lemon/graph_adaptor.h
author deba
Fri, 14 Oct 2005 10:53:51 +0000
changeset 1723 fb4f801dd692
parent 1685 5b37a10234bc
child 1725 22752dd6c693
permissions -rw-r--r--
Really short description of these shortest path algorithms
     1 /* -*- C++ -*-
     2  * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Research Group on Combinatorial Optimization, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_GRAPH_ADAPTOR_H
    18 #define LEMON_GRAPH_ADAPTOR_H
    19 
    20 ///\ingroup graph_adaptors
    21 ///\file
    22 ///\brief Several graph adaptors.
    23 ///
    24 ///This file contains several useful graph adaptor functions.
    25 ///
    26 ///\author Marton Makai
    27 
    28 #include <lemon/invalid.h>
    29 #include <lemon/maps.h>
    30 #include <lemon/bits/erasable_graph_extender.h>
    31 #include <lemon/bits/clearable_graph_extender.h>
    32 #include <lemon/bits/extendable_graph_extender.h>
    33 #include <lemon/bits/iterable_graph_extender.h>
    34 #include <lemon/bits/alteration_notifier.h>
    35 #include <lemon/bits/default_map.h>
    36 #include <lemon/bits/undir_graph_extender.h>
    37 #include <iostream>
    38 
    39 namespace lemon {
    40 
    41   // Graph adaptors
    42 
    43   /*!
    44     \addtogroup graph_adaptors
    45     @{
    46    */
    47 
    48   /*! 
    49     Base type for the Graph Adaptors
    50     
    51     \warning Graph adaptors are in even more experimental state than the other
    52     parts of the lib. Use them at you own risk.
    53     
    54     This is the base type for most of LEMON graph adaptors. 
    55     This class implements a trivial graph adaptor i.e. it only wraps the 
    56     functions and types of the graph. The purpose of this class is to 
    57     make easier implementing graph adaptors. E.g. if an adaptor is 
    58     considered which differs from the wrapped graph only in some of its 
    59     functions or types, then it can be derived from GraphAdaptor, and only the 
    60     differences should be implemented.
    61   
    62     \author Marton Makai 
    63   */
    64   template<typename _Graph>
    65   class GraphAdaptorBase {
    66   public:
    67     typedef _Graph Graph;
    68     typedef Graph ParentGraph;
    69 
    70   protected:
    71     Graph* graph;
    72     GraphAdaptorBase() : graph(0) { }
    73     void setGraph(Graph& _graph) { graph=&_graph; }
    74 
    75   public:
    76     GraphAdaptorBase(Graph& _graph) : graph(&_graph) { }
    77  
    78     typedef typename Graph::Node Node;
    79     typedef typename Graph::Edge Edge;
    80    
    81     void first(Node& i) const { graph->first(i); }
    82     void first(Edge& i) const { graph->first(i); }
    83     void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); }
    84     void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); }
    85 
    86     void next(Node& i) const { graph->next(i); }
    87     void next(Edge& i) const { graph->next(i); }
    88     void nextIn(Edge& i) const { graph->nextIn(i); }
    89     void nextOut(Edge& i) const { graph->nextOut(i); }
    90 
    91     Node source(const Edge& e) const { return graph->source(e); }
    92     Node target(const Edge& e) const { return graph->target(e); }
    93 
    94     typedef NodeNumTagIndicator<Graph> NodeNumTag;
    95     int nodeNum() const { return graph->nodeNum(); }
    96     
    97     typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
    98     int edgeNum() const { return graph->edgeNum(); }
    99 
   100     typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
   101     Edge findEdge(const Node& source, const Node& target, 
   102 		  const Edge& prev = INVALID) {
   103       return graph->findEdge(source, target, prev);
   104     }
   105   
   106     Node addNode() const { 
   107       return Node(graph->addNode()); 
   108     }
   109 
   110     Edge addEdge(const Node& source, const Node& target) const { 
   111       return Edge(graph->addEdge(source, target)); 
   112     }
   113 
   114     void erase(const Node& i) const { graph->erase(i); }
   115     void erase(const Edge& i) const { graph->erase(i); }
   116   
   117     void clear() const { graph->clear(); }
   118     
   119     int id(const Node& v) const { return graph->id(v); }
   120     int id(const Edge& e) const { return graph->id(e); }
   121     
   122     Edge oppositeNode(const Edge& e) const { 
   123       return Edge(graph->opposite(e)); 
   124     }
   125 
   126     template <typename _Value>
   127     class NodeMap : public _Graph::template NodeMap<_Value> {
   128     public:
   129       typedef typename _Graph::template NodeMap<_Value> Parent;
   130       NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
   131       NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
   132       : Parent(*gw.graph, value) { }
   133     };
   134 
   135     template <typename _Value>
   136     class EdgeMap : public _Graph::template EdgeMap<_Value> {
   137     public:
   138       typedef typename _Graph::template EdgeMap<_Value> Parent;
   139       EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { }
   140       EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value)
   141       : Parent(*gw.graph, value) { }
   142     };
   143 
   144   };
   145 
   146   template <typename _Graph>
   147   class GraphAdaptor :
   148     public IterableGraphExtender<GraphAdaptorBase<_Graph> > { 
   149   public:
   150     typedef _Graph Graph;
   151     typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent;
   152   protected:
   153     GraphAdaptor() : Parent() { }
   154 
   155   public:
   156     GraphAdaptor(Graph& _graph) { setGraph(_graph); }
   157   };
   158 
   159   template <typename _Graph>
   160   class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   161   public:
   162     typedef _Graph Graph;
   163     typedef GraphAdaptorBase<_Graph> Parent;
   164   protected:
   165     RevGraphAdaptorBase() : Parent() { }
   166   public:
   167     typedef typename Parent::Node Node;
   168     typedef typename Parent::Edge Edge;
   169 
   170     void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); }
   171     void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); }
   172 
   173     void nextIn(Edge& i) const { Parent::nextOut(i); }
   174     void nextOut(Edge& i) const { Parent::nextIn(i); }
   175 
   176     Node source(const Edge& e) const { return Parent::target(e); }
   177     Node target(const Edge& e) const { return Parent::source(e); }
   178   };
   179     
   180 
   181   /// A graph adaptor which reverses the orientation of the edges.
   182 
   183   ///\warning Graph adaptors are in even more experimental state than the other
   184   ///parts of the lib. Use them at you own risk.
   185   ///
   186   /// Let \f$G=(V, A)\f$ be a directed graph and 
   187   /// suppose that a graph instange \c g of type 
   188   /// \c ListGraph implements \f$G\f$.
   189   /// \code
   190   /// ListGraph g;
   191   /// \endcode
   192   /// For each directed edge 
   193   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by 
   194   /// reversing its orientation. 
   195   /// Then RevGraphAdaptor implements the graph structure with node-set 
   196   /// \f$V\f$ and edge-set 
   197   /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be 
   198   /// reversing the orientation of its edges. The following code shows how 
   199   /// such an instance can be constructed.
   200   /// \code
   201   /// RevGraphAdaptor<ListGraph> gw(g);
   202   /// \endcode
   203   ///\author Marton Makai
   204   template<typename _Graph>
   205   class RevGraphAdaptor : 
   206     public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > {
   207   public:
   208     typedef _Graph Graph;
   209     typedef IterableGraphExtender<
   210       RevGraphAdaptorBase<_Graph> > Parent;
   211   protected:
   212     RevGraphAdaptor() { }
   213   public:
   214     RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); }
   215   };
   216 
   217   
   218   template <typename _Graph, typename NodeFilterMap, 
   219 	    typename EdgeFilterMap, bool checked = true>
   220   class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   221   public:
   222     typedef _Graph Graph;
   223     typedef GraphAdaptorBase<_Graph> Parent;
   224   protected:
   225     NodeFilterMap* node_filter_map;
   226     EdgeFilterMap* edge_filter_map;
   227     SubGraphAdaptorBase() : Parent(), 
   228 			    node_filter_map(0), edge_filter_map(0) { }
   229 
   230     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   231       node_filter_map=&_node_filter_map;
   232     }
   233     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   234       edge_filter_map=&_edge_filter_map;
   235     }
   236 
   237   public:
   238 
   239     typedef typename Parent::Node Node;
   240     typedef typename Parent::Edge Edge;
   241 
   242     void first(Node& i) const { 
   243       Parent::first(i); 
   244       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   245     }
   246 
   247     void first(Edge& i) const { 
   248       Parent::first(i); 
   249       while (i!=INVALID && (!(*edge_filter_map)[i] 
   250 	     || !(*node_filter_map)[Parent::source(i)]
   251 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   252     }
   253 
   254     void firstIn(Edge& i, const Node& n) const { 
   255       Parent::firstIn(i, n); 
   256       while (i!=INVALID && (!(*edge_filter_map)[i] 
   257 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   258     }
   259 
   260     void firstOut(Edge& i, const Node& n) const { 
   261       Parent::firstOut(i, n); 
   262       while (i!=INVALID && (!(*edge_filter_map)[i] 
   263 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   264     }
   265 
   266     void next(Node& i) const { 
   267       Parent::next(i); 
   268       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   269     }
   270 
   271     void next(Edge& i) const { 
   272       Parent::next(i); 
   273       while (i!=INVALID && (!(*edge_filter_map)[i] 
   274 	     || !(*node_filter_map)[Parent::source(i)]
   275 	     || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); 
   276     }
   277 
   278     void nextIn(Edge& i) const { 
   279       Parent::nextIn(i); 
   280       while (i!=INVALID && (!(*edge_filter_map)[i] 
   281 	     || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); 
   282     }
   283 
   284     void nextOut(Edge& i) const { 
   285       Parent::nextOut(i); 
   286       while (i!=INVALID && (!(*edge_filter_map)[i] 
   287 	     || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); 
   288     }
   289 
   290     /// This function hides \c n in the graph, i.e. the iteration 
   291     /// jumps over it. This is done by simply setting the value of \c n  
   292     /// to be false in the corresponding node-map.
