src/lemon/dijkstra.h
author alpar
Fri, 18 Feb 2005 14:46:04 +0000
changeset 1155 fe0fcdb5687b
parent 1151 b217fc69f913
child 1156 91f9236dfec9
permissions -rw-r--r--
- Better addSource()
- More docs
     1 /* -*- C++ -*-
     2  * src/lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
     3  *
     4  * Copyright (C) 2004 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
     5  * (Egervary Combinatorial Optimization Research Group, EGRES).
     6  *
     7  * Permission to use, modify and distribute this software is granted
     8  * provided that this copyright notice appears in all copies. For
     9  * precise terms see the accompanying LICENSE file.
    10  *
    11  * This software is provided "AS IS" with no warranty of any kind,
    12  * express or implied, and with no claim as to its suitability for any
    13  * purpose.
    14  *
    15  */
    16 
    17 #ifndef LEMON_DIJKSTRA_H
    18 #define LEMON_DIJKSTRA_H
    19 
    20 ///\ingroup flowalgs
    21 ///\file
    22 ///\brief Dijkstra algorithm.
    23 
    24 #include <lemon/list_graph.h>
    25 #include <lemon/bin_heap.h>
    26 #include <lemon/invalid.h>
    27 #include <lemon/error.h>
    28 #include <lemon/maps.h>
    29 
    30 namespace lemon {
    31 
    32 
    33   
    34   ///Default traits class of Dijkstra class.
    35 
    36   ///Default traits class of Dijkstra class.
    37   ///\param GR Graph type.
    38   ///\param LM Type of length map.
    39   template<class GR, class LM>
    40   struct DijkstraDefaultTraits
    41   {
    42     ///The graph type the algorithm runs on. 
    43     typedef GR Graph;
    44     ///The type of the map that stores the edge lengths.
    45 
    46     ///The type of the map that stores the edge lengths.
    47     ///It must meet the \ref concept::ReadMap "ReadMap" concept.
    48     typedef LM LengthMap;
    49     //The type of the length of the edges.
    50     typedef typename LM::Value Value;
    51     ///The heap type used by Dijkstra algorithm.
    52 
    53     ///The heap type used by Dijkstra algorithm.
    54     ///
    55     ///\sa BinHeap
    56     ///\sa Dijkstra
    57     typedef BinHeap<typename Graph::Node,
    58 		    typename LM::Value,
    59 		    typename GR::template NodeMap<int>,
    60 		    std::less<Value> > Heap;
    61 
    62     ///\brief The type of the map that stores the last
    63     ///edges of the shortest paths.
    64     /// 
    65     ///The type of the map that stores the last
    66     ///edges of the shortest paths.
    67     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    68     ///
    69     typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
    70     ///Instantiates a PredMap.
    71  
    72     ///This function instantiates a \ref PredMap. 
    73     ///\param G is the graph, to which we would like to define the PredMap.
    74     ///\todo The graph alone may be insufficient for the initialization
    75     static PredMap *createPredMap(const GR &G) 
    76     {
    77       return new PredMap(G);
    78     }
    79     ///\brief The type of the map that stores the last but one
    80     ///nodes of the shortest paths.
    81     ///
    82     ///The type of the map that stores the last but one
    83     ///nodes of the shortest paths.
    84     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
    85     ///
    86     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
    87     ///Instantiates a PredNodeMap.
    88     
    89     ///This function instantiates a \ref PredNodeMap. 
    90     ///\param G is the graph, to which we would like to define the \ref PredNodeMap
    91     static PredNodeMap *createPredNodeMap(const GR &G)
    92     {
    93       return new PredNodeMap();
    94     }
    95 
    96     ///The type of the map that stores whether a nodes is reached.
    97  
    98     ///The type of the map that stores whether a nodes is reached.
    99     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   100     ///By default it is a NullMap.
   101     ///\todo If it is set to a real map, Dijkstra::reached() should read this.
   102     ///\todo named parameter to set this type, function to read and write.
   103     typedef NullMap<typename Graph::Node,bool> ReachedMap;
   104     ///Instantiates a ReachedMap.
   105  
   106     ///This function instantiates a \ref ReachedMap. 
   107     ///\param G is the graph, to which we would like to define the \ref ReachedMap
   108     static ReachedMap *createReachedMap(const GR &G)
   109     {
   110       return new ReachedMap();
   111     }
   112     ///The type of the map that stores the dists of the nodes.
