alpar@906: /* -*- C++ -*- alpar@906: * alpar@1956: * This file is a part of LEMON, a generic C++ optimization library alpar@1956: * alpar@1956: * Copyright (C) 2003-2006 alpar@1956: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport alpar@1359: * (Egervary Research Group on Combinatorial Optimization, EGRES). alpar@906: * alpar@906: * Permission to use, modify and distribute this software is granted alpar@906: * provided that this copyright notice appears in all copies. For alpar@906: * precise terms see the accompanying LICENSE file. alpar@906: * alpar@906: * This software is provided "AS IS" with no warranty of any kind, alpar@906: * express or implied, and with no claim as to its suitability for any alpar@906: * purpose. alpar@906: * alpar@906: */ alpar@906: alpar@921: #ifndef LEMON_PREFLOW_H alpar@921: #define LEMON_PREFLOW_H jacint@836: jacint@836: #include jacint@836: #include jacint@836: jacint@1762: #include deba@1993: #include alpar@1835: #include alpar@921: #include klao@977: #include jacint@836: jacint@836: /// \file jacint@836: /// \ingroup flowalgs deba@1742: /// \brief Implementation of the preflow algorithm. jacint@836: alpar@921: namespace lemon { jacint@836: deba@1792: ///\ingroup flowalgs deba@1792: ///\brief %Preflow algorithms class. deba@1792: /// jacint@836: ///This class provides an implementation of the \e preflow \e jacint@836: ///algorithm producing a flow of maximum value in a directed alpar@1222: ///graph. The preflow algorithms are the fastest known max flow algorithms alpar@851: ///up to now. The \e source node, the \e target node, the \e jacint@836: ///capacity of the edges and the \e starting \e flow value of the jacint@836: ///edges should be passed to the algorithm through the jacint@836: ///constructor. It is possible to change these quantities using the zsuzska@1285: ///functions \ref source, \ref target, \ref capacityMap and \ref zsuzska@1285: ///flowMap. jacint@836: /// alpar@921: ///After running \ref lemon::Preflow::phase1() "phase1()" alpar@921: ///or \ref lemon::Preflow::run() "run()", the maximal flow jacint@836: ///value can be obtained by calling \ref flowValue(). The minimum alpar@851: ///value cut can be written into a bool node map by alpar@851: ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes jacint@836: ///the inclusionwise minimum and maximum of the minimum value cuts, jacint@836: ///resp.) jacint@836: /// jacint@836: ///\param Graph The directed graph type the algorithm runs on. jacint@836: ///\param Num The number type of the capacities and the flow values. alpar@1222: ///\param CapacityMap The capacity map type. jacint@836: ///\param FlowMap The flow map type. jacint@836: /// jacint@836: ///\author Jacint Szabo alpar@1227: ///\todo Second template parameter is superfluous jacint@836: template , alpar@1835: typename FlowMap=typename Graph::template EdgeMap, alpar@1835: typename TOL=Tolerance > jacint@836: class Preflow { jacint@836: protected: jacint@836: typedef typename Graph::Node Node; jacint@836: typedef typename Graph::NodeIt NodeIt; jacint@836: typedef typename Graph::EdgeIt EdgeIt; jacint@836: typedef typename Graph::OutEdgeIt OutEdgeIt; jacint@836: typedef typename Graph::InEdgeIt InEdgeIt; jacint@836: jacint@836: typedef typename Graph::template NodeMap NNMap; jacint@836: typedef typename std::vector VecNode; jacint@836: alpar@1222: const Graph* _g; alpar@1222: Node _source; alpar@1222: Node _target; alpar@1222: const CapacityMap* _capacity; alpar@1222: FlowMap* _flow; alpar@1835: alpar@1835: TOL surely; alpar@1835: alpar@1222: int _node_num; //the number of nodes of G jacint@836: jacint@836: typename Graph::template NodeMap level; jacint@836: typename Graph::template NodeMap excess; jacint@836: jacint@836: // constants used for heuristics jacint@836: static const int H0=20; jacint@836: static const int H1=1; jacint@836: jacint@1762: public: jacint@1762: jacint@1762: ///\ref Exception for the case when s=t. jacint@1762: jacint@1762: ///\ref Exception for the case when the source equals the target. jacint@1762: class InvalidArgument : public lemon::LogicError { jacint@836: public: jacint@1762: virtual const char* exceptionName() const { jacint@1762: return "lemon::Preflow::InvalidArgument"; jacint@1762: } jacint@1762: }; jacint@1762: jacint@1762: jacint@836: ///Indicates the property of the starting flow map. jacint@1762: alpar@1222: ///Indicates the property of the starting flow map. jacint@836: /// jacint@836: enum FlowEnum{ alpar@1898: ///indicates an unspecified edge map. \c flow will be alpar@1898: ///set to the constant zero flow in the beginning of alpar@1898: ///the algorithm in this case. jacint@836: NO_FLOW, alpar@1898: ///constant zero flow jacint@836: ZERO_FLOW, alpar@1898: ///any flow, i.e. the sum of the in-flows equals to alpar@1898: ///the sum of the out-flows in every node except the \c source and alpar@1898: ///the \c target. jacint@836: GEN_FLOW, alpar@1898: ///any preflow, i.e. the sum of the in-flows is at alpar@1898: ///least the sum of the out-flows in every node except the \c source. jacint@836: PRE_FLOW jacint@836: }; jacint@836: jacint@836: ///Indicates the state of the preflow algorithm. jacint@836: alpar@1222: ///Indicates the state of the preflow algorithm. jacint@836: /// jacint@836: enum StatusEnum { alpar@1898: ///before running the algorithm or alpar@1898: ///at an unspecified state. jacint@836: AFTER_NOTHING, alpar@1898: ///right after running \ref phase1() jacint@836: AFTER_PREFLOW_PHASE_1, alpar@1898: ///after running \ref phase2() jacint@836: AFTER_PREFLOW_PHASE_2 jacint@836: }; jacint@836: jacint@1762: protected: jacint@1762: FlowEnum flow_prop; jacint@836: StatusEnum status; // Do not needle this flag only if necessary. jacint@836: jacint@836: public: jacint@836: ///The constructor of the class. jacint@836: jacint@836: ///The constructor of the class. zsuzska@1285: ///\param _gr The directed graph the algorithm runs on. jacint@836: ///\param _s The source node. jacint@836: ///\param _t The target node. alpar@1222: ///\param _cap The capacity of the edges. alpar@1222: ///\param _f The flow of the edges. alpar@1953: ///\param tol Tolerance class. jacint@836: ///Except the graph, all of these parameters can be reset by zsuzska@1285: ///calling \ref source, \ref target, \ref capacityMap and \ref zsuzska@1285: ///flowMap, resp. alpar@1222: Preflow(const Graph& _gr, Node _s, Node _t, alpar@1835: const CapacityMap& _cap, FlowMap& _f, alpar@1835: const TOL &tol=TOL()) : alpar@1222: _g(&_gr), _source(_s), _target(_t), _capacity(&_cap), alpar@1835: _flow(&_f), surely(tol), alpar@1835: _node_num(countNodes(_gr)), level(_gr), excess(_gr,0), jacint@1762: flow_prop(NO_FLOW), status(AFTER_NOTHING) { jacint@1762: if ( _source==_target ) jacint@1762: throw InvalidArgument(); jacint@1762: } jacint@1762: alpar@1898: ///Give a reference to the tolerance handler class jacint@836: alpar@1898: ///Give a reference to the tolerance handler class alpar@1898: ///\sa Tolerance alpar@1898: TOL &tolerance() { return surely; } alpar@1898: jacint@836: ///Runs the preflow algorithm. jacint@836: alpar@851: ///Runs the preflow algorithm. alpar@851: /// jacint@836: void run() { jacint@836: phase1(flow_prop); jacint@836: phase2(); jacint@836: } jacint@836: jacint@836: ///Runs the preflow algorithm. jacint@836: jacint@836: ///Runs the preflow algorithm. jacint@836: ///\pre The starting flow map must be jacint@836: /// - a constant zero flow if \c fp is \c ZERO_FLOW, jacint@836: /// - an arbitrary flow if \c fp is \c GEN_FLOW, jacint@836: /// - an arbitrary preflow if \c fp is \c PRE_FLOW, jacint@836: /// - any map if \c fp is NO_FLOW. jacint@836: ///If the starting flow map is a flow or a preflow then jacint@836: ///the algorithm terminates faster. jacint@836: void run(FlowEnum