   293     void hide(const Node& n) const { node_filter_map->set(n, false); }
   294 
   295     /// This function hides \c e in the graph, i.e. the iteration 
   296     /// jumps over it. This is done by simply setting the value of \c e  
   297     /// to be false in the corresponding edge-map.
   298     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   299 
   300     /// The value of \c n is set to be true in the node-map which stores 
   301     /// hide information. If \c n was hidden previuosly, then it is shown 
   302     /// again
   303      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   304 
   305     /// The value of \c e is set to be true in the edge-map which stores 
   306     /// hide information. If \c e was hidden previuosly, then it is shown 
   307     /// again
   308     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   309 
   310     /// Returns true if \c n is hidden.
   311     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   312 
   313     /// Returns true if \c n is hidden.
   314     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   315 
   316     typedef False NodeNumTag;
   317     typedef False EdgeNumTag;
   318   };
   319 
   320   template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap>
   321   class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> 
   322     : public GraphAdaptorBase<_Graph> {
   323   public:
   324     typedef _Graph Graph;
   325     typedef GraphAdaptorBase<_Graph> Parent;
   326   protected:
   327     NodeFilterMap* node_filter_map;
   328     EdgeFilterMap* edge_filter_map;
   329     SubGraphAdaptorBase() : Parent(), 
   330 			    node_filter_map(0), edge_filter_map(0) { }
   331 
   332     void setNodeFilterMap(NodeFilterMap& _node_filter_map) {
   333       node_filter_map=&_node_filter_map;
   334     }
   335     void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) {
   336       edge_filter_map=&_edge_filter_map;
   337     }
   338 
   339   public:
   340 
   341     typedef typename Parent::Node Node;
   342     typedef typename Parent::Edge Edge;
   343 
   344     void first(Node& i) const { 
   345       Parent::first(i); 
   346       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   347     }
   348 
   349     void first(Edge& i) const { 
   350       Parent::first(i); 
   351       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   352     }
   353 
   354     void firstIn(Edge& i, const Node& n) const { 
   355       Parent::firstIn(i, n); 
   356       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   357     }
   358 
   359     void firstOut(Edge& i, const Node& n) const { 
   360       Parent::firstOut(i, n); 
   361       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   362     }
   363 
   364     void next(Node& i) const { 
   365       Parent::next(i); 
   366       while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); 
   367     }
   368     void next(Edge& i) const { 
   369       Parent::next(i); 
   370       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); 
   371     }
   372     void nextIn(Edge& i) const { 
   373       Parent::nextIn(i); 
   374       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); 
   375     }
   376 
   377     void nextOut(Edge& i) const { 
   378       Parent::nextOut(i); 
   379       while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); 
   380     }
   381 
   382     /// This function hides \c n in the graph, i.e. the iteration 
   383     /// jumps over it. This is done by simply setting the value of \c n  
   384     /// to be false in the corresponding node-map.
   385     void hide(const Node& n) const { node_filter_map->set(n, false); }
   386 
   387     /// This function hides \c e in the graph, i.e. the iteration 
   388     /// jumps over it. This is done by simply setting the value of \c e  
   389     /// to be false in the corresponding edge-map.
   390     void hide(const Edge& e) const { edge_filter_map->set(e, false); }
   391 
   392     /// The value of \c n is set to be true in the node-map which stores 
   393     /// hide information. If \c n was hidden previuosly, then it is shown 
   394     /// again
   395      void unHide(const Node& n) const { node_filter_map->set(n, true); }
   396 
   397     /// The value of \c e is set to be true in the edge-map which stores 
   398     /// hide information. If \c e was hidden previuosly, then it is shown 
   399     /// again
   400     void unHide(const Edge& e) const { edge_filter_map->set(e, true); }
   401 
   402     /// Returns true if \c n is hidden.
   403     bool hidden(const Node& n) const { return !(*node_filter_map)[n]; }
   404 
   405     /// Returns true if \c n is hidden.
   406     bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; }
   407 
   408     typedef False NodeNumTag;
   409     typedef False EdgeNumTag;
   410   };
   411 
   412   /*! \brief A graph adaptor for hiding nodes and edges from a graph.
   413     
   414   \warning Graph adaptors are in even more experimental state than the other
   415   parts of the lib. Use them at you own risk.
   416   
   417   SubGraphAdaptor shows the graph with filtered node-set and 
   418   edge-set. If the \c checked parameter is true then it filters the edgeset
   419   to do not get invalid edges without source or target.
   420   Let \f$G=(V, A)\f$ be a directed graph 
   421   and suppose that the graph instance \c g of type ListGraph implements 
   422   \f$G\f$. 
   423   Let moreover \f$b_V\f$ and 
   424   \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. 
   425   SubGraphAdaptor<...>::NodeIt iterates 
   426   on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and 
   427   SubGraphAdaptor<...>::EdgeIt iterates 
   428   on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, 
   429   SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates 
   430   only on edges leaving and entering a specific node which have true value.
   431 
   432   If the \c checked template parameter is false then we have to note that 
   433   the node-iterator cares only the filter on the node-set, and the 
   434   edge-iterator cares only the filter on the edge-set. This way the edge-map
   435   should filter all edges which's source or target is filtered by the 
   436   node-filter.
   437   \code
   438   typedef ListGraph Graph;
   439   Graph g;
   440   typedef Graph::Node Node;
   441   typedef Graph::Edge Edge;
   442   Node u=g.addNode(); //node of id 0
   443   Node v=g.addNode(); //node of id 1
   444   Node e=g.addEdge(u, v); //edge of id 0
   445   Node f=g.addEdge(v, u); //edge of id 1
   446   Graph::NodeMap<bool> nm(g, true);
   447   nm.set(u, false);
   448   Graph::EdgeMap<bool> em(g, true);
   449   em.set(e, false);
   450   typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW;
   451   SubGW gw(g, nm, em);
   452   for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl;
   453   std::cout << ":-)" << std::endl;
   454   for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl;
   455   \endcode
   456   The output of the above code is the following.
   457   \code
   458   1
   459   :-)
   460   1
   461   \endcode
   462   Note that \c n is of type \c SubGW::NodeIt, but it can be converted to
   463   \c Graph::Node that is why \c g.id(n) can be applied.
   464 
   465   For other examples see also the documentation of NodeSubGraphAdaptor and 
   466   EdgeSubGraphAdaptor.
   467 
   468   \author Marton Makai
   469   */
   470   template<typename _Graph, typename NodeFilterMap, 
   471 	   typename EdgeFilterMap, bool checked = true>
   472   class SubGraphAdaptor : 
   473     public IterableGraphExtender<
   474     SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > {
   475   public:
   476     typedef _Graph Graph;
   477     typedef IterableGraphExtender<
   478       SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent;
   479   protected:
   480     SubGraphAdaptor() { }
   481   public:
   482     SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, 
   483 		    EdgeFilterMap& _edge_filter_map) { 
   484       setGraph(_graph);
   485       setNodeFilterMap(_node_filter_map);
   486       setEdgeFilterMap(_edge_filter_map);
   487     }
   488   };
   489 
   490 
   491 
   492   /*! \brief An adaptor for hiding nodes from a graph.
   493 
   494   \warning Graph adaptors are in even more experimental state than the other
   495   parts of the lib. Use them at you own risk.
   496   
   497   An adaptor for hiding nodes from a graph.
   498   This adaptor specializes SubGraphAdaptor in the way that only the node-set 
   499   can be filtered. In usual case the checked parameter is true, we get the
   500   induced subgraph. But if the checked parameter is false then we can only
   501   filter only isolated nodes.
   502   \author Marton Makai
   503   */
   504   template<typename Graph, typename NodeFilterMap, bool checked = true>
   505   class NodeSubGraphAdaptor : 
   506     public SubGraphAdaptor<Graph, NodeFilterMap, 
   507 			   ConstMap<typename Graph::Edge,bool>, checked> {
   508   public:
   509     typedef SubGraphAdaptor<Graph, NodeFilterMap, 
   510 			    ConstMap<typename Graph::Edge,bool> > Parent;
   511   protected:
   512     ConstMap<typename Graph::Edge, bool> const_true_map;
   513   public:
   514     NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : 
   515       Parent(), const_true_map(true) { 
   516       Parent::setGraph(_graph);
   517       Parent::setNodeFilterMap(_node_filter_map);
   518       Parent::setEdgeFilterMap(const_true_map);
   519     }
   520   };
   521 
   522 
   523   /*! \brief An adaptor for hiding edges from a graph.
   524 
   525   \warning Graph adaptors are in even more experimental state than the other
   526   parts of the lib. Use them at you own risk.
