2 * lemon/belmann_ford.h - Part of LEMON, a generic C++ optimization library
4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
17 #ifndef LEMON_BELMANN_FORD_H
18 #define LEMON_BELMANN_FORD_H
22 /// \brief BelmannFord algorithm.
25 #include <lemon/list_graph.h>
26 #include <lemon/invalid.h>
27 #include <lemon/error.h>
28 #include <lemon/maps.h>
34 /// \brief Default OperationTraits for the BelmannFord algorithm class.
36 /// It defines all computational operations and constants which are
37 /// used in the belmann ford algorithm. The default implementation
38 /// is based on the numeric_limits class. If the numeric type does not
39 /// have infinity value then the maximum value is used as extremal
43 bool has_infinity = std::numeric_limits<Value>::has_infinity>
44 struct BelmannFordDefaultOperationTraits {
45 /// \brief Gives back the zero value of the type.
47 return static_cast<Value>(0);
49 /// \brief Gives back the positive infinity value of the type.
50 static Value infinity() {
51 return std::numeric_limits<Value>::infinity();
53 /// \brief Gives back the sum of the given two elements.
54 static Value plus(const Value& left, const Value& right) {
57 /// \brief Gives back true only if the first value less than the second.
58 static bool less(const Value& left, const Value& right) {
63 template <typename Value>
64 struct BelmannFordDefaultOperationTraits<Value, false> {
66 return static_cast<Value>(0);
68 static Value infinity() {
69 return std::numeric_limits<Value>::max();
71 static Value plus(const Value& left, const Value& right) {
72 if (left == infinity() || right == infinity()) return infinity();
75 static bool less(const Value& left, const Value& right) {
80 /// \brief Default traits class of BelmannFord class.
82 /// Default traits class of BelmannFord class.
83 /// \param _Graph Graph type.
84 /// \param _LegthMap Type of length map.
85 template<class _Graph, class _LengthMap>
86 struct BelmannFordDefaultTraits {
87 /// The graph type the algorithm runs on.
90 /// \brief The type of the map that stores the edge lengths.
92 /// The type of the map that stores the edge lengths.
93 /// It must meet the \ref concept::ReadMap "ReadMap" concept.
94 typedef _LengthMap LengthMap;
96 // The type of the length of the edges.
97 typedef typename _LengthMap::Value Value;
99 /// \brief Operation traits for belmann-ford algorithm.
101 /// It defines the infinity type on the given Value type
102 /// and the used operation.
103 /// \see BelmannFordDefaultOperationTraits
104 typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
106 /// \brief The type of the map that stores the last edges of the
109 /// The type of the map that stores the last
110 /// edges of the shortest paths.
111 /// It must meet the \ref concept::WriteMap "WriteMap" concept.
113 typedef typename Graph::template NodeMap<typename _Graph::Edge> PredMap;
115 /// \brief Instantiates a PredMap.
117 /// This function instantiates a \ref PredMap.
118 /// \param G is the graph, to which we would like to define the PredMap.
119 /// \todo The graph alone may be insufficient for the initialization
120 static PredMap *createPredMap(const _Graph& graph) {
121 return new PredMap(graph);
124 /// \brief The type of the map that stores the dists of the nodes.
126 /// The type of the map that stores the dists of the nodes.
127 /// It must meet the \ref concept::WriteMap "WriteMap" concept.
129 typedef typename Graph::template NodeMap<typename _LengthMap::Value>
132 /// \brief Instantiates a DistMap.
134 /// This function instantiates a \ref DistMap.
135 /// \param G is the graph, to which we would like to define the
137 static DistMap *createDistMap(const _Graph& graph) {
138 return new DistMap(graph);
143 /// \brief %BelmannFord algorithm class.
145 /// \ingroup flowalgs
146 /// This class provides an efficient implementation of \c Belmann-Ford
147 /// algorithm. The edge lengths are passed to the algorithm using a
148 /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any
151 /// The Belmann-Ford algorithm solves the shortest path from one node
152 /// problem when the edges can have negative length but the graph should
153 /// not contain cycles with negative sum of length. If we can assume
154 /// that all edge is non-negative in the graph then the dijkstra algorithm
155 /// should be used rather.