fp) { jacint@836: flow_prop=fp; jacint@836: run(); jacint@836: } jacint@836: jacint@836: ///Runs the first phase of the preflow algorithm. jacint@836: jacint@920: ///The preflow algorithm consists of two phases, this method runs jacint@920: ///the first phase. After the first phase the maximum flow value zsuzska@1285: ///and a minimum value cut can already be computed, although a jacint@920: ///maximum flow is not yet obtained. So after calling this method jacint@920: ///\ref flowValue returns the value of a maximum flow and \ref jacint@920: ///minCut returns a minimum cut. jacint@920: ///\warning \ref minMinCut and \ref maxMinCut do not give minimum jacint@920: ///value cuts unless calling \ref phase2. jacint@920: ///\pre The starting flow must be jacint@920: ///- a constant zero flow if \c fp is \c ZERO_FLOW, jacint@920: ///- an arbitary flow if \c fp is \c GEN_FLOW, jacint@920: ///- an arbitary preflow if \c fp is \c PRE_FLOW, jacint@920: ///- any map if \c fp is NO_FLOW. jacint@836: void phase1(FlowEnum fp) jacint@836: { jacint@836: flow_prop=fp; jacint@836: phase1(); jacint@836: } jacint@836: jacint@836: jacint@836: ///Runs the first phase of the preflow algorithm. jacint@836: jacint@920: ///The preflow algorithm consists of two phases, this method runs jacint@920: ///the first phase. After the first phase the maximum flow value zsuzska@1285: ///and a minimum value cut can already be computed, although a jacint@920: ///maximum flow is not yet obtained. So after calling this method jacint@920: ///\ref flowValue returns the value of a maximum flow and \ref jacint@920: ///minCut returns a minimum cut. deba@1786: ///\warning \ref minMinCut() and \ref maxMinCut() do not alpar@911: ///give minimum value cuts unless calling \ref phase2(). jacint@836: void phase1() jacint@836: { alpar@1222: int heur0=(int)(H0*_node_num); //time while running 'bound decrease' alpar@1222: int heur1=(int)(H1*_node_num); //time while running 'highest label' jacint@836: int heur=heur1; //starting time interval (#of relabels) jacint@836: int numrelabel=0; jacint@836: jacint@836: bool what_heur=1; jacint@836: //It is 0 in case 'bound decrease' and 1 in case 'highest label' jacint@836: jacint@836: bool end=false; jacint@836: //Needed for 'bound decrease', true means no active jacint@836: //nodes are above bound b. jacint@836: alpar@1222: int k=_node_num-2; //bound on the highest level under n containing a node jacint@836: int b=k; //bound on the highest level under n of an active node jacint@836: alpar@1222: VecNode first(_node_num, INVALID); alpar@1222: NNMap next(*_g, INVALID); jacint@836: alpar@1222: NNMap left(*_g, INVALID); alpar@1222: NNMap right(*_g, INVALID); alpar@1222: VecNode level_list(_node_num,INVALID); jacint@836: //List of the nodes in level i 0 ) { jacint@836: b=k; jacint@836: end=true; jacint@836: } else break; jacint@836: } jacint@836: jacint@836: if ( first[b]==INVALID ) --b; jacint@836: else { jacint@836: end=false; jacint@836: Node w=first[b]; jacint@836: first[b]=next[w]; jacint@836: int newlevel=push(w, next, first); jacint@836: if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, jacint@836: left, right, b, k, what_heur); jacint@836: jacint@836: ++numrelabel; jacint@836: if ( numrelabel >= heur ) { jacint@836: numrelabel=0; jacint@836: if ( what_heur ) { jacint@836: what_heur=0; jacint@836: heur=heur0; jacint@836: end=false; jacint@836: } else { jacint@836: what_heur=1; jacint@836: heur=heur1; jacint@836: b=k; jacint@836: } jacint@836: } jacint@836: } jacint@836: } jacint@836: flow_prop=PRE_FLOW; jacint@836: status=AFTER_PREFLOW_PHASE_1; jacint@836: } jacint@836: // Heuristics: jacint@836: // 2 phase jacint@836: // gap jacint@836: // list 'level_list' on the nodes on level i implemented by hand jacint@836: // stack 'active' on the active nodes on level i jacint@836: // runs heuristic 'highest label' for H1*n relabels alpar@1222: // runs heuristic 'bound decrease' for H0*n relabels, alpar@1222: // starts with 'highest label' jacint@836: // Parameters H0 and H1 are initialized to 20 and 1. jacint@836: jacint@836: jacint@836: ///Runs the second phase of the preflow algorithm. jacint@836: jacint@836: ///The preflow algorithm consists of two phases, this method runs alpar@1631: ///the second phase. After calling \ref phase1() and then alpar@1631: ///\ref phase2(), alpar@1631: /// \ref flowMap() return a maximum flow, \ref flowValue jacint@920: ///returns the value of a maximum flow, \ref minCut returns a jacint@920: ///minimum cut, while the methods \ref minMinCut and \ref jacint@920: ///maxMinCut return the inclusionwise minimum and maximum cuts of jacint@920: ///minimum value, resp. \pre \ref phase1 must be called before. jacint@836: void phase2() jacint@836: { jacint@836: alpar@1222: int k=_node_num-2; //bound on the highest level under n containing a node jacint@836: int b=k; //bound on the highest level under n of an active node jacint@836: jacint@836: alpar@1222: VecNode first(_node_num, INVALID); alpar@1222: NNMap next(*_g, INVALID); alpar@1222: level.set(_source,0); jacint@836: std::queue bfs_queue; alpar@1222: bfs_queue.push(_source); jacint@836: jacint@836: while ( !bfs_queue.empty() ) { jacint@836: jacint@836: Node v=bfs_queue.front(); jacint@836: bfs_queue.pop(); jacint@836: int l=level[v]+1; jacint@836: alpar@1222: for(InEdgeIt e(*_g,v); e!=INVALID; ++e) { alpar@1222: if ( (*_capacity)[e] <= (*_flow)[e] ) continue; alpar@1222: Node u=_g->source(e); alpar@1222: if ( level[u] >= _node_num ) { jacint@836: bfs_queue.push(u); jacint@836: level.set(u, l); jacint@836: if ( excess[u] > 0 ) { jacint@836: next.set(u,first[l]); jacint@836: first[l]=u; jacint@836: } jacint@836: } jacint@836: } jacint@836: alpar@1222: for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) { alpar@1222: if ( 0 >= (*_flow)[e] ) continue; alpar@1222: Node u=_g->target(e); alpar@1222: if ( level[u] >= _node_num ) { jacint@836: bfs_queue.push(u); jacint@836: level.set(u, l); jacint@836: if ( excess[u] > 0 ) { jacint@836: next.set(u,first[l]); jacint@836: first[l]=u; jacint@836: } jacint@836: } jacint@836: } jacint@836: } alpar@1222: b=_node_num-2; jacint@836: jacint@836: while ( true ) { jacint@836: jacint@836: if ( b == 0 ) break; jacint@836: if ( first[b]==INVALID ) --b; jacint@836: else { jacint@836: Node w=first[b]; jacint@836: first[b]=next[w]; jacint@836: int newlevel=push(w,next, first); jacint@836: jacint@836: //relabel jacint@836: if ( excess[w] > 0 ) { jacint@836: level.set(w,++newlevel); jacint@836: next.set(w,first[newlevel]); jacint@836: first[newlevel]=w; jacint@836: b=newlevel; jacint@836: } jacint@836: } jacint@836: } // while(true) jacint@836: flow_prop=GEN_FLOW; jacint@836: status=AFTER_PREFLOW_PHASE_2; jacint@836: } jacint@836: jacint@836: /// Returns the value of the maximum flow. jacint@836: jacint@836: /// Returns the value of the maximum flow by returning the excess alpar@911: /// of the target node \c t. This value equals to the value of jacint@836: /// the maximum flow already after running \ref phase1. jacint@836: Num flowValue() const { alpar@1222: return excess[_target]; jacint@836: } jacint@836: jacint@836: jacint@836: ///Returns a minimum value cut. jacint@836: jacint@836: ///Sets \c M to the characteristic vector of a minimum value jacint@836: ///cut. This method can be called both after running \ref jacint@836: ///phase1 and \ref phase2. It is much faster after marci@849: ///\ref phase1. \pre M should be a bool-valued node-map. \pre alpar@911: ///If \ref minCut() is called after \ref phase2() then M should jacint@836: ///be initialized to false. jacint@836: template jacint@836: void minCut(_CutMap& M) const { jacint@836: switch ( status ) { jacint@836: case AFTER_PREFLOW_PHASE_1: alpar@1222: for(NodeIt v(*_g); v!