   527   
   528   An adaptor for hiding edges from a graph.
   529   This adaptor specializes SubGraphAdaptor in the way that only the edge-set 
   530   can be filtered. The usefulness of this adaptor is demonstrated in the 
   531   problem of searching a maximum number of edge-disjoint shortest paths 
   532   between 
   533   two nodes \c s and \c t. Shortest here means being shortest w.r.t. 
   534   non-negative edge-lengths. Note that 
   535   the comprehension of the presented solution 
   536   need's some elementary knowledge from combinatorial optimization. 
   537 
   538   If a single shortest path is to be 
   539   searched between \c s and \c t, then this can be done easily by 
   540   applying the Dijkstra algorithm. What happens, if a maximum number of 
   541   edge-disjoint shortest paths is to be computed. It can be proved that an 
   542   edge can be in a shortest path if and only if it is tight with respect to 
   543   the potential function computed by Dijkstra. Moreover, any path containing 
   544   only such edges is a shortest one. Thus we have to compute a maximum number 
   545   of edge-disjoint paths between \c s and \c t in the graph which has edge-set 
   546   all the tight edges. The computation will be demonstrated on the following 
   547   graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. 
   548   The full source code is available in \ref sub_graph_adaptor_demo.cc. 
   549   If you are interested in more demo programs, you can use 
   550   \ref dim_to_dot.cc to generate .dot files from dimacs files. 
   551   The .dot file of the following figure was generated by  
   552   the demo program \ref dim_to_dot.cc.
   553 
   554   \dot
   555   digraph lemon_dot_example {
   556   node [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   557   n0 [ label="0 (s)" ];
   558   n1 [ label="1" ];
   559   n2 [ label="2" ];
   560   n3 [ label="3" ];
   561   n4 [ label="4" ];
   562   n5 [ label="5" ];
   563   n6 [ label="6 (t)" ];
   564   edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ];
   565   n5 ->  n6 [ label="9, length:4" ];
   566   n4 ->  n6 [ label="8, length:2" ];
   567   n3 ->  n5 [ label="7, length:1" ];
   568   n2 ->  n5 [ label="6, length:3" ];
   569   n2 ->  n6 [ label="5, length:5" ];
   570   n2 ->  n4 [ label="4, length:2" ];
   571   n1 ->  n4 [ label="3, length:3" ];
   572   n0 ->  n3 [ label="2, length:1" ];
   573   n0 ->  n2 [ label="1, length:2" ];
   574   n0 ->  n1 [ label="0, length:3" ];
   575   }
   576   \enddot
   577 
   578   \code
   579   Graph g;
   580   Node s, t;
   581   LengthMap length(g);
   582 
   583   readDimacs(std::cin, g, length, s, t);
   584 
   585   cout << "edges with lengths (of form id, source--length->target): " << endl;
   586   for(EdgeIt e(g); e!=INVALID; ++e) 
   587     cout << g.id(e) << ", " << g.id(g.source(e)) << "--" 
   588          << length[e] << "->" << g.id(g.target(e)) << endl;
   589 
   590   cout << "s: " << g.id(s) << " t: " << g.id(t) << endl;
   591   \endcode
   592   Next, the potential function is computed with Dijkstra.
   593   \code
   594   typedef Dijkstra<Graph, LengthMap> Dijkstra;
   595   Dijkstra dijkstra(g, length);
   596   dijkstra.run(s);
   597   \endcode
   598   Next, we consrtruct a map which filters the edge-set to the tight edges.
   599   \code
   600   typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> 
   601     TightEdgeFilter;
   602   TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length);
   603   
   604   typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW;
   605   SubGW gw(g, tight_edge_filter);
   606   \endcode
   607   Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed 
   608   with a max flow algorithm Preflow.
   609   \code
   610   ConstMap<Edge, int> const_1_map(1);
   611   Graph::EdgeMap<int> flow(g, 0);
   612 
   613   Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > 
   614     preflow(gw, s, t, const_1_map, flow);
   615   preflow.run();
   616   \endcode
   617   Last, the output is:
   618   \code  
   619   cout << "maximum number of edge-disjoint shortest path: " 
   620        << preflow.flowValue() << endl;
   621   cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " 
   622        << endl;
   623   for(EdgeIt e(g); e!=INVALID; ++e) 
   624     if (flow[e])
   625       cout << " " << g.id(g.source(e)) << "--" 
   626 	   << length[e] << "->" << g.id(g.target(e)) << endl;
   627   \endcode
   628   The program has the following (expected :-)) output:
   629   \code
   630   edges with lengths (of form id, source--length->target):
   631    9, 5--4->6
   632    8, 4--2->6
   633    7, 3--1->5
   634    6, 2--3->5
   635    5, 2--5->6
   636    4, 2--2->4
   637    3, 1--3->4
   638    2, 0--1->3
   639    1, 0--2->2
   640    0, 0--3->1
   641   s: 0 t: 6
   642   maximum number of edge-disjoint shortest path: 2
   643   edges of the maximum number of edge-disjoint shortest s-t paths:
   644    9, 5--4->6
   645    8, 4--2->6
   646    7, 3--1->5
   647    4, 2--2->4
   648    2, 0--1->3
   649    1, 0--2->2
   650   \endcode
   651 
   652   \author Marton Makai
   653   */
   654   template<typename Graph, typename EdgeFilterMap>
   655   class EdgeSubGraphAdaptor : 
   656     public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   657 			   EdgeFilterMap, false> {
   658   public:
   659     typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, 
   660 			    EdgeFilterMap, false> Parent;
   661   protected:
   662     ConstMap<typename Graph::Node, bool> const_true_map;
   663   public:
   664     EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : 
   665       Parent(), const_true_map(true) { 
   666       Parent::setGraph(_graph);
   667       Parent::setNodeFilterMap(const_true_map);
   668       Parent::setEdgeFilterMap(_edge_filter_map);
   669     }
   670   };
   671 
   672   template <typename _Graph>
   673   class UndirGraphAdaptorBase : 
   674     public UndirGraphExtender<GraphAdaptorBase<_Graph> > {
   675   public:
   676     typedef _Graph Graph;
   677     typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent;
   678   protected:
   679     UndirGraphAdaptorBase() : Parent() { }
   680   public:
   681     typedef typename Parent::UndirEdge UndirEdge;
   682     typedef typename Parent::Edge Edge;
   683     
   684     template <typename T>
   685     class EdgeMap {
   686     protected:
   687       const UndirGraphAdaptorBase<_Graph>* g;
   688       template <typename TT> friend class EdgeMap;
   689       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   690     public:
   691       typedef T Value;
   692       typedef Edge Key;
   693       
   694       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), 
   695 	forward_map(*(g->graph)), backward_map(*(g->graph)) { }
   696 
   697       EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), 
   698 	forward_map(*(g->graph), a), backward_map(*(g->graph), a) { }
   699       
   700       void set(Edge e, T a) { 
   701 	if (g->direction(e)) 
   702 	  forward_map.set(e, a); 
   703 	else 
   704 	  backward_map.set(e, a); 
   705       }
   706 
   707       T operator[](Edge e) const { 
   708 	if (g->direction(e)) 
   709 	  return forward_map[e]; 
   710 	else 
   711 	  return backward_map[e]; 
   712       }
   713     };
   714         
   715     template <typename T>
   716     class UndirEdgeMap {
   717       template <typename TT> friend class UndirEdgeMap;
   718       typename _Graph::template EdgeMap<T> map; 
   719     public:
   720       typedef T Value;
   721       typedef UndirEdge Key;
   722       
   723       UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : 
   724 	map(*(g.graph)) { }
   725 
   726       UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : 
   727 	map(*(g.graph), a) { }
   728       
   729       void set(UndirEdge e, T a) { 
   730 	map.set(e, a); 
   731       }
   732 
   733       T operator[](UndirEdge e) const { 
   734 	return map[e]; 
   735       }
   736     };
   737       
   738   };
   739 
   740   /// \brief An undirected graph is made from a directed graph by an adaptor
   741   ///
   742   /// Undocumented, untested!!!
   743   /// If somebody knows nice demo application, let's polulate it.
   744   /// 
   745   /// \author Marton Makai
   746   template<typename _Graph>
   747   class UndirGraphAdaptor : 
   748     public IterableUndirGraphExtender<
   749     UndirGraphAdaptorBase<_Graph> > {
   750   public:
   751     typedef _Graph Graph;
   752     typedef IterableUndirGraphExtender<
   753       UndirGraphAdaptorBase<_Graph> > Parent;
   754   protected:
   755     UndirGraphAdaptor() { }
   756   public:
   757     UndirGraphAdaptor(_Graph& _graph) { 
   758       setGraph(_graph);
   759     }
   760   };
   761 
   762   
   763   template <typename _Graph, 
   764 	    typename ForwardFilterMap, typename BackwardFilterMap>
   765   class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
   766   public:
   767     typedef _Graph Graph;
   768     typedef GraphAdaptorBase<_Graph> Parent;
   769   protected:
   770     ForwardFilterMap* forward_filter;
   771     BackwardFilterMap* backward_filter;
   772     SubBidirGraphAdaptorBase() : Parent(), 
   773 				 forward_filter(0), backward_filter(0) { }
   774 
   775     void setForwardFilterMap(ForwardFilterMap& _forward_filter) {
   776       forward_filter=&_forward_filter;
   777     }
   778     void setBackwardFilterMap(BackwardFilterMap& _backward_filter) {
   779       backward_filter=&_backward_filter;
   780     }
   781 
   782   public:
   783 //     SubGraphAdaptorBase(Graph& _graph, 
   784 // 			NodeFilterMap& _node_filter_map, 
   785 // 			EdgeFilterMap& _edge_filter_map) : 
   786 //       Parent(&_graph), 
   787 //       node_filter_map(&node_filter_map), 
   788 //       edge_filter_map(&edge_filter_map) { }
   789 
   790     typedef typename Parent::Node Node;
   791     typedef typename _Graph::Edge GraphEdge;
   792     template <typename T> class EdgeMap;
   793     /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from 
   794     /// _Graph::Edge. It contains an extra bool flag which is true 
   795     /// if and only if the 
   796     /// edge is the backward version of the original edge.
