return the flow on the given edge.
   356     ///
   357     /// Return the flow on the given edge.
   358     ///
   359     /// \pre \ref run() must be called before using this function.
   360     Capacity flow(const Edge& edge) const {
   361       return (*_flow)[edge];
   362     }
   363 
   364     /// \brief Return the potential of the given node.
   365     ///
   366     /// Return the potential of the given node.
   367     ///
   368     /// \pre \ref run() must be called before using this function.
   369     Cost potential(const Node& node) const {
   370       return (*_potential)[node];
   371     }
   372 
   373     /// \brief Return the total cost of the found flow.
   374     ///
   375     /// Return the total cost of the found flow. The complexity of the
   376     /// function is \f$ O(e) \f$.
   377     ///
   378     /// \pre \ref run() must be called before using this function.
   379     Cost totalCost() const {
   380       Cost c = 0;
   381       for (EdgeIt e(_graph); e != INVALID; ++e)
   382         c += (*_flow)[e] * _cost[e];
   383       return c;
   384     }
   385 
   386     /// @}
   387 
   388   private:
   389 
   390     /// Initialize the algorithm.
   391     bool init() {
   392       if (!_valid_supply) return false;
   393 
   394       // Initializing flow and potential maps
   395       if (!_flow) {
   396         _flow = new FlowMap(_graph);
   397         _local_flow = true;
   398       }
   399       if (!_potential) {
   400         _potential = new PotentialMap(_graph);
   401         _local_potential = true;
   402       }
   403 
   404       _res_graph = new ResGraph(_graph, _capacity, *_flow);
   405 
   406       // Finding a feasible flow using Circulation
   407       Circulation< Graph, ConstMap<Edge, Capacity>, CapacityEdgeMap,
   408                    SupplyMap >
   409         circulation( _graph, constMap<Edge>(Capacity(0)), _capacity,
   410                      _supply );
   411       return circulation.flowMap(*_flow).run();
   412     }
   413 
   414     bool start(bool min_mean_cc) {
   415       if (min_mean_cc)
   416         startMinMean();
   417       else
   418         start();
   419 
   420       // Handling non-zero lower bounds
   421       if (_lower) {
   422         for (EdgeIt e(_graph); e != INVALID; ++e)
   423           (*_flow)[e] += (*_lower)[e];
   424       }
   425       return true;
   426     }
   427 
   428     /// \brief Execute the algorithm using \ref BellmanFord.
   429     ///
   430     /// Execute the algorithm using the \ref BellmanFord
   431     /// "Bellman-Ford" algorithm for negative cycle detection with
   432     /// successively larger limit for the number of iterations.
   433     void start() {
   434       typename BellmanFord<ResGraph, ResidualCostMap>::PredMap pred(*_res_graph);
   435       typename ResGraph::template NodeMap<int> visited(*_res_graph);
   436       std::vector<ResEdge> cycle;
   437       int node_num = countNodes(_graph);
   438 
   439       int length_bound = BF_FIRST_LIMIT;
   440       bool optimal = false;
   441       while (!optimal) {
   442         BellmanFord<ResGraph, ResidualCostMap> bf(*_res_graph, _res_cost);
   443         bf.predMap(pred);
   444         bf.init(0);
   445         int iter_num = 0;
   446         bool cycle_found = false;
   447         while (!cycle_found) {
   448           int curr_iter_num = iter_num + length_bound <= node_num ?
   449                               length_bound : node_num - iter_num;
   450           iter_num += curr_iter_num;
   451           int real_iter_num = curr_iter_num;
   452           for (int i = 0; i < curr_iter_num; ++i) {
   453             if (bf.processNextWeakRound()) {
   454               real_iter_num = i;
   455               break;
   456             }
   457           }
   458           if (real_iter_num < curr_iter_num) {
   459             // Optimal flow is found
   460             optimal = true;
   461             // Setting node potentials
   462             for (NodeIt n(_graph); n != INVALID; ++n)
   463               (*_potential)[n] = bf.dist(n);
   464             break;
   465           } else {
   466             // Searching for node disjoint negative cycles
   467             for (ResNodeIt n(*_res_graph); n != INVALID; ++n)
   468               visited[n] = 0;
   469             int id = 0;
   470             for (ResNodeIt n(*_res_graph); n != INVALID; ++n) {
   471               if (visited[n] > 0) continue;
   472               visited[n] = ++id;
   473               ResNode u = pred[n] == INVALID ?
   474                           INVALID : _res_graph->source(pred[n]);
   475               while (u != INVALID && visited[u] == 0) {
   476                 visited[u] = id;
   477                 u = pred[u] == INVALID ?
   478                     INVALID : _res_graph->source(pred[u]);
   479               }
   480               if (u != INVALID && visited[u] == id) {
   481                 // Finding the negative cycle
   482                 cycle_found = true;
   483                 cycle.clear();
   484                 ResEdge e = pred[u];
   485                 cycle.push_back(e);
   486                 Capacity d = _res_graph->rescap(e);
   487                 while (_res_graph->source(e) != u) {
   488                   cycle.push_back(e = pred[_res_graph->source(e)]);
   489                   if (_res_graph->rescap(e) < d)
   490                     d = _res_graph->rescap(e);
   491                 }
   492 
   493                 // Augmenting along the cycle
   494                 for (int i = 0; i < int(cycle.size()); ++i)
   495                   _res_graph->augment(cycle[i], d);
   496               }
   497             }
   498           }
   499 
   500           if (!cycle_found)
   501             length_bound = length_bound * BF_LIMIT_FACTOR / 100;
   502         }
   503       }
   504     }
   505 
   506     /// \brief Execute the algorithm using \ref MinMeanCycle.
   507     ///
   508     /// Execute the algorithm using \ref MinMeanCycle for negative
   509     /// cycle detection.
   510     void startMinMean() {
   511       typedef Path<ResGraph> ResPath;
   512       MinMeanCycle<ResGraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
   513       ResPath cycle;
   514 
   515       mmc.cyclePath(cycle).init();
   516       if (mmc.findMinMean()) {
   517         while (mmc.cycleLength() < 0) {
   518           // Finding the cycle
   519           mmc.findCycle();
   520 
   521           // Finding the largest flow amount that can be augmented
   522           // along the cycle
   523           Capacity delta = 0;
   524           for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e) {
   525             if (delta == 0 || _res_graph->rescap(e) < delta)
   526               delta = _res_graph->rescap(e);
   527           }
   528 
   529           // Augmenting along the cycle
   530           for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e)
   531             _res_graph->augment(e, delta);
   532 
   533           // Finding the minimum cycle mean for the modified residual
   534           // graph
   535           mmc.reset();
   536           if (!mmc.findMinMean()) break;
   537         }
   538       }
   539 
   540       // Computing node potentials
   541       BellmanFord<ResGraph, ResidualCostMap> bf(*_res_graph, _res_cost);
   542       bf.init(0); bf.start();
   543       for (NodeIt n(_graph); n != INVALID; ++n)
   544         (*_potential)[n] = bf.dist(n);
   545     }
   546 
   547   }; //class CycleCanceling
   548 
   549   ///@}
   550 
   551 } //namespace lemon
   552 
   553 #endif //LEMON_CYCLE_CANCELING_H