=INVALID; ++v) { alpar@1222: if (level[v] < _node_num) { jacint@836: M.set(v, false); jacint@836: } else { jacint@836: M.set(v, true); jacint@836: } jacint@836: } jacint@836: break; jacint@836: case AFTER_PREFLOW_PHASE_2: jacint@836: minMinCut(M); jacint@836: break; jacint@836: case AFTER_NOTHING: jacint@836: break; jacint@836: } jacint@836: } jacint@836: jacint@836: ///Returns the inclusionwise minimum of the minimum value cuts. jacint@836: jacint@836: ///Sets \c M to the characteristic vector of the minimum value cut jacint@836: ///which is inclusionwise minimum. It is computed by processing a jacint@836: ///bfs from the source node \c s in the residual graph. \pre M jacint@836: ///should be a node map of bools initialized to false. \pre \ref jacint@836: ///phase2 should already be run. jacint@836: template jacint@836: void minMinCut(_CutMap& M) const { jacint@836: jacint@836: std::queue queue; alpar@1222: M.set(_source,true); alpar@1227: queue.push(_source); jacint@836: jacint@836: while (!queue.empty()) { jacint@836: Node w=queue.front(); jacint@836: queue.pop(); jacint@836: alpar@1222: for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) { alpar@1222: Node v=_g->target(e); alpar@1222: if (!M[v] && (*_flow)[e] < (*_capacity)[e] ) { jacint@836: queue.push(v); jacint@836: M.set(v, true); jacint@836: } jacint@836: } jacint@836: alpar@1222: for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) { alpar@1222: Node v=_g->source(e); alpar@1222: if (!M[v] && (*_flow)[e] > 0 ) { jacint@836: queue.push(v); jacint@836: M.set(v, true); jacint@836: } jacint@836: } jacint@836: } jacint@836: } jacint@836: jacint@836: ///Returns the inclusionwise maximum of the minimum value cuts. jacint@836: jacint@836: ///Sets \c M to the characteristic vector of the minimum value cut jacint@836: ///which is inclusionwise maximum. It is computed by processing a jacint@836: ///backward bfs from the target node \c t in the residual graph. alpar@911: ///\pre \ref phase2() or run() should already be run. jacint@836: template jacint@836: void maxMinCut(_CutMap& M) const { jacint@836: alpar@1222: for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true); jacint@836: jacint@836: std::queue queue; jacint@836: alpar@1222: M.set(_target,false); alpar@1222: queue.push(_target); jacint@836: jacint@836: while (!queue.empty()) { jacint@836: Node w=queue.front(); jacint@836: queue.pop(); jacint@836: alpar@1222: for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) { alpar@1222: Node v=_g->source(e); alpar@1222: if (M[v] && (*_flow)[e] < (*_capacity)[e] ) { jacint@836: queue.push(v); jacint@836: M.set(v, false); jacint@836: } jacint@836: } jacint@836: alpar@1222: for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) { alpar@1222: Node v=_g->target(e); alpar@1222: if (M[v] && (*_flow)[e] > 0 ) { jacint@836: queue.push(v); jacint@836: M.set(v, false); jacint@836: } jacint@836: } jacint@836: } jacint@836: } jacint@836: jacint@836: ///Sets the source node to \c _s. jacint@836: jacint@836: ///Sets the source node to \c _s. jacint@836: /// alpar@1222: void source(Node _s) { alpar@1222: _source=_s; jacint@836: if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW; jacint@836: status=AFTER_NOTHING; jacint@836: } jacint@836: alpar@1222: ///Returns the source node. alpar@1222: alpar@1222: ///Returns the source node. alpar@1222: /// alpar@1222: Node source() const { alpar@1222: return _source; alpar@1222: } alpar@1222: jacint@836: ///Sets the target node to \c _t. jacint@836: jacint@836: ///Sets the target node to \c _t. jacint@836: /// alpar@1222: void target(Node _t) { alpar@1222: _target=_t; jacint@836: if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW; jacint@836: status=AFTER_NOTHING; jacint@836: } jacint@836: alpar@1222: ///Returns the target node. alpar@1222: alpar@1222: ///Returns the target node. alpar@1222: /// alpar@1222: Node target() const { alpar@1222: return _target; alpar@1222: } alpar@1222: jacint@836: /// Sets the edge map of the capacities to _cap. jacint@836: jacint@836: /// Sets the edge map of the capacities to _cap. jacint@836: /// alpar@1222: void capacityMap(const CapacityMap& _cap) { alpar@1222: _capacity=&_cap; jacint@836: status=AFTER_NOTHING; jacint@836: } zsuzska@1285: /// Returns a reference to capacity map. alpar@1222: zsuzska@1285: /// Returns a reference to capacity map. alpar@1222: /// alpar@1222: const CapacityMap &capacityMap() const { alpar@1222: return *_capacity; alpar@1222: } jacint@836: jacint@836: /// Sets the edge map of the flows to _flow. jacint@836: jacint@836: /// Sets the edge map of the flows to _flow. jacint@836: /// alpar@1222: void flowMap(FlowMap& _f) { alpar@1222: _flow=&_f; jacint@836: flow_prop=NO_FLOW; jacint@836: status=AFTER_NOTHING; jacint@836: } alpar@1222: zsuzska@1285: /// Returns a reference to flow map. jacint@836: zsuzska@1285: /// Returns a reference to flow map. alpar@1222: /// alpar@1222: const FlowMap &flowMap() const { alpar@1222: return *_flow; alpar@1222: } jacint@836: jacint@836: private: jacint@836: jacint@836: int push(Node w, NNMap& next, VecNode& first) { jacint@836: jacint@836: int lev=level[w]; jacint@836: Num exc=excess[w]; alpar@1222: int newlevel=_node_num; //bound on the next level of w jacint@836: alpar@1222: for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) { alpar@1222: if ( (*_flow)[e] >= (*_capacity)[e] ) continue; alpar@1222: Node v=_g->target(e); jacint@836: jacint@836: if( lev > level[v] ) { //Push is allowed now jacint@836: alpar@1222: if ( excess[v]<=0 && v!=_target && v!=_source ) { jacint@836: next.set(v,first[level[v]]); jacint@836: first[level[v]]=v; jacint@836: } jacint@836: alpar@1222: Num cap=(*_capacity)[e]; alpar@1222: Num flo=(*_flow)[e]; jacint@836: Num remcap=cap-flo; jacint@836: jacint@836: if ( remcap >= exc ) { //A nonsaturating push. jacint@836: alpar@1222: _flow->set(e, flo+exc); jacint@836: excess.set(v, excess[v]+exc); jacint@836: exc=0; jacint@836: break; jacint@836: jacint@836: } else { //A saturating push. alpar@1222: _flow->set(e, cap); jacint@836: excess.set(v, excess[v]+remcap); jacint@836: exc-=remcap; jacint@836: } jacint@836: } else if ( newlevel > level[v] ) newlevel = level[v]; jacint@836: } //for out edges wv jacint@836: jacint@836: if ( exc > 0 ) { alpar@1222: for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) { jacint@836: alpar@1222: if( (*_flow)[e] <= 0 ) continue; alpar@1222: Node v=_g->source(e); jacint@836: jacint@836: if( lev > level[v] ) { //Push is allowed now jacint@836: alpar@1222: if ( excess[v]<=0 && v!=_target && v!=_source ) { jacint@836: next.set(v,first[level[v]]); jacint@836: first[level[v]]=v; jacint@836: } jacint@836: alpar@1222: Num flo=(*_flow)[e]; jacint@836: jacint@836: if ( flo >= exc ) { //A nonsaturating push. jacint@836: alpar@1222: _flow->set(e, flo-exc); jacint@836: excess.set(v, excess[v]+exc); jacint@836: exc=0; jacint@836: break; jacint@836: } else { //A saturating push. jacint@836: jacint@836: excess.set(v, excess[v]+flo); jacint@836: exc-=flo; alpar@1222: _flow->set(e,0); jacint@836: } jacint@836: } else if ( newlevel > level[v] ) newlevel = level[v]; jacint@836: } //for in edges vw jacint@836: jacint@836: } // if w still has excess after the out edge for cycle jacint@836: jacint@836: excess.set(w, exc); jacint@836: jacint@836: return newlevel; jacint@836: } jacint@836: jacint@836: jacint@836: jacint@836: void preflowPreproc(VecNode& first, NNMap& next, jacint@836: VecNode& level_list, NNMap& left, NNMap& right) jacint@836: { alpar@1222: for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num); jacint@836: std::queue bfs_queue; jacint@836: jacint@836: if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) { jacint@836: //Reverse_bfs from t in the residual graph, jacint@836: //to find the starting level. alpar@1222: level.set(_target,0); alpar@1222: bfs_queue.push(_target); jacint@836: jacint@836: while ( !bfs_queue.empty() ) { jacint@836: jacint@836: Node v=bfs_queue.front(); jacint@836: bfs_queue.pop(); jacint@836: int l=level[v]+1; jacint@836: alpar@1222: for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) { alpar@1222: if ( (*_capacity)[e] <= (*_flow)[e] ) continue; alpar@1222: Node w=_g->source(e); alpar@1222: if ( level[w] == _node_num && w != _source ) { jacint@836: bfs_queue.push(w); jacint@836: Node z=level_list[l]; jacint@836: if ( z!