   113  
   114     ///The type of the map that stores the dists of the nodes.
   115     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
   116     ///
   117     typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
   118     ///Instantiates a DistMap.
   119  
   120     ///This function instantiates a \ref DistMap. 
   121     ///\param G is the graph, to which we would like to define the \ref DistMap
   122     static DistMap *createDistMap(const GR &G)
   123     {
   124       return new DistMap(G);
   125     }
   126   };
   127   
   128   ///%Dijkstra algorithm class.
   129   
   130   /// \ingroup flowalgs
   131   ///This class provides an efficient implementation of %Dijkstra algorithm.
   132   ///The edge lengths are passed to the algorithm using a
   133   ///\ref concept::ReadMap "ReadMap",
   134   ///so it is easy to change it to any kind of length.
   135   ///
   136   ///The type of the length is determined by the
   137   ///\ref concept::ReadMap::Value "Value" of the length map.
   138   ///
   139   ///It is also possible to change the underlying priority heap.
   140   ///
   141   ///\param GR The graph type the algorithm runs on. The default value is
   142   ///\ref ListGraph. The value of GR is not used directly by Dijkstra, it
   143   ///is only passed to \ref DijkstraDefaultTraits.
   144   ///\param LM This read-only
   145   ///EdgeMap
   146   ///determines the
   147   ///lengths of the edges. It is read once for each edge, so the map
   148   ///may involve in relatively time consuming process to compute the edge
   149   ///length if it is necessary. The default map type is
   150   ///\ref concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".
   151   ///The value of LM is not used directly by Dijkstra, it
   152   ///is only passed to \ref DijkstraDefaultTraits.
   153   ///\param TR Traits class to set various data types used by the algorithm.
   154   ///The default traits class is
   155   ///\ref DijkstraDefaultTraits "DijkstraDefaultTraits<GR,LM>".
   156   ///See \ref DijkstraDefaultTraits for the documentation of
   157   ///a Dijkstra traits class.
   158   ///
   159   ///\author Jacint Szabo and Alpar Juttner
   160   ///\todo A compare object would be nice.
   161 
   162 #ifdef DOXYGEN
   163   template <typename GR,
   164 	    typename LM,
   165 	    typename TR>
   166 #else
   167   template <typename GR=ListGraph,
   168 	    typename LM=typename GR::template EdgeMap<int>,
   169 	    typename TR=DijkstraDefaultTraits<GR,LM> >
   170 #endif
   171   class Dijkstra {
   172   public:
   173     /**
   174      * \brief \ref Exception for uninitialized parameters.
   175      *
   176      * This error represents problems in the initialization
   177      * of the parameters of the algorithms.
   178      */
   179     class UninitializedParameter : public lemon::UninitializedParameter {
   180     public:
   181       virtual const char* exceptionName() const {
   182 	return "lemon::Dijsktra::UninitializedParameter";
   183       }
   184     };
   185 
   186     typedef TR Traits;
   187     ///The type of the underlying graph.
   188     typedef typename TR::Graph Graph;
   189     ///\e
   190     typedef typename Graph::Node Node;
   191     ///\e
   192     typedef typename Graph::NodeIt NodeIt;
   193     ///\e
   194     typedef typename Graph::Edge Edge;
   195     ///\e
   196     typedef typename Graph::OutEdgeIt OutEdgeIt;
   197     
   198     ///The type of the length of the edges.
   199     typedef typename TR::LengthMap::Value Value;
   200     ///The type of the map that stores the edge lengths.
   201     typedef typename TR::LengthMap LengthMap;
   202     ///\brief The type of the map that stores the last
   203     ///edges of the shortest paths.
   204     typedef typename TR::PredMap PredMap;
   205     ///\brief The type of the map that stores the last but one
   206     ///nodes of the shortest paths.
   207     typedef typename TR::PredNodeMap PredNodeMap;
   208     ///The type of the map indicating if a node is reached.
   209     typedef typename TR::ReachedMap ReachedMap;
   210     ///The type of the map that stores the dists of the nodes.
   211     typedef typename TR::DistMap DistMap;
   212     ///The heap type used by the dijkstra algorithm.