   797     class Edge : public _Graph::Edge {
   798       friend class SubBidirGraphAdaptorBase<
   799 	Graph, ForwardFilterMap, BackwardFilterMap>;
   800       template<typename T> friend class EdgeMap;
   801     protected:
   802       bool backward; //true, iff backward
   803     public:
   804       Edge() { }
   805       /// \todo =false is needed, or causes problems?
   806       /// If \c _backward is false, then we get an edge corresponding to the 
   807       /// original one, otherwise its oppositely directed pair is obtained.
   808       Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : 
   809 	_Graph::Edge(e), backward(_backward) { }
   810       Edge(Invalid i) : _Graph::Edge(i), backward(true) { }
   811       bool operator==(const Edge& v) const { 
   812 	return (this->backward==v.backward && 
   813 		static_cast<typename _Graph::Edge>(*this)==
   814 		static_cast<typename _Graph::Edge>(v));
   815       } 
   816       bool operator!=(const Edge& v) const { 
   817 	return (this->backward!=v.backward || 
   818 		static_cast<typename _Graph::Edge>(*this)!=
   819 		static_cast<typename _Graph::Edge>(v));
   820       }
   821     };
   822 
   823     void first(Node& i) const { 
   824       Parent::first(i); 
   825     }
   826 
   827     void first(Edge& i) const { 
   828       Parent::first(i); 
   829       i.backward=false;
   830       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   831 	     !(*forward_filter)[i]) Parent::next(i);
   832       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   833 	Parent::first(i); 
   834 	i.backward=true;
   835 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   836 	       !(*backward_filter)[i]) Parent::next(i);
   837       }
   838     }
   839 
   840     void firstIn(Edge& i, const Node& n) const { 
   841       Parent::firstIn(i, n); 
   842       i.backward=false;
   843       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   844 	     !(*forward_filter)[i]) Parent::nextIn(i);
   845       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   846 	Parent::firstOut(i, n); 
   847 	i.backward=true;
   848 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   849 	       !(*backward_filter)[i]) Parent::nextOut(i);
   850       }
   851     }
   852 
   853     void firstOut(Edge& i, const Node& n) const { 
   854       Parent::firstOut(i, n); 
   855       i.backward=false;
   856       while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   857 	     !(*forward_filter)[i]) Parent::nextOut(i);
   858       if (*static_cast<GraphEdge*>(&i)==INVALID) {
   859 	Parent::firstIn(i, n); 
   860 	i.backward=true;
   861 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   862 	       !(*backward_filter)[i]) Parent::nextIn(i);
   863       }
   864     }
   865 
   866     void next(Node& i) const { 
   867       Parent::next(i); 
   868     }
   869 
   870     void next(Edge& i) const { 
   871       if (!(i.backward)) {
   872 	Parent::next(i);
   873 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   874 	       !(*forward_filter)[i]) Parent::next(i);
   875 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   876 	  Parent::first(i); 
   877 	  i.backward=true;
   878 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   879 		 !(*backward_filter)[i]) Parent::next(i);
   880 	}
   881       } else {
   882 	Parent::next(i);
   883 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   884 	       !(*backward_filter)[i]) Parent::next(i);
   885       }
   886     }
   887 
   888     void nextIn(Edge& i) const { 
   889       if (!(i.backward)) {
   890 	Node n=Parent::target(i);
   891 	Parent::nextIn(i);
   892 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   893 	       !(*forward_filter)[i]) Parent::nextIn(i);
   894 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   895 	  Parent::firstOut(i, n); 
   896 	  i.backward=true;
   897 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   898 		 !(*backward_filter)[i]) Parent::nextOut(i);
   899 	}
   900       } else {
   901 	Parent::nextOut(i);
   902 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   903 	       !(*backward_filter)[i]) Parent::nextOut(i);
   904       }
   905     }
   906 
   907     void nextOut(Edge& i) const { 
   908       if (!(i.backward)) {
   909 	Node n=Parent::source(i);
   910 	Parent::nextOut(i);
   911 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   912 	       !(*forward_filter)[i]) Parent::nextOut(i);
   913 	if (*static_cast<GraphEdge*>(&i)==INVALID) {
   914 	  Parent::firstIn(i, n); 
   915 	  i.backward=true;
   916 	  while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   917 		 !(*backward_filter)[i]) Parent::nextIn(i);
   918 	}
   919       } else {
   920 	Parent::nextIn(i);
   921 	while (*static_cast<GraphEdge*>(&i)!=INVALID && 
   922 	       !(*backward_filter)[i]) Parent::nextIn(i);
   923       }
   924     }
   925 
   926     Node source(Edge e) const { 
   927       return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); }
   928     Node target(Edge e) const { 
   929       return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); }
   930 
   931     /// Gives back the opposite edge.
   932     Edge opposite(const Edge& e) const { 
   933       Edge f=e;
   934       f.backward=!f.backward;
   935       return f;
   936     }
   937 
   938     /// \warning This is a linear time operation and works only if 
   939     /// \c Graph::EdgeIt is defined.
   940     /// \todo hmm
   941     int edgeNum() const { 
   942       int i=0;
   943       Edge e;
   944       for (first(e); e!=INVALID; next(e)) ++i;
   945       return i; 
   946     }
   947 
   948     bool forward(const Edge& e) const { return !e.backward; }
   949     bool backward(const Edge& e) const { return e.backward; }
   950 
   951     template <typename T>
   952     /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two 
   953     /// _Graph::EdgeMap one for the forward edges and 
   954     /// one for the backward edges.
   955     class EdgeMap {
   956       template <typename TT> friend class EdgeMap;
   957       typename _Graph::template EdgeMap<T> forward_map, backward_map; 
   958     public:
   959       typedef T Value;
   960       typedef Edge Key;
   961 
   962       EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
   963 	      ForwardFilterMap, BackwardFilterMap>& g) : 
   964 	forward_map(*(g.graph)), backward_map(*(g.graph)) { }
   965 
   966       EdgeMap(const SubBidirGraphAdaptorBase<_Graph, 
   967 	      ForwardFilterMap, BackwardFilterMap>& g, T a) : 
   968 	forward_map(*(g.graph), a), backward_map(*(g.graph), a) { }
   969       
   970       void set(Edge e, T a) { 
   971 	if (!e.backward) 
   972 	  forward_map.set(e, a); 
   973 	else 
   974 	  backward_map.set(e, a); 
   975       }
   976 
   977 //       typename _Graph::template EdgeMap<T>::ConstReference 
   978 //       operator[](Edge e) const { 
   979 // 	if (!e.backward) 
   980 // 	  return forward_map[e]; 
   981 // 	else 
   982 // 	  return backward_map[e]; 
   983 //       }
   984 
   985 //      typename _Graph::template EdgeMap<T>::Reference 
   986       T operator[](Edge e) const { 
   987 	if (!e.backward) 
   988 	  return forward_map[e]; 
   989 	else 
   990 	  return backward_map[e]; 
   991       }
   992 
   993       void update() { 
   994 	forward_map.update(); 
   995 	backward_map.update();
   996       }
   997     };
   998 
   999   };
  1000 
  1001 
  1002   ///\brief An adaptor for composing a subgraph of a 
  1003   /// bidirected graph made from a directed one. 
  1004   ///
  1005   /// An adaptor for composing a subgraph of a 
  1006   /// bidirected graph made from a directed one. 
  1007   ///
  1008   ///\warning Graph adaptors are in even more experimental state than the other
  1009   ///parts of the lib. Use them at you own risk.
  1010   ///
  1011   /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge 
  1012   /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by
  1013   /// reversing its orientation. We are given moreover two bool valued 
  1014   /// maps on the edge-set, 
  1015   /// \f$forward\_filter\f$, and \f$backward\_filter\f$. 
  1016   /// SubBidirGraphAdaptor implements the graph structure with node-set 
  1017   /// \f$V\f$ and edge-set 
  1018   /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. 
  1019   /// The purpose of writing + instead of union is because parallel 
  1020   /// edges can arise. (Similarly, antiparallel edges also can arise).
  1021   /// In other words, a subgraph of the bidirected graph obtained, which 
  1022   /// is given by orienting the edges of the original graph in both directions.
  1023   /// As the oppositely directed edges are logically different, 
  1024   /// the maps are able to attach different values for them. 
  1025   ///
  1026   /// An example for such a construction is \c RevGraphAdaptor where the 
  1027   /// forward_filter is everywhere false and the backward_filter is 
  1028   /// everywhere true. We note that for sake of efficiency, 
  1029   /// \c RevGraphAdaptor is implemented in a different way. 