=INVALID ) left.set(z,w); jacint@836: right.set(w,z); jacint@836: level_list[l]=w; jacint@836: level.set(w, l); jacint@836: } jacint@836: } jacint@836: alpar@1222: for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) { alpar@1222: if ( 0 >= (*_flow)[e] ) continue; alpar@1222: Node w=_g->target(e); alpar@1222: if ( level[w] == _node_num && w != _source ) { jacint@836: bfs_queue.push(w); jacint@836: Node z=level_list[l]; jacint@836: if ( z!=INVALID ) left.set(z,w); jacint@836: right.set(w,z); jacint@836: level_list[l]=w; jacint@836: level.set(w, l); jacint@836: } jacint@836: } jacint@836: } //while jacint@836: } //if jacint@836: jacint@836: jacint@836: switch (flow_prop) { jacint@836: case NO_FLOW: alpar@1222: for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0); jacint@836: case ZERO_FLOW: alpar@1222: for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0); jacint@836: jacint@836: //Reverse_bfs from t, to find the starting level. alpar@1222: level.set(_target,0); alpar@1222: bfs_queue.push(_target); jacint@836: jacint@836: while ( !bfs_queue.empty() ) { jacint@836: jacint@836: Node v=bfs_queue.front(); jacint@836: bfs_queue.pop(); jacint@836: int l=level[v]+1; jacint@836: alpar@1222: for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) { alpar@1222: Node w=_g->source(e); alpar@1222: if ( level[w] == _node_num && w != _source ) { jacint@836: bfs_queue.push(w); jacint@836: Node z=level_list[l]; jacint@836: if ( z!=INVALID ) left.set(z,w); jacint@836: right.set(w,z); jacint@836: level_list[l]=w; jacint@836: level.set(w, l); jacint@836: } jacint@836: } jacint@836: } jacint@836: jacint@836: //the starting flow alpar@1222: for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) { alpar@1222: Num c=(*_capacity)[e]; jacint@836: if ( c <= 0 ) continue; alpar@1222: Node w=_g->target(e); alpar@1222: if ( level[w] < _node_num ) { alpar@1222: if ( excess[w] <= 0 && w!=_target ) { //putting into the stack jacint@836: next.set(w,first[level[w]]); jacint@836: first[level[w]]=w; jacint@836: } alpar@1222: _flow->set(e, c); jacint@836: excess.set(w, excess[w]+c); jacint@836: } jacint@836: } jacint@836: break; jacint@836: jacint@836: case GEN_FLOW: alpar@1222: for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0); jacint@836: { jacint@836: Num exc=0; alpar@1222: for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e]; alpar@1222: for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e]; alpar@1222: excess.set(_target,exc); jacint@836: } jacint@836: jacint@836: //the starting flow alpar@1222: for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e) { alpar@1222: Num rem=(*_capacity)[e]-(*_flow)[e]; jacint@836: if ( rem <= 0 ) continue; alpar@1222: Node w=_g->target(e); alpar@1222: if ( level[w] < _node_num ) { alpar@1222: if ( excess[w] <= 0 && w!=_target ) { //putting into the stack jacint@836: next.set(w,first[level[w]]); jacint@836: first[level[w]]=w; jacint@836: } alpar@1222: _flow->set(e, (*_capacity)[e]); jacint@836: excess.set(w, excess[w]+rem); jacint@836: } jacint@836: } jacint@836: alpar@1222: for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) { alpar@1222: if ( (*_flow)[e] <= 0 ) continue; alpar@1222: Node w=_g->source(e); alpar@1222: if ( level[w] < _node_num ) { alpar@1222: if ( excess[w] <= 0 && w!