   213     typedef typename TR::Heap Heap;
   214   private:
   215     /// Pointer to the underlying graph.
   216     const Graph *G;
   217     /// Pointer to the length map
   218     const LengthMap *length;
   219     ///Pointer to the map of predecessors edges.
   220     PredMap *_pred;
   221     ///Indicates if \ref _pred is locally allocated (\c true) or not.
   222     bool local_pred;
   223     ///Pointer to the map of predecessors nodes.
   224     PredNodeMap *_predNode;
   225     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
   226     bool local_predNode;
   227     ///Pointer to the map of distances.
   228     DistMap *_dist;
   229     ///Indicates if \ref _dist is locally allocated (\c true) or not.
   230     bool local_dist;
   231     ///Pointer to the map of reached status of the nodes.
   232     ReachedMap *_reached;
   233     ///Indicates if \ref _reached is locally allocated (\c true) or not.
   234     bool local_reached;
   235 
   236     ///The source node of the last execution.
   237     Node source;
   238 
   239     ///Creates the maps if necessary.
   240     
   241     ///\todo Error if \c G or are \c NULL. What about \c length?
   242     ///\todo Better memory allocation (instead of new).
   243     void create_maps() 
   244     {
   245       if(!_pred) {
   246 	local_pred = true;
   247 	_pred = Traits::createPredMap(*G);
   248       }
   249       if(!_predNode) {
   250 	local_predNode = true;
   251 	_predNode = Traits::createPredNodeMap(*G);
   252       }
   253       if(!_dist) {
   254 	local_dist = true;
   255 	_dist = Traits::createDistMap(*G);
   256       }
   257       if(!_reached) {
   258 	local_reached = true;
   259 	_reached = Traits::createReachedMap(*G);
   260       }
   261     }
   262     
   263   public :
   264  
   265     ///\name Named template parameters
   266 
   267     ///@{
   268 
   269     template <class T>
   270     struct DefPredMapTraits : public Traits {
   271       typedef T PredMap;
   272       static PredMap *createPredMap(const Graph &G) 
   273       {
   274 	throw UninitializedParameter();
   275       }
   276     };
   277     ///\ref named-templ-param "Named parameter" for setting PredMap type
   278 
   279     ///\ref named-templ-param "Named parameter" for setting PredMap type
   280     ///
   281     template <class T>
   282     class DefPredMap : public Dijkstra< Graph,
   283 					LengthMap,
   284 					DefPredMapTraits<T> > { };
   285     
   286     template <class T>
   287     struct DefPredNodeMapTraits : public Traits {
   288       typedef T PredNodeMap;
   289       static PredNodeMap *createPredNodeMap(const Graph &G) 
   290       {
   291 	throw UninitializedParameter();
   292       }
   293     };
   294     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   295 
   296     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
   297     ///
   298     template <class T>
   299     class DefPredNodeMap : public Dijkstra< Graph,
   300 					    LengthMap,
   301 					    DefPredNodeMapTraits<T> > { };
   302     
   303     template <class T>
   304     struct DefDistMapTraits : public Traits {
   305       typedef T DistMap;
   306       static DistMap *createDistMap(const Graph &G) 
   307       {
   308 	throw UninitializedParameter();
   309       }
   310     };
   311     ///\ref named-templ-param "Named parameter" for setting DistMap type
   312 
   313     ///\ref named-templ-param "Named parameter" for setting DistMap type
   314     ///
   315     template <class T>
   316     class DefDistMap : public Dijkstra< Graph,
   317 					LengthMap,
   318 					DefDistMapTraits<T> > { };
   319     
   320     template <class T>
   321     struct DefReachedMapTraits : public Traits {
   322       typedef T ReachedMap;
   323       static ReachedMap *createReachedMap(const Graph &G) 
   324       {
   325 	throw UninitializedParameter();
   326       }
   327     };
   328     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   329 
   330     ///\ref named-templ-param "Named parameter" for setting ReachedMap type
   331     ///
   332     template <class T>
   333     class DefReachedMap : public Dijkstra< Graph,
   334 					LengthMap,
   335 					DefReachedMapTraits<T> > { };
   336     
   337     struct DefGraphReachedMapTraits : public Traits {
   338       typedef typename Graph::NodeMap<bool> ReachedMap;
   339       static ReachedMap *createReachedMap(const Graph &G) 
   340       {
   341 	return new ReachedMap(G);
   342       }
   343     };
   344     ///\brief \ref named-templ-param "Named parameter"
   345     ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
   346     ///
   347     ///\ref named-templ-param "Named parameter"
   348     ///for setting the ReachedMap type to be Graph::NodeMap<bool>.