  1030   /// But BidirGraphAdaptor is obtained from 
  1031   /// SubBidirGraphAdaptor by considering everywhere true 
  1032   /// valued maps both for forward_filter and backward_filter. 
  1033   ///
  1034   /// The most important application of SubBidirGraphAdaptor 
  1035   /// is ResGraphAdaptor, which stands for the residual graph in directed 
  1036   /// flow and circulation problems. 
  1037   /// As adaptors usually, the SubBidirGraphAdaptor implements the 
  1038   /// above mentioned graph structure without its physical storage, 
  1039   /// that is the whole stuff is stored in constant memory. 
  1040   template<typename _Graph, 
  1041 	   typename ForwardFilterMap, typename BackwardFilterMap>
  1042   class SubBidirGraphAdaptor : 
  1043     public IterableGraphExtender<
  1044     SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > {
  1045   public:
  1046     typedef _Graph Graph;
  1047     typedef IterableGraphExtender<
  1048       SubBidirGraphAdaptorBase<
  1049       _Graph, ForwardFilterMap, BackwardFilterMap> > Parent;
  1050   protected:
  1051     SubBidirGraphAdaptor() { }
  1052   public:
  1053     SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, 
  1054 			 BackwardFilterMap& _backward_filter) { 
  1055       setGraph(_graph);
  1056       setForwardFilterMap(_forward_filter);
  1057       setBackwardFilterMap(_backward_filter);
  1058     }
  1059   };
  1060 
  1061 
  1062 
  1063   ///\brief An adaptor for composing bidirected graph from a directed one. 
  1064   ///
  1065   ///\warning Graph adaptors are in even more experimental state than the other
  1066   ///parts of the lib. Use them at you own risk.
  1067   ///
  1068   /// An adaptor for composing bidirected graph from a directed one. 
  1069   /// A bidirected graph is composed over the directed one without physical 
  1070   /// storage. As the oppositely directed edges are logically different ones 
  1071   /// the maps are able to attach different values for them.
  1072   template<typename Graph>
  1073   class BidirGraphAdaptor : 
  1074     public SubBidirGraphAdaptor<
  1075     Graph, 
  1076     ConstMap<typename Graph::Edge, bool>, 
  1077     ConstMap<typename Graph::Edge, bool> > {
  1078   public:
  1079     typedef  SubBidirGraphAdaptor<
  1080       Graph, 
  1081       ConstMap<typename Graph::Edge, bool>, 
  1082       ConstMap<typename Graph::Edge, bool> > Parent; 
  1083   protected:
  1084     ConstMap<typename Graph::Edge, bool> cm;
  1085 
  1086     BidirGraphAdaptor() : Parent(), cm(true) { 
  1087       Parent::setForwardFilterMap(cm);
  1088       Parent::setBackwardFilterMap(cm);
  1089     }
  1090   public:
  1091     BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { 
  1092       Parent::setGraph(_graph);
  1093       Parent::setForwardFilterMap(cm);
  1094       Parent::setBackwardFilterMap(cm);
  1095     }
  1096 
  1097     int edgeNum() const { 
  1098       return 2*this->graph->edgeNum();
  1099     }
  1100   };
  1101 
  1102 
  1103   template<typename Graph, typename Number,
  1104 	   typename CapacityMap, typename FlowMap>
  1105   class ResForwardFilter {
  1106     //    const Graph* graph;
  1107     const CapacityMap* capacity;
  1108     const FlowMap* flow;
  1109   public:
  1110     ResForwardFilter(/*const Graph& _graph, */
  1111 		     const CapacityMap& _capacity, const FlowMap& _flow) :
  1112       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1113     ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1114     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1115     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1116     bool operator[](const typename Graph::Edge& e) const {
  1117       return (Number((*flow)[e]) < Number((*capacity)[e]));
  1118     }
  1119   };
  1120 
  1121   template<typename Graph, typename Number,
  1122 	   typename CapacityMap, typename FlowMap>
  1123   class ResBackwardFilter {
  1124     const CapacityMap* capacity;
  1125     const FlowMap* flow;
  1126   public:
  1127     ResBackwardFilter(/*const Graph& _graph,*/ 
  1128 		      const CapacityMap& _capacity, const FlowMap& _flow) :
  1129       /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { }
  1130     ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { }
  1131     void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; }
  1132     void setFlow(const FlowMap& _flow) { flow=&_flow; }
  1133     bool operator[](const typename Graph::Edge& e) const {
  1134       return (Number(0) < Number((*flow)[e]));
  1135     }
  1136   };
  1137 
  1138   
  1139   /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems.
  1140 
  1141   An adaptor for composing the residual graph for directed flow and circulation problems. 
  1142   Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a 
  1143   number type. Let moreover 
  1144   \f$f,c:A\to F\f$, be functions on the edge-set. 
  1145   In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow 
  1146   and \f$c\f$ for a capacity function.   
  1147   Suppose that a graph instange \c g of type 
  1148   \c ListGraph implements \f$G\f$.
  1149   \code
  1150   ListGraph g;
  1151   \endcode
  1152   Then RevGraphAdaptor implements the graph structure with node-set 
  1153   \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where 
  1154   \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and 
  1155   \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, 
  1156   i.e. the so called residual graph. 
  1157   When we take the union \f$A_{forward}\cup A_{backward}\f$, 
  1158   multilicities are counted, i.e. if an edge is in both 
  1159   \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it 
  1160   appears twice. 
  1161   The following code shows how 
  1162   such an instance can be constructed.
  1163   \code
  1164   typedef ListGraph Graph;
  1165   Graph::EdgeMap<int> f(g);
  1166   Graph::EdgeMap<int> c(g);
  1167   ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g);
  1168   \endcode
  1169   \author Marton Makai
  1170   */
  1171   template<typename Graph, typename Number, 
  1172 	   typename CapacityMap, typename FlowMap>
  1173   class ResGraphAdaptor : 
  1174     public SubBidirGraphAdaptor< 
  1175     Graph, 
  1176     ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1177     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > {
  1178   public:
  1179     typedef SubBidirGraphAdaptor< 
  1180       Graph, 
  1181       ResForwardFilter<Graph, Number, CapacityMap, FlowMap>,  
  1182       ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent;
  1183   protected:
  1184     const CapacityMap* capacity;
  1185     FlowMap* flow;
  1186     ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter;
  1187     ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter;
  1188     ResGraphAdaptor() : Parent(), 
  1189  			capacity(0), flow(0) { }
  1190     void setCapacityMap(const CapacityMap& _capacity) {
  1191       capacity=&_capacity;
  1192       forward_filter.setCapacity(_capacity);
  1193       backward_filter.setCapacity(_capacity);
  1194     }
  1195     void setFlowMap(FlowMap& _flow) {
  1196       flow=&_flow;
  1197       forward_filter.setFlow(_flow);
  1198       backward_filter.setFlow(_flow);
  1199     }
  1200   public:
  1201     ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, 
  1202 		       FlowMap& _flow) : 
  1203       Parent(), capacity(&_capacity), flow(&_flow), 
  1204       forward_filter(/*_graph,*/ _capacity, _flow), 
  1205       backward_filter(/*_graph,*/ _capacity, _flow) {
  1206       Parent::setGraph(_graph);
  1207       Parent::setForwardFilterMap(forward_filter);
  1208       Parent::setBackwardFilterMap(backward_filter);
  1209     }
  1210 
  1211     typedef typename Parent::Edge Edge;
  1212 
  1213     void augment(const Edge& e, Number a) const {
  1214       if (Parent::forward(e))  
  1215 	flow->set(e, (*flow)[e]+a);
  1216       else  
  1217 	flow->set(e, (*flow)[e]-a);
  1218     }
  1219 
  1220     /// \brief Residual capacity map.
  1221     ///
  1222     /// In generic residual graphs the residual capacity can be obtained 
  1223     /// as a map. 
  1224     class ResCap {
  1225     protected:
  1226       const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph;
  1227     public:
  1228       typedef Number Value;
  1229       typedef Edge Key;
  1230       ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& 
  1231 	     _res_graph) : res_graph(&_res_graph) { }
  1232       Number operator[](const Edge& e) const { 
  1233 	if (res_graph->forward(e)) 
  1234 	  return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; 
  1235 	else 
  1236 	  return (*(res_graph->flow))[e]; 
  1237       }
  1238     };
  1239 
  1240     //    KEEP_MAPS(Parent, ResGraphAdaptor);
  1241   };
  1242 
  1243 
  1244 
  1245   template <typename _Graph, typename FirstOutEdgesMap>
  1246   class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> {
  1247   public:
  1248     typedef _Graph Graph;
  1249     typedef GraphAdaptorBase<_Graph> Parent;
  1250   protected:
  1251     FirstOutEdgesMap* first_out_edges;
  1252     ErasingFirstGraphAdaptorBase() : Parent(), 
  1253 				     first_out_edges(0) { }
  1254 
  1255     void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) {
  1256       first_out_edges=&_first_out_edges;
  1257     }
  1258 
  1259   public:
  1260 
  1261     typedef typename Parent::Node Node;
  1262     typedef typename Parent::Edge Edge;
  1263 
  1264     void firstOut(Edge& i, const Node& n) const { 
  1265       i=(*first_out_edges)[n];
  1266     }
  1267 
  1268     void erase(const Edge& e) const {
  1269       Node n=source(e);
  1270       Edge f=e;
  1271       Parent::nextOut(f);
  1272       first_out_edges->set(n, f);
  1273     }    
  1274   };
  1275 
  1276 
  1277   /// For blocking flows.