157 /// The complexity of the algorithm is O(n * e).
159 /// The type of the length is determined by the
160 /// \ref concept::ReadMap::Value "Value" of the length map.
162 /// \param _Graph The graph type the algorithm runs on. The default value
163 /// is \ref ListGraph. The value of _Graph is not used directly by
164 /// BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.
165 /// \param _LengthMap This read-only EdgeMap determines the lengths of the
166 /// edges. The default map type is \ref concept::StaticGraph::EdgeMap
167 /// "Graph::EdgeMap<int>". The value of _LengthMap is not used directly
168 /// by BelmannFord, it is only passed to \ref BelmannFordDefaultTraits.
169 /// \param _Traits Traits class to set various data types used by the
170 /// algorithm. The default traits class is \ref BelmannFordDefaultTraits
171 /// "BelmannFordDefaultTraits<_Graph,_LengthMap>". See \ref
172 /// BelmannFordDefaultTraits for the documentation of a BelmannFord traits
175 /// \author Balazs Dezso
178 template <typename _Graph, typename _LengthMap, typename _Traits>
180 template <typename _Graph=ListGraph,
181 typename _LengthMap=typename _Graph::template EdgeMap<int>,
182 typename _Traits=BelmannFordDefaultTraits<_Graph,_LengthMap> >
187 /// \brief \ref Exception for uninitialized parameters.
189 /// This error represents problems in the initialization
190 /// of the parameters of the algorithms.
192 class UninitializedParameter : public lemon::UninitializedParameter {
194 virtual const char* exceptionName() const {
195 return "lemon::BelmannFord::UninitializedParameter";
199 typedef _Traits Traits;
200 ///The type of the underlying graph.
201 typedef typename _Traits::Graph Graph;
203 typedef typename Graph::Node Node;
204 typedef typename Graph::NodeIt NodeIt;
205 typedef typename Graph::Edge Edge;
206 typedef typename Graph::OutEdgeIt OutEdgeIt;
208 /// \brief The type of the length of the edges.
209 typedef typename _Traits::LengthMap::Value Value;
210 /// \brief The type of the map that stores the edge lengths.
211 typedef typename _Traits::LengthMap LengthMap;
212 /// \brief The type of the map that stores the last
213 /// edges of the shortest paths.
214 typedef typename _Traits::PredMap PredMap;
215 /// \brief The type of the map that stores the dists of the nodes.
216 typedef typename _Traits::DistMap DistMap;
217 /// \brief The operation traits.
218 typedef typename _Traits::OperationTraits OperationTraits;
220 /// Pointer to the underlying graph.
222 /// Pointer to the length map
223 const LengthMap *length;
224 ///Pointer to the map of predecessors edges.
226 ///Indicates if \ref _pred is locally allocated (\c true) or not.
228 ///Pointer to the map of distances.
230 ///Indicates if \ref _dist is locally allocated (\c true) or not.
233 typedef typename Graph::template NodeMap<bool> MaskMap;
236 std::vector<Node> _process;
238 /// Creates the maps if necessary.
242 _pred = Traits::createPredMap(*graph);
246 _dist = Traits::createDistMap(*graph);
248 _mask = new MaskMap(*graph, false);
253 typedef BelmannFord Create;
255 /// \name Named template parameters
260 struct DefPredMapTraits : public Traits {
262 static PredMap *createPredMap(const Graph&) {
263 throw UninitializedParameter();
267 /// \brief \ref named-templ-param "Named parameter" for setting PredMap
269 /// \ref named-templ-param "Named parameter" for setting PredMap type
273 typedef BelmannFord< Graph, LengthMap, DefPredMapTraits<T> > Create;
277 struct DefDistMapTraits : public Traits {
279 static DistMap *createDistMap(const Graph& graph) {
280 throw UninitializedParameter();
284 /// \brief \ref named-templ-param "Named parameter" for setting DistMap
287 /// \ref named-templ-param "Named parameter" for setting DistMap type
291 : public BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > {
292 typedef BelmannFord< Graph, LengthMap, DefDistMapTraits<T> > Create;
296 struct DefOperationTraitsTraits : public Traits {
297 typedef T OperationTraits;
300 /// \brief \ref named-templ-param "Named parameter" for setting
301 /// OperationTraits type
303 /// \ref named-templ-param "Named parameter" for setting OperationTraits
306 struct DefOperationTraits
307 : public BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> > {
308 typedef BelmannFord< Graph, LengthMap, DefOperationTraitsTraits<T> >
320 /// \brief Constructor.