   349     ///If you don't set it explicitely, it will be automatically allocated.
   350     template <class T>
   351     class DefReachedMapToBeDefaultMap :
   352       public Dijkstra< Graph,
   353 		       LengthMap,
   354 		       DefGraphReachedMapTraits> { };
   355     
   356     ///@}
   357 
   358 
   359   private:
   360     typename Graph::template NodeMap<int> _heap_map;
   361     Heap _heap;
   362   public:      
   363     
   364     ///Constructor.
   365     
   366     ///\param _G the graph the algorithm will run on.
   367     ///\param _length the length map used by the algorithm.
   368     Dijkstra(const Graph& _G, const LengthMap& _length) :
   369       G(&_G), length(&_length),
   370       _pred(NULL), local_pred(false),
   371       _predNode(NULL), local_predNode(false),
   372       _dist(NULL), local_dist(false),
   373       _reached(NULL), local_reached(false),
   374       _heap_map(*G,-1),_heap(_heap_map)
   375     { }
   376     
   377     ///Destructor.
   378     ~Dijkstra() 
   379     {
   380       if(local_pred) delete _pred;
   381       if(local_predNode) delete _predNode;
   382       if(local_dist) delete _dist;
   383       if(local_reached) delete _reached;
   384     }
   385 
   386     ///Sets the length map.
   387 
   388     ///Sets the length map.
   389     ///\return <tt> (*this) </tt>
   390     Dijkstra &lengthMap(const LengthMap &m) 
   391     {
   392       length = &m;
   393       return *this;
   394     }
   395 
   396     ///Sets the map storing the predecessor edges.
   397 
   398     ///Sets the map storing the predecessor edges.
   399     ///If you don't use this function before calling \ref run(),
   400     ///it will allocate one. The destuctor deallocates this
   401     ///automatically allocated map, of course.
   402     ///\return <tt> (*this) </tt>
   403     Dijkstra &predMap(PredMap &m) 
   404     {
   405       if(local_pred) {
   406 	delete _pred;
   407 	local_pred=false;
   408       }
   409       _pred = &m;
   410       return *this;
   411     }
   412 
   413     ///Sets the map storing the predecessor nodes.
   414 
   415     ///Sets the map storing the predecessor nodes.
   416     ///If you don't use this function before calling \ref run(),
   417     ///it will allocate one. The destuctor deallocates this
   418     ///automatically allocated map, of course.
   419     ///\return <tt> (*this) </tt>
   420     Dijkstra &predNodeMap(PredNodeMap &m) 
   421     {
   422       if(local_predNode) {
   423 	delete _predNode;
   424 	local_predNode=false;
   425       }
   426       _predNode = &m;
   427       return *this;
   428     }
   429 
   430     ///Sets the map storing the distances calculated by the algorithm.
   431 
   432     ///Sets the map storing the distances calculated by the algorithm.
   433     ///If you don't use this function before calling \ref run(),
   434     ///it will allocate one. The destuctor deallocates this
   435     ///automatically allocated map, of course.
   436     ///\return <tt> (*this) </tt>
   437     Dijkstra &distMap(DistMap &m) 
   438     {
   439       if(local_dist) {
   440 	delete _dist;
   441 	local_dist=false;
   442       }
   443       _dist = &m;
   444       return *this;
   445     }
   446 
   447   private:
   448     void finalizeNodeData(Node v,Value dst)
   449     {
   450       _reached->set(v,true);
   451       _dist->set(v, dst);
   452       _predNode->set(v,G->source((*_pred)[v]));
   453     }
   454 
   455   public:
   456     ///\name Excetution control
   457     ///The simplest way to execute the algorithm is to use
   458     ///\ref run().
   459     ///\n
   460     ///It you need more control on the execution,
   461     ///first you must call \ref init(), then you can add several source nodes
   462     ///with \ref addSource(). Finally \ref start() will perform the actual path
   463     ///computation.
   464 
   465     ///@{
   466 
   467     ///Initializes the internal data structures.