  1278 
  1279   ///\warning Graph adaptors are in even more experimental state than the other
  1280   ///parts of the lib. Use them at you own risk.
  1281   ///
  1282   /// This graph adaptor is used for on-the-fly 
  1283   /// Dinits blocking flow computations.
  1284   /// For each node, an out-edge is stored which is used when the 
  1285   /// \code 
  1286   /// OutEdgeIt& first(OutEdgeIt&, const Node&)
  1287   /// \endcode
  1288   /// is called. 
  1289   ///
  1290   /// \author Marton Makai
  1291   template <typename _Graph, typename FirstOutEdgesMap>
  1292   class ErasingFirstGraphAdaptor : 
  1293     public IterableGraphExtender<
  1294     ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > {
  1295   public:
  1296     typedef _Graph Graph;
  1297     typedef IterableGraphExtender<
  1298       ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent;
  1299     ErasingFirstGraphAdaptor(Graph& _graph, 
  1300 			     FirstOutEdgesMap& _first_out_edges) { 
  1301       setGraph(_graph);
  1302       setFirstOutEdgesMap(_first_out_edges);
  1303     } 
  1304 
  1305   };
  1306 
  1307   template <typename _Graph>
  1308   class SplitGraphAdaptorBase 
  1309     : public GraphAdaptorBase<_Graph> {
  1310   public:
  1311     typedef GraphAdaptorBase<_Graph> Parent;
  1312 
  1313     class Node;
  1314     class Edge;
  1315     template <typename T> class NodeMap;
  1316     template <typename T> class EdgeMap;
  1317     
  1318 
  1319     class Node : public Parent::Node {
  1320       friend class SplitGraphAdaptorBase;
  1321       template <typename T> friend class NodeMap;
  1322       typedef typename Parent::Node NodeParent;
  1323     private:
  1324 
  1325       bool entry;
  1326       Node(typename Parent::Node _node, bool _entry)
  1327 	: Parent::Node(_node), entry(_entry) {}
  1328       
  1329     public:
  1330       Node() {}
  1331       Node(Invalid) : NodeParent(INVALID), entry(true) {}
  1332 
  1333       bool operator==(const Node& node) const {
  1334 	return NodeParent::operator==(node) && entry == node.entry;
  1335       }
  1336       
  1337       bool operator!=(const Node& node) const {
  1338 	return !(*this == node);
  1339       }
  1340       
  1341       bool operator<(const Node& node) const {
  1342 	return NodeParent::operator<(node) || 
  1343 	  (NodeParent::operator==(node) && entry < node.entry);
  1344       }
  1345     };
  1346 
  1347     /// \todo May we want VARIANT/union type
  1348     class Edge : public Parent::Edge {
  1349       friend class SplitGraphAdaptorBase;
  1350       template <typename T> friend class EdgeMap;
  1351     private:
  1352       typedef typename Parent::Edge EdgeParent;
  1353       typedef typename Parent::Node NodeParent;
  1354       NodeParent bind;
  1355 
  1356       Edge(const EdgeParent& edge, const NodeParent& node)
  1357 	: EdgeParent(edge), bind(node) {}
  1358     public:
  1359       Edge() {}
  1360       Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {}
  1361 
  1362       bool operator==(const Edge& edge) const {
  1363 	return EdgeParent::operator==(edge) && bind == edge.bind;
  1364       }
  1365       
  1366       bool operator!=(const Edge& edge) const {
  1367 	return !(*this == edge);
  1368       }
  1369       
  1370       bool operator<(const Edge& edge) const {
  1371 	return EdgeParent::operator<(edge) || 
  1372 	  (EdgeParent::operator==(edge) && bind < edge.bind);
  1373       }
  1374     };
  1375 
  1376     void first(Node& node) const {
  1377       Parent::first(node);
  1378       node.entry = true;
  1379     } 
  1380 
  1381     void next(Node& node) const {
  1382       if (node.entry) {
  1383 	node.entry = false;
  1384       } else {
  1385 	node.entry = true;
  1386 	Parent::next(node);
  1387       }
  1388     }
  1389 
  1390     void first(Edge& edge) const {
  1391       Parent::first(edge);
  1392       if ((typename Parent::Edge&)edge == INVALID) {
  1393 	Parent::first(edge.bind);
  1394       } else {
  1395 	edge.bind = INVALID;
  1396       }
  1397     }
  1398 
  1399     void next(Edge& edge) const {
  1400       if ((typename Parent::Edge&)edge != INVALID) {
  1401 	Parent::next(edge);
  1402 	if ((typename Parent::Edge&)edge == INVALID) {
  1403 	  Parent::first(edge.bind);
  1404 	}
  1405       } else {
  1406 	Parent::next(edge.bind);
  1407       }      
  1408     }
  1409 
  1410     void firstIn(Edge& edge, const Node& node) const {
  1411       if (node.entry) {
  1412 	Parent::firstIn(edge, node);
  1413 	edge.bind = INVALID;
  1414       } else {
  1415 	(typename Parent::Edge&)edge = INVALID;
  1416 	edge.bind = node;
  1417       }
  1418     }
  1419 
  1420     void nextIn(Edge& edge) const {
  1421       if ((typename Parent::Edge&)edge != INVALID) {
  1422 	Parent::nextIn(edge);
  1423       } else {
  1424 	edge.bind = INVALID;
  1425       }      
  1426     }
  1427 
  1428     void firstOut(Edge& edge, const Node& node) const {
  1429       if (!node.entry) {
  1430 	Parent::firstOut(edge, node);
  1431 	edge.bind = INVALID;
  1432       } else {
  1433 	(typename Parent::Edge&)edge = INVALID;
  1434 	edge.bind = node;
  1435       }
  1436     }
  1437 
  1438     void nextOut(Edge& edge) const {
  1439       if ((typename Parent::Edge&)edge != INVALID) {
  1440 	Parent::nextOut(edge);
  1441       } else {
  1442 	edge.bind = INVALID;
  1443       }
  1444     }
  1445 
  1446     Node source(const Edge& edge) const {
  1447       if ((typename Parent::Edge&)edge != INVALID) {
  1448 	return Node(Parent::source(edge), false);
  1449       } else {
  1450 	return Node(edge.bind, true);
  1451       }
  1452     }
  1453 
  1454     Node target(const Edge& edge) const {
  1455       if ((typename Parent::Edge&)edge != INVALID) {
  1456 	return Node(Parent::target(edge), true);
  1457       } else {
  1458 	return Node(edge.bind, false);
  1459       }
  1460     }
  1461 
  1462     static bool entryNode(const Node& node) {
  1463       return node.entry;
  1464     }
  1465 
  1466     static bool exitNode(const Node& node) {
  1467       return !node.entry;
  1468     }
  1469 
  1470     static Node getEntry(const typename Parent::Node& node) {
  1471       return Node(node, true);
  1472     }
  1473 
  1474     static Node getExit(const typename Parent::Node& node) {
  1475       return Node(node, false);
  1476     }
  1477 
  1478     static bool originalEdge(const Edge& edge) {
  1479       return (typename Parent::Edge&)edge != INVALID;
  1480     }
  1481 
  1482     static bool bindingEdge(const Edge& edge) {
  1483       return edge.bind != INVALID;
  1484     }
  1485 
  1486     static Node getBindedNode(const Edge& edge) {
  1487       return edge.bind;
  1488     }
  1489 
  1490     int nodeNum() const {
  1491       return Parent::nodeNum() * 2;
  1492     }
  1493 
  1494     typedef CompileTimeAnd<typename Parent::NodeNumTag, 
  1495     			   typename Parent::EdgeNumTag> EdgeNumTag;
  1496     
  1497     int edgeNum() const {
  1498       return Parent::edgeNum() + Parent::nodeNum();
  1499     }
  1500 
  1501     Edge findEdge(const Node& source, const Node& target, 
  1502 		  const Edge& prev = INVALID) const {
  1503       if (exitNode(source) && entryNode(target)) {
  1504 	return Parent::findEdge(source, target, prev);
  1505       } else {
  1506 	if (prev == INVALID && entryNode(source) && exitNode(target) && 
  1507 	    (typename Parent::Node&)source == (typename Parent::Node&)target) {
  1508 	  return Edge(INVALID, source);
  1509 	} else {
  1510 	  return INVALID;
  1511 	}
  1512       }
  1513     }
  1514     
  1515     template <typename T>
  1516     class NodeMap : public MapBase<Node, T> {
  1517       typedef typename Parent::template NodeMap<T> NodeImpl;
  1518     public:
  1519       NodeMap(const SplitGraphAdaptorBase& _graph) 
  1520 	: entry(_graph), exit(_graph) {}
  1521       NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1522 	: entry(_graph, t), exit(_graph, t) {}
  1523       
  1524       void set(const Node& key, const T& val) {
  1525 	if (key.entry) { entry.set(key, val); }
  1526 	else {exit.set(key, val); }
  1527       }
  1528       
  1529       typename ReferenceMapTraits<NodeImpl>::Reference 
  1530       operator[](const Node& key) {
  1531 	if (key.entry) { return entry[key]; }
  1532 	else { return exit[key]; }
  1533       }
  1534 
  1535       T operator[](const Node& key) const {
  1536 	if (key.entry) { return entry[key]; }
  1537 	else { return exit[key]; }
  1538       }
  1539 
  1540     private:
  1541       NodeImpl entry, exit;
  1542     };
  1543 
  1544     template <typename T>
  1545     class EdgeMap : public MapBase<Edge, T> {
  1546       typedef typename Parent::template NodeMap<T> NodeImpl;
  1547       typedef typename Parent::template EdgeMap<T> EdgeImpl;
  1548     public:
  1549       EdgeMap(const SplitGraphAdaptorBase& _graph) 
  1550 	: bind(_graph), orig(_graph) {}
  1551       EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) 
  1552 	: bind(_graph, t), orig(_graph, t) {}
  1553       
  1554       void set(const Edge& key, const T& val) {
  1555 	if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); }
  1556 	else {bind.set(key.bind, val); }
  1557       }
  1558       
  1559       typename ReferenceMapTraits<EdgeImpl>::Reference
  1560       operator[](const Edge& key) {
  1561 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
  1562 	else {return bind[key.bind]; }
  1563       }
  1564 
  1565       T operator[](const Edge& key) const {
  1566 	if ((typename Parent::Edge&)key != INVALID) { return orig[key]; }