322 /// \param _graph the graph the algorithm will run on.
323 /// \param _length the length map used by the algorithm.
324 BelmannFord(const Graph& _graph, const LengthMap& _length) :
325 graph(&_graph), length(&_length),
326 _pred(0), local_pred(false),
327 _dist(0), local_dist(false) {}
331 if(local_pred) delete _pred;
332 if(local_dist) delete _dist;
336 /// \brief Sets the length map.
338 /// Sets the length map.
339 /// \return \c (*this)
340 BelmannFord &lengthMap(const LengthMap &m) {
345 /// \brief Sets the map storing the predecessor edges.
347 /// Sets the map storing the predecessor edges.
348 /// If you don't use this function before calling \ref run(),
349 /// it will allocate one. The destuctor deallocates this
350 /// automatically allocated map, of course.
351 /// \return \c (*this)
352 BelmannFord &predMap(PredMap &m) {
361 /// \brief Sets the map storing the distances calculated by the algorithm.
363 /// Sets the map storing the distances calculated by the algorithm.
364 /// If you don't use this function before calling \ref run(),
365 /// it will allocate one. The destuctor deallocates this
366 /// automatically allocated map, of course.
367 /// \return \c (*this)
368 BelmannFord &distMap(DistMap &m) {
377 /// \name Execution control
378 /// The simplest way to execute the algorithm is to use
379 /// one of the member functions called \c run(...).
381 /// If you need more control on the execution,
382 /// first you must call \ref init(), then you can add several source nodes
383 /// with \ref addSource().
384 /// Finally \ref start() will perform the actual path
389 /// \brief Initializes the internal data structures.
391 /// Initializes the internal data structures.
392 void init(const Value value = OperationTraits::infinity()) {
394 for (NodeIt it(*graph); it != INVALID; ++it) {
395 _pred->set(it, INVALID);
396 _dist->set(it, value);
399 if (OperationTraits::less(value, OperationTraits::infinity())) {
400 for (NodeIt it(*graph); it != INVALID; ++it) {
401 _process.push_back(it);
402 _mask->set(it, true);
407 /// \brief Adds a new source node.
409 /// The optional second parameter is the initial distance of the node.
410 /// It just sets the distance of the node to the given value.
411 void addSource(Node source, Value dst = OperationTraits::zero()) {
412 _dist->set(source, dst);
413 if (!(*_mask)[source]) {
414 _process.push_back(source);
415 _mask->set(source, true);
419 /// \brief Executes one round from the belmann ford algorithm.
421 /// If the algoritm calculated the distances in the previous round
422 /// strictly for all at most k length paths then it will calculate the
423 /// distances strictly for all at most k + 1 length paths. With k
424 /// iteration this function calculates the at most k length paths.
425 ///\todo what is the return value?
426 bool processNextRound() {
427 for (int i = 0; i < (int)_process.size(); ++i) {
428 _mask->set(_process[i], false);
430 std::vector<Node> nextProcess;
431 std::vector<Value> values(_process.size());
432 for (int i = 0; i < (int)_process.size(); ++i) {
433 values[i] = _dist[_process[i]];
435 for (int i = 0; i < (int)_process.size(); ++i) {
436 for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
437 Node target = graph->target(it);
438 Value relaxed = OperationTraits::plus(values[i], (*length)[it]);
439 if (OperationTraits::less(relaxed, (*_dist)[target])) {
440 _pred->set(target, it);
441 _dist->set(target, relaxed);
442 if (!(*_mask)[target]) {
443 _mask->set(target, true);
444 nextProcess.push_back(target);
449 _process.swap(nextProcess);
450 return _process.empty();
453 /// \brief Executes one weak round from the belmann ford algorithm.