   468 
   469     ///Initializes the internal data structures.
   470     ///
   471     ///\todo _heap_map's type could also be in the traits class.
   472     void init()
   473     {
   474       create_maps();
   475       
   476       for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
   477 	_pred->set(u,INVALID);
   478 	_predNode->set(u,INVALID);
   479 	///\todo *_reached is not set to false.
   480 	_heap_map.set(u,Heap::PRE_HEAP);
   481       }
   482     }
   483     
   484     ///Adds a new source node.
   485 
   486     ///Adds a new source node to the priority heap.
   487     ///
   488     ///The optional second parameter is the initial distance of the node.
   489     ///
   490     ///It checks if the node has already been added to the heap and
   491     ///It is pushed to the heap only if either it was not in the heap
   492     ///or the shortest path found till then is longer then \c dst.
   493     void addSource(Node s,Value dst=0)
   494     {
   495       source = s;
   496       if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
   497       else if(_heap[s]<dst) {
   498 	_heap.push(s,dst);
   499 	_pred->set(s,INVALID);
   500       }
   501     }
   502     
   503     ///Processes the next node in the priority heap
   504 
   505     ///Processes the next node in the priority heap.
   506     ///
   507     ///\warning The priority heap must not be empty!
   508     void processNextNode()
   509     {
   510       Node v=_heap.top(); 
   511       Value oldvalue=_heap[v];
   512       _heap.pop();
   513       finalizeNodeData(v,oldvalue);
   514       
   515       for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
   516 	Node w=G->target(e); 
   517 	switch(_heap.state(w)) {
   518 	case Heap::PRE_HEAP:
   519 	  _heap.push(w,oldvalue+(*length)[e]); 
   520 	  _pred->set(w,e);
   521 //  	  _predNode->set(w,v);
   522 	  break;
   523 	case Heap::IN_HEAP:
   524 	  if ( oldvalue+(*length)[e] < _heap[w] ) {
   525 	    _heap.decrease(w, oldvalue+(*length)[e]); 
   526 	    _pred->set(w,e);
   527 // 	    _predNode->set(w,v);
   528 	  }
   529 	  break;
   530 	case Heap::POST_HEAP:
   531 	  break;
   532 	}
   533       }
   534     }
   535 
   536     ///Returns \c false if there are nodes to be processed in the priority heap
   537 
   538     ///Returns \c false if there are nodes to be processed in the priority heap
   539     ///
   540     bool emptyHeap() { return heap.empty(); }
   541     ///Returns the number of the nodes to be processed in the priority heap
   542 
   543     ///Returns the number of the nodes to be processed in the priority heap
   544     ///
   545     int heapSize() { return heap.size(); }
   546     
   547     ///Executes the algorithm.
   548 
   549     ///Executes the algorithm.
   550     ///
   551     ///\pre init() must be called and at least one node should be added
   552     ///with addSource() before using this function.
   553     ///
   554     ///This method runs the %Dijkstra algorithm from the root node(s)
   555     ///in order to
   556     ///compute the
   557     ///shortest path to each node. The algorithm computes
   558     ///- The shortest path tree.
   559     ///- The distance of each node from the root(s).
   560     ///
   561     void start()
   562     {
   563       while ( !_heap.empty() ) processNextNode();
   564     }
   565     
   566     ///Executes the algorithm until \c dest is reached.
   567 
   568     ///Executes the algorithm until \c dest is reached.
   569     ///
   570     ///\pre init() must be called and at least one node should be added
   571     ///with addSource() before using this function.
   572     ///
   573     ///This method runs the %Dijkstra algorithm from the root node(s)
   574     ///in order to
   575     ///compute the
   576     ///shortest path to \c dest. The algorithm computes
   577     ///- The shortest path to \c  dest.
   578     ///- The distance of \c dest from the root(s).
   579     ///
   580     void start(Node dest)
   581     {
   582       while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
   583       if ( _heap.top()==dest ) finalizeNodeData(_heap.top());
   584     }
   585     
   586     ///Executes the algorithm until a condition is met.
   587 
   588     ///Executes the algorithm until a condition is met.
   589     ///
   590     ///\pre init() must be called and at least one node should be added
   591     ///with addSource() before using this function.