=_target ) { jacint@836: next.set(w,first[level[w]]); jacint@836: first[level[w]]=w; jacint@836: } alpar@1222: excess.set(w, excess[w]+(*_flow)[e]); alpar@1222: _flow->set(e, 0); jacint@836: } jacint@836: } jacint@836: break; jacint@836: jacint@836: case PRE_FLOW: jacint@836: //the starting flow alpar@1222: for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) { alpar@1222: Num rem=(*_capacity)[e]-(*_flow)[e]; jacint@836: if ( rem <= 0 ) continue; alpar@1222: Node w=_g->target(e); alpar@1222: if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]); jacint@836: } jacint@836: alpar@1222: for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) { alpar@1222: if ( (*_flow)[e] <= 0 ) continue; alpar@1222: Node w=_g->source(e); alpar@1222: if ( level[w] < _node_num ) _flow->set(e, 0); jacint@836: } jacint@836: jacint@836: //computing the excess alpar@1222: for(NodeIt w(*_g); w!=INVALID; ++w) { jacint@836: Num exc=0; alpar@1222: for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e]; alpar@1222: for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e]; jacint@836: excess.set(w,exc); jacint@836: jacint@836: //putting the active nodes into the stack jacint@836: int lev=level[w]; alpar@1222: if ( exc > 0 && lev < _node_num && Node(w) != _target ) { jacint@836: next.set(w,first[lev]); jacint@836: first[lev]=w; jacint@836: } jacint@836: } jacint@836: break; jacint@836: } //switch jacint@836: } //preflowPreproc jacint@836: jacint@836: jacint@836: void relabel(Node w, int newlevel, VecNode& first, NNMap& next, jacint@836: VecNode& level_list, NNMap& left, jacint@836: NNMap& right, int& b, int& k, bool what_heur ) jacint@836: { jacint@836: jacint@836: int lev=level[w]; jacint@836: jacint@836: Node right_n=right[w]; jacint@836: Node left_n=left[w]; jacint@836: jacint@836: //unlacing starts jacint@836: if ( right_n!=INVALID ) { jacint@836: if ( left_n!=INVALID ) { jacint@836: right.set(left_n, right_n); jacint@836: left.set(right_n, left_n); jacint@836: } else { jacint@836: level_list[lev]=right_n; jacint@836: left.set(right_n, INVALID); jacint@836: } jacint@836: } else { jacint@836: if ( left_n!=INVALID ) { jacint@836: right.set(left_n, INVALID); jacint@836: } else { jacint@836: level_list[lev]=INVALID; jacint@836: } jacint@836: } jacint@836: //unlacing ends jacint@836: jacint@836: if ( level_list[lev]==INVALID ) { jacint@836: jacint@836: //gapping starts jacint@836: for (int i=lev; i!=k ; ) { jacint@836: Node v=level_list[++i]; jacint@836: while ( v!=INVALID ) { alpar@1222: level.set(v,_node_num); jacint@836: v=right[v]; jacint@836: } jacint@836: level_list[i]=INVALID; jacint@836: if ( !what_heur ) first[i]=INVALID; jacint@836: } jacint@836: alpar@1222: level.set(w,_node_num); jacint@836: b=lev-1; jacint@836: k=b; jacint@836: //gapping ends jacint@836: jacint@836: } else { jacint@836: alpar@1222: if ( newlevel == _node_num ) level.set(w,_node_num); jacint@836: else { jacint@836: level.set(w,++newlevel); jacint@836: next.set(w,first[newlevel]); jacint@836: first[newlevel]=w; jacint@836: if ( what_heur ) b=newlevel; jacint@836: if ( k < newlevel ) ++k; //now k=newlevel jacint@836: Node z=level_list[newlevel]; jacint@836: if ( z!=INVALID ) left.set(z,w); jacint@836: right.set(w,z); jacint@836: left.set(w,INVALID); jacint@836: level_list[newlevel]=w; jacint@836: } jacint@836: } jacint@836: } //relabel jacint@836: jacint@836: }; alpar@1227: deba@1792: ///\ingroup flowalgs deba@1792: ///\brief Function type interface for Preflow algorithm. deba@1792: /// alpar@1227: ///Function type interface for Preflow algorithm. alpar@1227: ///\sa Preflow alpar@1227: template alpar@1227: Preflow preflow(const GR &g, alpar@1227: typename GR::Node source, alpar@1227: typename GR::Node target, alpar@1227: const CM &cap, alpar@1227: FM &flow alpar@1227: ) alpar@1227: { alpar@1227: return Preflow(g,source,target,cap,flow); alpar@1227: } alpar@1227: alpar@921: } //namespace lemon jacint@836: alpar@921: #endif //LEMON_PREFLOW_H