alpar@1678: namespace lemon { alpar@1678: /** alpar@1678: alpar@1678: \ingroup demos alpar@1678: \file graph_orientation.cc alpar@1678: \brief Graph orientation with lower bound requirement on the alpar@1678: in-degree of the nodes. alpar@1678: alpar@1678: alpar@1678: alpar@1678: First we include some important headers. alpar@1678: alpar@1678: The first one defines \ref lemon::ListGraph "ListGraph", alpar@1678: the "Swiss army knife" graph implementation. alpar@1678: \dontinclude graph_orientation.cc alpar@1678: \skipline list_graph alpar@1678: alpar@1678: The next is to read a \ref graph-io-page ".lgf" (Lemon Graph Format) file. alpar@1678: \skipline reader alpar@1678: alpar@1678: This provides us with some special purpose graph \ref maps "maps". alpar@1678: \skipline iterable alpar@1678: alpar@1678: The following header defines a simple data structure to store and manipulate alpar@1678: planar coordinates. It will be used to draw the result. alpar@1678: \skipline xy alpar@1678: alpar@1678: And finally, this header contains a simple graph drawing utility. alpar@1678: \skipline eps alpar@1678: alpar@1678: As we don't want to type in \ref lemon "lemon::" million times, the alpar@1678: following line seems to be useful. alpar@1678: \skipline namespace alpar@1678: alpar@1678: The following typedefs will also save a lot of typing. alpar@1678: \skip typedef alpar@1678: \until InEdgeIt alpar@1678: alpar@1678: Well, we are ready to start main(). alpar@1678: \skip main alpar@1678: \until { alpar@1678: alpar@1678: First we check whether the program is called with exactly 1 parameter. alpar@1678: If it isn't, we print a short help message end exit. alpar@1678: The vast majority of people would probably skip this block. alpar@1678: \skip if alpar@1678: \until } alpar@1678: alpar@1678: Now, we read a graph \c g, and a map \c f containing alpar@1678: the in-deg requirements from a \ref graph-io-page ".lgf" (Lemon Graph Format) alpar@1678: file. To generate the output picture, we also read the node titles (\c id) and alpar@1678: coordinates (\c coords). alpar@1678: So, first we create the graph alpar@1678: \skipline ListGraph alpar@1678: and the corresponding NodeMaps. alpar@1678: \skipline NodeMap alpar@1678: \until coords alpar@1678: \note The graph must be given to the maps' constructor. alpar@1678: alpar@1678: Then, the following block will read these data from the file, or exit if alpar@1678: the file is missing or corrupt. alpar@1678: \skip try alpar@1678: \until } alpar@1678: \until } alpar@1678: alpar@1678: The algorithm needs a "level" integer value assigned to each node. In the alpar@1678: beginning, the nodes are on level 0. alpar@1678: \skipline level alpar@1678: alpar@1678: The deficiency (\c def) of a node is the in-degree requirement minus the alpar@1678: actual in-degree. alpar@1678: alpar@1678: \skip def alpar@1678: \until subMap alpar@1678: alpar@1678: A node is \e active if its deficiency is positive (i.e. if it doesn't meet alpar@1678: the degree requirement). alpar@1678: \skip active alpar@1678: \until def alpar@1678: alpar@1678: We also store in a bool map which edges are reverted. Actually this is only alpar@1678: used to draw these edges with different color in the output picture. The alpar@1678: algorithm will update this map called \c rev, but will not use it otherwise. alpar@1678: \skip rev alpar@1678: \until reversed alpar@1678: alpar@1678: The variable \c nodeNum will refer to the number of nodes. alpar@1678: \skipline nodeNum alpar@1678: alpar@1678: Here comes the algorithms itself. alpar@1678: In each iteration we choose an active node (\c act will store it). If there is alpar@1678: no such a node, then the orientation is feasible so we are done. alpar@1678: \skip act alpar@1678: \until while alpar@1678: alpar@1678: Then we check if there exists an edge leaving this node that steps down exactly alpar@1678: one level. alpar@1678: \skip OutEdge alpar@1678: \until while alpar@1678: alpar@1678: If there exists, we decrease the "activity" of the node \c act by reverting alpar@1678: this egde. alpar@1678: Fortunately, \ref lemon::ListGraph "ListGraph" alpar@1678: has a special function \ref lemon::ListGraph::reverseEdge() "reverseEdge()" alpar@1678: that makes this easy. alpar@1678: We also have to update the maps \c def and alpar@1678: \c rev. alpar@1678: \skipline if alpar@1678: \skip if alpar@1678: \until } alpar@1678: Otherwise (i.e. if there is no edge stepping down one level). We lift up the alpar@1678: current active node \c act. If it reaches level \c nodeNum, then there alpar@1678: exists no appropriate orientation so we stop. alpar@1678: \skipline else alpar@1678: \skipline if alpar@1678: \skipline return alpar@1678: \until } alpar@1678: \until } alpar@1678: \until } alpar@1678: alpar@1678: Believe it or not, this algorithm works and runs fast. alpar@1678: alpar@1678: Finally, we print the obtained orientation. Note, how the different alpar@1678: \c bool values of alpar@1678: \c rev are transformed into different \ref lemon::Color "RGB color"s alpar@1678: using the class alpar@1678: \ref lemon::ColorSet "ColorSet" alpar@1678: and the \ref map_adaptors "map adaptor" called alpar@1678: \ref lemon::ComposeMap "composeMap". alpar@1678: alpar@1678: \skip graphToEps alpar@1678: \until run alpar@1678: alpar@1678: alpar@1678: \until end of main alpar@1678: alpar@1678: Finally here are again the list of the used include files (because I can't turn alpar@1678: this section off.) alpar@1678: alpar@1678: */ alpar@1678: alpar@1678: }