   592     ///
   593     ///\param nm must be a bool (or convertible) node map. The algorithm
   594     ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
   595     template<class NM>
   596     void start(const NM &nm)
   597     {
   598       while ( !_heap.empty() && !mn[_heap.top()] ) processNextNode();
   599       if ( !_heap.empty() ) finalizeNodeData(_heap.top());
   600     }
   601     
   602     ///Runs %Dijkstra algorithm from node \c s.
   603     
   604     ///This method runs the %Dijkstra algorithm from a root node \c s
   605     ///in order to
   606     ///compute the
   607     ///shortest path to each node. The algorithm computes
   608     ///- The shortest path tree.
   609     ///- The distance of each node from the root.
   610     ///
   611     ///\note d.run(s) is just a shortcut of the following code.
   612     ///\code
   613     ///  d.init();
   614     ///  d.addSource(s);
   615     ///  d.start();
   616     ///\endcode
   617     void run(Node s) {
   618       init();
   619       addSource(s);
   620       start();
   621     }
   622     
   623     ///Finds the shortest path between \c s and \c t.
   624     
   625     ///Finds the shortest path between \c s and \c t.
   626     ///
   627     ///\return The length of the shortest s---t path if there exists one,
   628     ///0 otherwise.
   629     ///\note Apart from the return value, d.run(s) is
   630     ///just a shortcut of the following code.
   631     ///\code
   632     ///  d.init();
   633     ///  d.addSource(s);
   634     ///  d.start(t);
   635     ///\endcode
   636     Value run(Node s,Node t) {
   637       init();
   638       addSource(s);
   639       start(t);
   640       return (*_pred)[t]==INVALID?0:(*_dist)[t];
   641     }
   642     
   643     ///@}
   644 
   645     ///\name Query Functions
   646     ///The result of the %Dijkstra algorithm can be obtained using these
   647     ///functions.\n
   648     ///Before the use of these functions,
   649     ///either run() or start() must be called.
   650     
   651     ///@{
   652 
   653     ///The distance of a node from the root.
   654 
   655     ///Returns the distance of a node from the root.
   656     ///\pre \ref run() must be called before using this function.
   657     ///\warning If node \c v in unreachable from the root the return value
   658     ///of this funcion is undefined.
   659     Value dist(Node v) const { return (*_dist)[v]; }
   660 
   661     ///Returns the 'previous edge' of the shortest path tree.
   662 
   663     ///For a node \c v it returns the 'previous edge' of the shortest path tree,
   664     ///i.e. it returns the last edge of a shortest path from the root to \c
   665     ///v. It is \ref INVALID
   666     ///if \c v is unreachable from the root or if \c v=s. The
   667     ///shortest path tree used here is equal to the shortest path tree used in
   668     ///\ref predNode(Node v).  \pre \ref run() must be called before using
   669     ///this function.
   670     ///\todo predEdge could be a better name.
   671     Edge pred(Node v) const { return (*_pred)[v]; }
   672 
   673     ///Returns the 'previous node' of the shortest path tree.
   674 
   675     ///For a node \c v it returns the 'previous node' of the shortest path tree,
   676     ///i.e. it returns the last but one node from a shortest path from the
   677     ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
   678     ///\c v=s. The shortest path tree used here is equal to the shortest path
   679     ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
   680     ///using this function.
   681     Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
   682 				  G->source((*_pred)[v]); }
   683     
   684     ///Returns a reference to the NodeMap of distances.
   685 
   686     ///Returns a reference to the NodeMap of distances. \pre \ref run() must
   687     ///be called before using this function.
   688     const DistMap &distMap() const { return *_dist;}
   689  
   690     ///Returns a reference to the shortest path tree map.
   691 
   692     ///Returns a reference to the NodeMap of the edges of the
   693     ///shortest path tree.
   694     ///\pre \ref run() must be called before using this function.
   695     const PredMap &predMap() const { return *_pred;}
   696  
   697     ///Returns a reference to the map of nodes of shortest paths.
   698 
   699     ///Returns a reference to the NodeMap of the last but one nodes of the
   700     ///shortest path tree.
   701     ///\pre \ref run() must be called before using this function.
   702     const PredNodeMap &predNodeMap() const { return *_predNode;}
   703 
   704     ///Checks if a node is reachable from the root.
   705 
   706     ///Returns \c true if \c v is reachable from the root.