455 /// If the algorithm calculated the distances in the
456 /// previous round at least for all at most k length paths then it will
457 /// calculate the distances at least for all at most k + 1 length paths.
458 /// This function does not make it possible to calculate strictly the
459 /// at most k length minimal paths, this is why it is
460 /// called just weak round.
461 ///\todo what is the return value?
462 bool processNextWeakRound() {
463 for (int i = 0; i < (int)_process.size(); ++i) {
464 _mask->set(_process[i], false);
466 std::vector<Node> nextProcess;
467 for (int i = 0; i < (int)_process.size(); ++i) {
468 for (OutEdgeIt it(*graph, _process[i]); it != INVALID; ++it) {
469 Node target = graph->target(it);
471 OperationTraits::plus((*_dist)[_process[i]], (*length)[it]);
472 if (OperationTraits::less(relaxed, (*_dist)[target])) {
473 _pred->set(target, it);
474 _dist->set(target, relaxed);
475 if (!(*_mask)[target]) {
476 _mask->set(target, true);
477 nextProcess.push_back(target);
482 _process.swap(nextProcess);
483 return _process.empty();
486 /// \brief Executes the algorithm.
488 /// \pre init() must be called and at least one node should be added
489 /// with addSource() before using this function.
491 /// This method runs the %BelmannFord algorithm from the root node(s)
492 /// in order to compute the shortest path to each node. The algorithm
494 /// - The shortest path tree.
495 /// - The distance of each node from the root(s).
497 int num = countNodes(*graph) - 1;
498 for (int i = 0; i < num; ++i) {
499 if (processNextWeakRound()) break;
503 /// \brief Executes the algorithm and checks the negative cycles.
505 /// \pre init() must be called and at least one node should be added
506 /// with addSource() before using this function. If there is
507 /// a negative cycles in the graph it gives back false.
509 /// This method runs the %BelmannFord algorithm from the root node(s)
510 /// in order to compute the shortest path to each node. The algorithm
512 /// - The shortest path tree.
513 /// - The distance of each node from the root(s).
514 bool checkedStart() {
515 int num = countNodes(*graph);
516 for (int i = 0; i < num; ++i) {
517 if (processNextWeakRound()) return true;
522 /// \brief Executes the algorithm with path length limit.
524 /// \pre init() must be called and at least one node should be added
525 /// with addSource() before using this function.
527 /// This method runs the %BelmannFord algorithm from the root node(s)
528 /// in order to compute the shortest path with at most \c length edge
529 /// long paths to each node. The algorithm computes
530 /// - The shortest path tree.
531 /// - The limited distance of each node from the root(s).
532 void limitedStart(int length) {
533 for (int i = 0; i < length; ++i) {
534 if (processNextRound()) break;
538 /// \brief Runs %BelmannFord algorithm from node \c s.
540 /// This method runs the %BelmannFord algorithm from a root node \c s
541 /// in order to compute the shortest path to each node. The algorithm
543 /// - The shortest path tree.
544 /// - The distance of each node from the root.
546 /// \note d.run(s) is just a shortcut of the following code.
560 /// \name Query Functions
561 /// The result of the %BelmannFord algorithm can be obtained using these
563 /// Before the use of these functions,
564 /// either run() or start() must be called.
568 /// \brief Copies the shortest path to \c t into \c p
570 /// This function copies the shortest path to \c t into \c p.
571 /// If it \c t is a source itself or unreachable, then it does not
574 /// \return Returns \c true if a path to \c t was actually copied to \c p,
575 /// \c false otherwise.