  1567 	else {return bind[key.bind]; }
  1568       }
  1569 
  1570     private:
  1571       typename Parent::template NodeMap<T> bind;
  1572       typename Parent::template EdgeMap<T> orig;
  1573     };
  1574 
  1575     template <typename EntryMap, typename ExitMap>
  1576     class CombinedNodeMap : public MapBase<Node, typename EntryMap::Value> {
  1577     public:
  1578       typedef MapBase<Node, typename EntryMap::Value> Parent;
  1579 
  1580       typedef typename Parent::Key Key;
  1581       typedef typename Parent::Value Value;
  1582 
  1583       CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) 
  1584 	: entryMap(_entryMap), exitMap(_exitMap) {}
  1585 
  1586       Value& operator[](const Key& key) {
  1587 	if (key.entry) {
  1588 	  return entryMap[key];
  1589 	} else {
  1590 	  return exitMap[key];
  1591 	}
  1592       }
  1593 
  1594       Value operator[](const Key& key) const {
  1595 	if (key.entry) {
  1596 	  return entryMap[key];
  1597 	} else {
  1598 	  return exitMap[key];
  1599 	}
  1600       }
  1601 
  1602       void set(const Key& key, const Value& value) {
  1603 	if (key.entry) {
  1604 	  entryMap.set(key, value);
  1605 	} else {
  1606 	  exitMap.set(key, value);
  1607 	}
  1608       }
  1609       
  1610     private:
  1611       
  1612       EntryMap& entryMap;
  1613       ExitMap& exitMap;
  1614       
  1615     };
  1616 
  1617     template <typename EdgeMap, typename NodeMap>
  1618     class CombinedEdgeMap : public MapBase<Edge, typename EdgeMap::Value> {
  1619     public:
  1620       typedef MapBase<Edge, typename EdgeMap::Value> Parent;
  1621 
  1622       typedef typename Parent::Key Key;
  1623       typedef typename Parent::Value Value;
  1624 
  1625       CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) 
  1626 	: edgeMap(_edgeMap), nodeMap(_nodeMap) {}
  1627 
  1628       void set(const Edge& edge, const Value& val) {
  1629 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1630 	  edgeMap.set(edge, val);
  1631 	} else {
  1632 	  nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val);
  1633 	}
  1634       }
  1635 
  1636       Value operator[](const Key& edge) const {
  1637 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1638 	  return edgeMap[edge];
  1639 	} else {
  1640 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
  1641 	}
  1642       }      
  1643 
  1644       Value& operator[](const Key& edge) {
  1645 	if (SplitGraphAdaptorBase::originalEdge(edge)) {
  1646 	  return edgeMap[edge];
  1647 	} else {
  1648 	  return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)];
  1649 	}
  1650       }      
  1651       
  1652     private:
  1653       EdgeMap& edgeMap;
  1654       NodeMap& nodeMap;
  1655     };
  1656 
  1657   };
  1658 
  1659   template <typename _Graph>
  1660   class SplitGraphAdaptor 
  1661     : public IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > {
  1662   public:
  1663     typedef IterableGraphExtender<SplitGraphAdaptorBase<_Graph> > Parent;
  1664 
  1665     SplitGraphAdaptor(_Graph& graph) {
  1666       Parent::setGraph(graph);
  1667     }
  1668 
  1669 
  1670   };
  1671 
  1672   template <typename _Graph>
  1673   class NewEdgeSetAdaptorBase {
  1674   public:
  1675 
  1676     typedef _Graph Graph;
  1677     typedef typename Graph::Node Node;
  1678     typedef typename Graph::NodeIt NodeIt;
  1679 
  1680   protected:
  1681 
  1682     struct NodeT {
  1683       int first_out, first_in;
  1684       NodeT() : first_out(-1), first_in(-1) {}
  1685     };
  1686     
  1687     class NodesImpl : protected Graph::template NodeMap<NodeT> {
  1688 
  1689       typedef typename Graph::template NodeMap<NodeT> Parent;
  1690       typedef NewEdgeSetAdaptorBase<Graph> Adaptor;
  1691 
  1692       Adaptor& adaptor;
  1693 
  1694     public:
  1695 
  1696       NodesImpl(Adaptor& _adaptor, const Graph& _graph) 
  1697 	: Parent(_graph), adaptor(_adaptor) {}
  1698 
  1699       virtual ~NodesImpl() {}
  1700 
  1701       virtual void build() {
  1702 	Parent::build();
  1703       }
  1704 
  1705       virtual void clear() {
  1706 	adaptor._clear();
  1707 	Parent::clear();
  1708       }
  1709       
  1710       virtual void add(const Node& node) {
  1711 	Parent::add(node);
  1712 	adaptor._add(node);
  1713       }
  1714       
  1715       virtual void erase(const Node& node) {
  1716 	adaptor._erase(node);
  1717 	Parent::erase(node);
  1718       }
  1719 
  1720       NodeT& operator[](const Node& node) {
  1721 	return Parent::operator[](node);
  1722       }
  1723 
  1724       const NodeT& operator[](const Node& node) const {
  1725 	return Parent::operator[](node);
  1726       }
  1727       
  1728     };
  1729 
  1730     NodesImpl* nodes;
  1731 
  1732     struct EdgeT {
  1733       Node source, target;
  1734       int next_out, next_in;
  1735       int prev_out, prev_in;
  1736       EdgeT() : prev_out(-1), prev_in(-1) {}
  1737     };
  1738 
  1739     std::vector<EdgeT> edges;
  1740 
  1741     int first_edge;
  1742     int first_free_edge;
  1743 
  1744     virtual void _clear() = 0;
  1745     virtual void _add(const Node& node) = 0;
  1746     virtual void _erase(const Node& node) = 0;
  1747     
  1748     const Graph* graph;
  1749 
  1750     void initalize(const Graph& _graph, NodesImpl& _nodes) {
  1751       graph = &_graph;
  1752       nodes = &_nodes;
  1753     }
  1754     
  1755   public:
  1756 
  1757     class Edge {
  1758       friend class NewEdgeSetAdaptorBase<Graph>;
  1759     protected:
  1760       Edge(int _id) : id(_id) {}
  1761       int id;
  1762     public:
  1763       Edge() {}
  1764       Edge(Invalid) : id(-1) {}
  1765       bool operator==(const Edge& edge) const { return id == edge.id; }
  1766       bool operator!=(const Edge& edge) const { return id != edge.id; }
  1767       bool operator<(const Edge& edge) const { return id < edge.id; }
  1768     };
  1769 
  1770     NewEdgeSetAdaptorBase() : first_edge(-1), first_free_edge(-1) {} 
  1771     virtual ~NewEdgeSetAdaptorBase() {}
  1772 
  1773     Edge addEdge(const Node& source, const Node& target) {
  1774       int n;
  1775       if (first_free_edge == -1) {
  1776 	n = edges.size();
  1777 	edges.push_back(EdgeT());
  1778       } else {
  1779 	n = first_free_edge;
  1780 	first_free_edge = edges[first_free_edge].next_in;
  1781       }
  1782       edges[n].next_in = (*nodes)[target].first_in;
  1783       (*nodes)[target].first_in = n;
  1784       edges[n].next_out = (*nodes)[source].first_out;
  1785       (*nodes)[source].first_out = n;
  1786       edges[n].source = source;
  1787       edges[n].target = target;
  1788       return Edge(n);
  1789     }
  1790 
  1791     void erase(const Edge& edge) {
  1792       int n = edge.id;
  1793       if (edges[n].prev_in != -1) {
  1794 	edges[edges[n].prev_in].next_in = edges[n].next_in;
  1795       } else {
  1796 	(*nodes)[edges[n].target].first_in = edges[n].next_in;
  1797       }
  1798       if (edges[n].next_in != -1) {
  1799 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
  1800       }
  1801 
  1802       if (edges[n].prev_out != -1) {
  1803 	edges[edges[n].prev_out].next_out = edges[n].next_out;
  1804       } else {
  1805 	(*nodes)[edges[n].source].first_out = edges[n].next_out;
  1806       }
  1807       if (edges[n].next_out != -1) {
  1808 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
  1809       }
  1810            
  1811     }
  1812 
  1813     void first(Node& node) const {
  1814       graph->first(node);
  1815     }
  1816 
  1817     void next(Node& node) const {
  1818       graph->next(node);
  1819     }
  1820 
  1821     void first(Edge& edge) const {
  1822       Node node;
  1823       for (first(node); node != INVALID && (*nodes)[node].first_in == -1; 
  1824 	   next(node));
  1825       edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
  1826     }
  1827 
  1828     void next(Edge& edge) const {
  1829       if (edges[edge.id].next_in != -1) {
  1830 	edge.id = edges[edge.id].next_in;
  1831       } else {
  1832 	Node node = edges[edge.id].target;
  1833 	for (next(node); node != INVALID && (*nodes)[node].first_in == -1; 
  1834 	     next(node));
  1835 	edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in;
  1836       }      
  1837     }
  1838 
  1839     void firstOut(Edge& edge, const Node& node) const {
  1840       edge.id = (*nodes)[node].first_out;    
  1841     }
  1842     
  1843     void nextOut(Edge& edge) const {
  1844       edge.id = edges[edge.id].next_out;        
  1845     }
  1846 
  1847     void firstIn(Edge& edge, const Node& node) const {
  1848       edge.id = (*nodes)[node].first_in;          
  1849     }
  1850 
  1851     void nextIn(Edge& edge) const {
  1852       edge.id = edges[edge.id].next_in;    
  1853     }
  1854 
  1855     int id(const Node& node) const { return graph->id(node); }
  1856     int id(const Edge& edge) const { return edge.id; }
  1857 
  1858     Node fromId(int id, Node) const { return graph->fromId(id, Node()); }
  1859     Edge fromId(int id, Edge) const { return Edge(id); }
  1860 
  1861     int maxId(Node) const { return graph->maxId(Node()); };
  1862     int maxId(Edge) const { return edges.size() - 1; }
  1863 
  1864     Node source(const Edge& edge) const { return edges[edge.id].source;}
  1865     Node target(const Edge& edge) const { return edges[edge.id].target;}
  1866 
  1867   };
  1868 
  1869 
  1870   /// \brief Graph adaptor using a node set of another graph and an
  1871   /// own edge set.