   707     ///\warning If the algorithm is started from multiple nodes,
   708     ///this function may give false result for the source nodes.
   709     ///\pre \ref run() must be called before using this function.
   710     ///
   711     bool reached(Node v) { return v==source || (*_pred)[v]!=INVALID; }
   712     
   713     ///@}
   714   };
   715 
   716   /// Default traits used by \ref DijkstraWizard
   717 
   718   /// To make it easier to use Dijkstra algorithm
   719   ///we have created a wizard class.
   720   /// This \ref DijkstraWizard class needs default traits,
   721   ///as well as the \ref Dijkstra class.
   722   /// The \ref DijkstraWizardBase is a class to be the default traits of the
   723   /// \ref DijkstraWizard class.
   724   template<class GR,class LM>
   725   class DijkstraWizardBase : public DijkstraDefaultTraits<GR,LM>
   726   {
   727 
   728     typedef DijkstraDefaultTraits<GR,LM> Base;
   729   protected:
   730     /// Pointer to the underlying graph.
   731     void *_g;
   732     /// Pointer to the length map
   733     void *_length;
   734     ///Pointer to the map of predecessors edges.
   735     void *_pred;
   736     ///Pointer to the map of predecessors nodes.
   737     void *_predNode;
   738     ///Pointer to the map of distances.
   739     void *_dist;
   740     ///Pointer to the source node.
   741     void *_source;
   742 
   743     /// Type of the nodes in the graph.
   744     typedef typename Base::Graph::Node Node;
   745 
   746     public:
   747     /// Constructor.
   748     
   749     /// This constructor does not require parameters, therefore it initiates
   750     /// all of the attributes to default values (0, INVALID).
   751     DijkstraWizardBase() : _g(0), _length(0), _pred(0), _predNode(0),
   752 		       _dist(0), _source(INVALID) {}
   753 
   754     /// Constructor.
   755     
   756     /// This constructor requires some parameters, listed in the parameters list.
   757     /// Others are initiated to 0.
   758     /// \param g is the initial value of  \ref _g
   759     /// \param l is the initial value of  \ref _length
   760     /// \param s is the initial value of  \ref _source
   761     DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
   762       _g((void *)&g), _length((void *)&l), _pred(0), _predNode(0),
   763 		  _dist(0), _source((void *)&s) {}
   764 
   765   };
   766   
   767   /// A class to make easier the usage of Dijkstra algorithm
   768 
   769   /// \ingroup flowalgs
   770   /// This class is created to make it easier to use Dijkstra algorithm.
   771   /// It uses the functions and features of the plain \ref Dijkstra,
   772   /// but it is much simpler to use it.
   773   ///
   774   /// Simplicity means that the way to change the types defined
   775   /// in the traits class is based on functions that returns the new class
   776   /// and not on templatable built-in classes.
   777   /// When using the plain \ref Dijkstra
   778   /// the new class with the modified type comes from
   779   /// the original class by using the ::
   780   /// operator. In the case of \ref DijkstraWizard only
   781   /// a function have to be called and it will
   782   /// return the needed class.
   783   ///
   784   /// It does not have own \ref run method. When its \ref run method is called
   785   /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
   786   /// method of it.
   787   template<class TR>
   788   class DijkstraWizard : public TR
   789   {
   790     typedef TR Base;
   791 
   792     ///The type of the underlying graph.
   793     typedef typename TR::Graph Graph;
   794     //\e
   795     typedef typename Graph::Node Node;
   796     //\e
   797     typedef typename Graph::NodeIt NodeIt;
   798     //\e
   799     typedef typename Graph::Edge Edge;
   800     //\e
   801     typedef typename Graph::OutEdgeIt OutEdgeIt;
   802     
   803     ///The type of the map that stores the edge lengths.
   804     typedef typename TR::LengthMap LengthMap;
   805     ///The type of the length of the edges.
   806     typedef typename LengthMap::Value Value;
   807     ///\brief The type of the map that stores the last
   808     ///edges of the shortest paths.
   809     typedef typename TR::PredMap PredMap;
   810     ///\brief The type of the map that stores the last but one
   811     ///nodes of the shortest paths.
   812     typedef typename TR::PredNodeMap PredNodeMap;
   813     ///The type of the map that stores the dists of the nodes.