577 template <typename Path>
578 bool getPath(Path &p, Node t) {
581 typename Path::Builder b(p);
582 for(b.setStartNode(t);predEdge(t)!=INVALID;t=predNode(t))
583 b.pushFront(predEdge(t));
590 /// \brief The distance of a node from the root.
592 /// Returns the distance of a node from the root.
593 /// \pre \ref run() must be called before using this function.
594 /// \warning If node \c v in unreachable from the root the return value
595 /// of this funcion is undefined.
596 Value dist(Node v) const { return (*_dist)[v]; }
598 /// \brief Returns the 'previous edge' of the shortest path tree.
600 /// For a node \c v it returns the 'previous edge' of the shortest path
601 /// tree, i.e. it returns the last edge of a shortest path from the root
602 /// to \c v. It is \ref INVALID if \c v is unreachable from the root or
603 /// if \c v=s. The shortest path tree used here is equal to the shortest
604 /// path tree used in \ref predNode().
605 /// \pre \ref run() must be called before using
607 Edge predEdge(Node v) const { return (*_pred)[v]; }
609 /// \brief Returns the 'previous node' of the shortest path tree.
611 /// For a node \c v it returns the 'previous node' of the shortest path
612 /// tree, i.e. it returns the last but one node from a shortest path from
613 /// the root to \c /v. It is INVALID if \c v is unreachable from the root
614 /// or if \c v=s. The shortest path tree used here is equal to the
615 /// shortest path tree used in \ref predEdge(). \pre \ref run() must be
616 /// called before using this function.
617 Node predNode(Node v) const {
618 return (*_pred)[v] == INVALID ? INVALID : graph->source((*_pred)[v]);
621 /// \brief Returns a reference to the NodeMap of distances.
623 /// Returns a reference to the NodeMap of distances. \pre \ref run() must
624 /// be called before using this function.
625 const DistMap &distMap() const { return *_dist;}
627 /// \brief Returns a reference to the shortest path tree map.
629 /// Returns a reference to the NodeMap of the edges of the
630 /// shortest path tree.
631 /// \pre \ref run() must be called before using this function.
632 const PredMap &predMap() const { return *_pred; }
634 /// \brief Checks if a node is reachable from the root.
636 /// Returns \c true if \c v is reachable from the root.
637 /// \pre \ref run() must be called before using this function.
639 bool reached(Node v) { return (*_dist)[v] != OperationTraits::infinity(); }
644 /// \brief Default traits class of BelmannFord function.
646 /// Default traits class of BelmannFord function.
647 /// \param _Graph Graph type.
648 /// \param _LengthMap Type of length map.
649 template <typename _Graph, typename _LengthMap>
650 struct BelmannFordWizardDefaultTraits {
651 /// \brief The graph type the algorithm runs on.
652 typedef _Graph Graph;
654 /// \brief The type of the map that stores the edge lengths.
656 /// The type of the map that stores the edge lengths.
657 /// It must meet the \ref concept::ReadMap "ReadMap" concept.
658 typedef _LengthMap LengthMap;
660 /// \brief The value type of the length map.
661 typedef typename _LengthMap::Value Value;
663 /// \brief Operation traits for belmann-ford algorithm.
665 /// It defines the infinity type on the given Value type
666 /// and the used operation.
667 /// \see BelmannFordDefaultOperationTraits
668 typedef BelmannFordDefaultOperationTraits<Value> OperationTraits;
670 /// \brief The type of the map that stores the last
671 /// edges of the shortest paths.
673 /// The type of the map that stores the last
674 /// edges of the shortest paths.
675 /// It must meet the \ref concept::WriteMap "WriteMap" concept.
676 typedef NullMap <typename _Graph::Node,typename _Graph::Edge> PredMap;
678 /// \brief Instantiates a PredMap.
680 /// This function instantiates a \ref PredMap.
681 static PredMap *createPredMap(const _Graph &) {
682 return new PredMap();
684 /// \brief The type of the map that stores the dists of the nodes.