  1872   ///
  1873   /// This structure can be used to establish another graph over a node set
  1874   /// of an existing one. The node iterator will go through the nodes of the
  1875   /// original graph.
  1876   ///
  1877   /// \param _Graph The type of the graph which shares its node set with 
  1878   /// this class. Its interface must conform to the \ref concept::StaticGraph
  1879   /// "StaticGraph" concept.
  1880   ///
  1881   /// In the edge extension and removing it conforms to the 
  1882   /// \ref concept::ExtendableGraph "ExtendableGraph" concept.
  1883   template <typename _Graph>
  1884   class NewEdgeSetAdaptor :
  1885     public ErasableGraphExtender<
  1886     ClearableGraphExtender<
  1887     ExtendableGraphExtender<
  1888     MappableGraphExtender<
  1889     IterableGraphExtender<
  1890     AlterableGraphExtender<
  1891     NewEdgeSetAdaptorBase<_Graph> > > > > > > {
  1892 
  1893   public:
  1894 
  1895     typedef ErasableGraphExtender<
  1896       ClearableGraphExtender<
  1897       ExtendableGraphExtender<
  1898       MappableGraphExtender<
  1899       IterableGraphExtender<
  1900       AlterableGraphExtender<
  1901       NewEdgeSetAdaptorBase<_Graph> > > > > > > Parent;
  1902     
  1903 
  1904     typedef typename Parent::Node Node;
  1905     typedef typename Parent::Edge Edge;
  1906 
  1907   private:
  1908 
  1909     virtual void _clear() {
  1910       Parent::edges.clear();
  1911       Parent::first_edge = -1;
  1912       Parent::first_free_edge = -1;
  1913       Parent::getNotifier(Edge()).clear();
  1914       Parent::getNotifier(Node()).clear();
  1915     }
  1916 
  1917     virtual void _add(const Node& node) {
  1918       Parent::getNotifier(Node()).add(node);
  1919     }
  1920 
  1921     virtual void _erase(const Node& node) {
  1922       Edge edge;
  1923       Parent::firstOut(edge, node);
  1924       while (edge != INVALID) {
  1925 	Parent::erase(edge);
  1926 	Parent::firstOut(edge, node);
  1927       }
  1928 
  1929       Parent::firstIn(edge, node);
  1930       while (edge != INVALID) {
  1931 	Parent::erase(edge);
  1932 	Parent::firstIn(edge, node);
  1933       }
  1934       
  1935       Parent::getNotifier(Node()).erase(node);
  1936     }
  1937 
  1938 
  1939     typedef typename Parent::NodesImpl NodesImpl;
  1940 
  1941     NodesImpl nodes;
  1942     
  1943   public:
  1944 
  1945     /// \brief Constructor of the adaptor.
  1946     /// 
  1947     /// Constructor of the adaptor.
  1948     NewEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
  1949       Parent::initalize(_graph, nodes);
  1950     }
  1951 
  1952     void clear() {
  1953       Parent::getNotifier(Edge()).clear();      
  1954 
  1955       Parent::edges.clear();
  1956       Parent::first_edge = -1;
  1957       Parent::first_free_edge = -1;
  1958     }
  1959     
  1960   };
  1961 
  1962   /// \brief Graph adaptor using a node set of another graph and an
  1963   /// own undir edge set.
  1964   ///
  1965   /// This structure can be used to establish another undirected graph over 
  1966   /// a node set of an existing one. The node iterator will go through the 
  1967   /// nodes of the original graph.
  1968   ///
  1969   /// \param _Graph The type of the graph which shares its node set with 
  1970   /// this class. Its interface must conform to the \ref concept::StaticGraph
  1971   /// "StaticGraph" concept.
  1972   ///
  1973   /// In the edge extension and removing it conforms to the 
  1974   /// \ref concept::ExtendableGraph "ExtendableGraph" concept.
  1975   template <typename _Graph>
  1976   class NewUndirEdgeSetAdaptor :
  1977     public ErasableUndirGraphExtender<
  1978     ClearableUndirGraphExtender<
  1979     ExtendableUndirGraphExtender<
  1980     MappableUndirGraphExtender<
  1981     IterableUndirGraphExtender<
  1982     AlterableUndirGraphExtender<
  1983     UndirGraphExtender<
  1984     NewEdgeSetAdaptorBase<_Graph> > > > > > > > {
  1985 
  1986   public:
  1987 
  1988     typedef ErasableUndirGraphExtender<
  1989       ClearableUndirGraphExtender<
  1990       ExtendableUndirGraphExtender<
  1991       MappableUndirGraphExtender<
  1992       IterableUndirGraphExtender<
  1993       AlterableUndirGraphExtender<
  1994       UndirGraphExtender<
  1995       NewEdgeSetAdaptorBase<_Graph> > > > > > > > Parent;
  1996     
  1997 
  1998     typedef typename Parent::Node Node;
  1999     typedef typename Parent::Edge Edge;
  2000     typedef typename Parent::UndirEdge UndirEdge;
  2001 
  2002   private:
  2003 
  2004     virtual void _clear() {
  2005       Parent::edges.clear();
  2006       Parent::first_edge = -1;
  2007       Parent::first_free_edge = -1;
  2008       Parent::getNotifier(Edge()).clear();
  2009       Parent::getNotifier(Node()).clear();
  2010     }
  2011 
  2012     virtual void _add(const Node& node) {
  2013       Parent::getNotifier(Node()).add(node);
  2014     }
  2015 
  2016     virtual void _erase(const Node& node) {
  2017       Edge edge;
  2018       Parent::firstOut(edge, node);
  2019       while (edge != INVALID) {
  2020 	Parent::erase(edge);
  2021 	Parent::firstOut(edge, node);
  2022       }
  2023 
  2024       Parent::firstIn(edge, node);
  2025       while (edge != INVALID) {
  2026 	Parent::erase(edge);
  2027 	Parent::firstIn(edge, node);
  2028       }
  2029       
  2030       Parent::getNotifier(Node()).erase(node);
  2031     }
  2032 
  2033     typedef typename Parent::NodesImpl NodesImpl;
  2034 
  2035     NodesImpl nodes;
  2036     
  2037   public:
  2038 
  2039 
  2040     /// \brief Constructor of the adaptor.
  2041     /// 
  2042     /// Constructor of the adaptor.
  2043     NewUndirEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) {
  2044       Parent::initalize(_graph, nodes);
  2045     }
  2046 
  2047     void clear() {
  2048       Parent::getNotifier(Edge()).clear();      
  2049       Parent::getNotifier(UndirEdge()).clear();      
  2050 
  2051       Parent::edges.clear();
  2052       Parent::first_edge = -1;
  2053       Parent::first_free_edge = -1;
  2054     }
  2055     
  2056   };
  2057 
  2058   ///@}
  2059 
  2060 } //namespace lemon
  2061 
  2062 #endif //LEMON_GRAPH_ADAPTOR_H
  2063