   814     typedef typename TR::DistMap DistMap;
   815 
   816     ///The heap type used by the dijkstra algorithm.
   817     typedef typename TR::Heap Heap;
   818 public:
   819     /// Constructor.
   820     DijkstraWizard() : TR() {}
   821 
   822     /// Constructor that requires parameters.
   823 
   824     /// Constructor that requires parameters.
   825     /// These parameters will be the default values for the traits class.
   826     DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
   827       TR(g,l,s) {}
   828 
   829     ///Copy constructor
   830     DijkstraWizard(const TR &b) : TR(b) {}
   831 
   832     ~DijkstraWizard() {}
   833 
   834     ///Runs Dijkstra algorithm from a given node.
   835     
   836     ///Runs Dijkstra algorithm from a given node.
   837     ///The node can be given by the \ref source function.
   838     void run()
   839     {
   840       if(_source==0) throw UninitializedParameter();
   841       Dijkstra<Graph,LengthMap,TR> Dij(*(Graph*)_g,*(LengthMap*)_length);
   842       if(_pred) Dij.predMap(*(PredMap*)_pred);
   843       if(_predNode) Dij.predNodeMap(*(PredNodeMap*)_predNode);
   844       if(_dist) Dij.distMap(*(DistMap*)_dist);
   845       Dij.run(*(Node*)_source);
   846     }
   847 
   848     ///Runs Dijkstra algorithm from the given node.
   849 
   850     ///Runs Dijkstra algorithm from the given node.
   851     ///\param s is the given source.
   852     void run(Node s)
   853     {
   854       _source=(void *)&s;
   855       run();
   856     }
   857 
   858     template<class T>
   859     struct DefPredMapBase : public Base {
   860       typedef T PredMap;
   861       static PredMap *createPredMap(const Graph &G) { return 0; };
   862       DefPredMapBase(const Base &b) : Base(b) {}
   863     };
   864     
   865     /// \ref named-templ-param "Named parameter" function for setting PredMap type
   866 
   867     /// \ref named-templ-param "Named parameter" function for setting PredMap type
   868     ///
   869     template<class T>
   870     DijkstraWizard<DefPredMapBase<T> > predMap(const T &t) 
   871     {
   872       _pred=(void *)&t;
   873       return DijkstraWizard<DefPredMapBase<T> >(*this);
   874     }
   875     
   876 
   877     template<class T>
   878     struct DefPredNodeMapBase : public Base {
   879       typedef T PredNodeMap;
   880       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
   881       DefPredNodeMapBase(const Base &b) : Base(b) {}
   882     };
   883     
   884     /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
   885 
   886     /// \ref named-templ-param "Named parameter" function for setting PredNodeMap type
   887     ///
   888     template<class T>
   889     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t) 
   890     {
   891       _predNode=(void *)&t;
   892       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
   893     }
   894    
   895     template<class T>
   896     struct DefDistMapBase : public Base {
   897       typedef T DistMap;
   898       static DistMap *createDistMap(const Graph &G) { return 0; };
   899       DefDistMapBase(const Base &b) : Base(b) {}
   900     };
   901     
   902     /// \ref named-templ-param "Named parameter" function for setting DistMap type
   903 
   904     /// \ref named-templ-param "Named parameter" function for setting DistMap type
   905     ///
   906     template<class T>
   907     DijkstraWizard<DefDistMapBase<T> > distMap(const T &t) 
   908     {
   909       _dist=(void *)&t;
   910       return DijkstraWizard<DefDistMapBase<T> >(*this);
   911     }
   912     
   913     /// Sets the source node, from which the Dijkstra algorithm runs.
   914 
   915     /// Sets the source node, from which the Dijkstra algorithm runs.
   916     /// \param s is the source node.
   917     DijkstraWizard<TR> &source(Node s) 
   918     {
   919       source=(void *)&s;
   920       return *this;
   921     }
   922     
   923   };
   924   
   925   ///\e
   926 
   927   /// \ingroup flowalgs
   928   ///\todo Please document...
   929   ///
   930   template<class GR, class LM>
   931   DijkstraWizard<DijkstraWizardBase<GR,LM> >
   932   dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
   933   {
   934     return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
   935   }
   936 
   937 /// @}
   938   
   939 } //END OF NAMESPACE LEMON
   940 
   941 #endif
   942