686 /// The type of the map that stores the dists of the nodes.
687 /// It must meet the \ref concept::WriteMap "WriteMap" concept.
688 typedef NullMap<typename Graph::Node, Value> DistMap;
689 /// \brief Instantiates a DistMap.
691 /// This function instantiates a \ref DistMap.
692 static DistMap *createDistMap(const _Graph &) {
693 return new DistMap();
697 /// \brief Default traits used by \ref BelmannFordWizard
699 /// To make it easier to use BelmannFord algorithm
700 /// we have created a wizard class.
701 /// This \ref BelmannFordWizard class needs default traits,
702 /// as well as the \ref BelmannFord class.
703 /// The \ref BelmannFordWizardBase is a class to be the default traits of the
704 /// \ref BelmannFordWizard class.
705 /// \todo More named parameters are required...
706 template<class _Graph,class _LengthMap>
707 class BelmannFordWizardBase
708 : public BelmannFordWizardDefaultTraits<_Graph,_LengthMap> {
710 typedef BelmannFordWizardDefaultTraits<_Graph,_LengthMap> Base;
712 /// Type of the nodes in the graph.
713 typedef typename Base::Graph::Node Node;
715 /// Pointer to the underlying graph.
717 /// Pointer to the length map
719 ///Pointer to the map of predecessors edges.
721 ///Pointer to the map of distances.
723 ///Pointer to the source node.
729 /// This constructor does not require parameters, therefore it initiates
730 /// all of the attributes to default values (0, INVALID).
731 BelmannFordWizardBase() : _graph(0), _length(0), _pred(0),
732 _dist(0), _source(INVALID) {}
736 /// This constructor requires some parameters,
737 /// listed in the parameters list.
738 /// Others are initiated to 0.
739 /// \param graph is the initial value of \ref _graph
740 /// \param length is the initial value of \ref _length
741 /// \param source is the initial value of \ref _source
742 BelmannFordWizardBase(const _Graph& graph,
743 const _LengthMap& length,
744 Node source = INVALID) :
745 _graph((void *)&graph), _length((void *)&length), _pred(0),
746 _dist(0), _source(source) {}
750 /// A class to make the usage of BelmannFord algorithm easier
752 /// This class is created to make it easier to use BelmannFord algorithm.
753 /// It uses the functions and features of the plain \ref BelmannFord,
754 /// but it is much simpler to use it.
756 /// Simplicity means that the way to change the types defined
757 /// in the traits class is based on functions that returns the new class
758 /// and not on templatable built-in classes.
759 /// When using the plain \ref BelmannFord
760 /// the new class with the modified type comes from
761 /// the original class by using the ::
762 /// operator. In the case of \ref BelmannFordWizard only
763 /// a function have to be called and it will
764 /// return the needed class.
766 /// It does not have own \ref run method. When its \ref run method is called
767 /// it initiates a plain \ref BelmannFord class, and calls the \ref
768 /// BelmannFord::run method of it.
769 template<class _Traits>
770 class BelmannFordWizard : public _Traits {
771 typedef _Traits Base;
773 ///The type of the underlying graph.
774 typedef typename _Traits::Graph Graph;
776 typedef typename Graph::Node Node;
777 typedef typename Graph::NodeIt NodeIt;
778 typedef typename Graph::Edge Edge;
779 typedef typename Graph::OutEdgeIt EdgeIt;
781 ///The type of the map that stores the edge lengths.
782 typedef typename _Traits::LengthMap LengthMap;
784 ///The type of the length of the edges.
785 typedef typename LengthMap::Value Value;
787 ///\brief The type of the map that stores the last
788 ///edges of the shortest paths.
789 typedef typename _Traits::PredMap PredMap;
791 ///The type of the map that stores the dists of the nodes.
792 typedef typename _Traits::DistMap DistMap;
796 BelmannFordWizard() : _Traits() {}
798 /// \brief Constructor that requires parameters.
800 /// Constructor that requires parameters.
801 /// These parameters will be the default values for the traits class.
802 BelmannFordWizard(const Graph& graph, const LengthMap& length,
803 Node source = INVALID)
804 : _Traits(graph, length, source) {}
806 /// \brief Copy constructor
807 BelmannFordWizard(const _Traits &b) : _Traits(b) {}
809 ~BelmannFordWizard() {}
811 /// \brief Runs BelmannFord algorithm from a given node.
813 /// Runs BelmannFord algorithm from a given node.
814 /// The node can be given by the \ref source function.
816 if(Base::_source == INVALID) throw UninitializedParameter();
817 BelmannFord<Graph,LengthMap,_Traits>
818 bf(*(Graph*)Base::_graph, *(LengthMap*)Base::_length);
819 if (Base::_pred) bf.predMap(*(PredMap*)Base::_pred);
820 if (Base::_dist) bf.distMap(*(DistMap*)Base::_dist);
821 bf.run(Base::_source);
824 /// \brief Runs BelmannFord algorithm from the given node.
826 /// Runs BelmannFord algorithm from the given node.
827 /// \param s is the given source.
828 void run(Node source) {
829 Base::_source = source;
834 struct DefPredMapBase : public Base {
836 static PredMap *createPredMap(const Graph &) { return 0; };
837 DefPredMapBase(const _Traits &b) : _Traits(b) {}
840 ///\brief \ref named-templ-param "Named parameter"
841 ///function for setting PredMap type
843 /// \ref named-templ-param "Named parameter"
844 ///function for setting PredMap type
847 BelmannFordWizard<DefPredMapBase<T> > predMap(const T &t)
849 Base::_pred=(void *)&t;
850 return BelmannFordWizard<DefPredMapBase<T> >(*this);
854 struct DefDistMapBase : public Base {
856 static DistMap *createDistMap(const Graph &) { return 0; };
857 DefDistMapBase(const _Traits &b) : _Traits(b) {}
860 ///\brief \ref named-templ-param "Named parameter"
861 ///function for setting DistMap type
863 /// \ref named-templ-param "Named parameter"
864 ///function for setting DistMap type
867 BelmannFordWizard<DefDistMapBase<T> > distMap(const T &t) {
868 Base::_dist=(void *)&t;
869 return BelmannFordWizard<DefDistMapBase<T> >(*this);
873 struct DefOperationTraitsBase : public Base {
874 typedef T OperationTraits;
875 DefOperationTraitsBase(const _Traits &b) : _Traits(b) {}
878 ///\brief \ref named-templ-param "Named parameter"
879 ///function for setting OperationTraits type
881 /// \ref named-templ-param "Named parameter"
882 ///function for setting OperationTraits type
885 BelmannFordWizard<DefOperationTraitsBase<T> > distMap() {
886 return BelmannFordWizard<DefDistMapBase<T> >(*this);
889 /// \brief Sets the source node, from which the BelmannFord algorithm runs.
891 /// Sets the source node, from which the BelmannFord algorithm runs.
892 /// \param s is the source node.
893 BelmannFordWizard<_Traits>& source(Node source) {
894 Base::_source = source;
900 /// \brief Function type interface for BelmannFord algorithm.
902 /// \ingroup flowalgs
903 /// Function type interface for BelmannFord algorithm.
905 /// This function also has several \ref named-templ-func-param
906 /// "named parameters", they are declared as the members of class
907 /// \ref BelmannFordWizard.
909 /// example shows how to use these parameters.
911 /// belmannford(g,length,source).predMap(preds).run();
913 /// \warning Don't forget to put the \ref BelmannFordWizard::run() "run()"
914 /// to the end of the parameter list.
915 /// \sa BelmannFordWizard
917 template<class _Graph, class _LengthMap>
918 BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
919 belmannFord(const _Graph& graph,
920 const _LengthMap& length,
921 typename _Graph::Node source = INVALID) {
922 return BelmannFordWizard<BelmannFordWizardBase<_Graph,_LengthMap> >
923 (graph, length, source);
926 } //END OF NAMESPACE LEMON