alpar@395: // -*- mode:C++ -*-
alpar@395: 
alpar@405: #ifndef HUGO_LIST_GRAPH_H
alpar@405: #define HUGO_LIST_GRAPH_H
alpar@395: 
alpar@406: ///ingroup graphs
alpar@395: ///\file
alpar@405: ///\brief ListGraph, SymListGraph, NodeSet and EdgeSet classes.
alpar@395: 
alpar@395: #include <vector>
alpar@395: #include <limits.h>
alpar@395: 
alpar@395: #include "invalid.h"
alpar@395: 
alpar@395: namespace hugo {
alpar@395: 
alpar@406: /// \addtogroup graphs
alpar@406: /// @{
alpar@406: 
alpar@397:   class SymListGraph;
alpar@395: 
alpar@401:   ///A list graph class.
alpar@395: 
alpar@397:   ///This is a simple and fast erasable graph implementation.
alpar@397:   ///
alpar@395:   ///It conforms to the graph interface documented under
alpar@395:   ///the description of \ref GraphSkeleton.
alpar@395:   ///\sa \ref GraphSkeleton.
alpar@397:   class ListGraph {
alpar@395: 
alpar@397:     //Nodes are double linked.
alpar@397:     //The free nodes are only single linked using the "next" field.
alpar@395:     struct NodeT 
alpar@395:     {
alpar@397:       int first_in,first_out;
alpar@397:       int prev, next;
alpar@397:       //      NodeT() {}
alpar@395:     };
alpar@397:     //Edges are double linked.
alpar@397:     //The free edges are only single linked using the "next_in" field.
alpar@395:     struct EdgeT 
alpar@395:     {
alpar@397:       int head, tail;
alpar@397:       int prev_in, prev_out;
alpar@397:       int next_in, next_out;
alpar@395:       //FIXME: is this necessary?
alpar@397:       //      EdgeT() : next_in(-1), next_out(-1) prev_in(-1), prev_out(-1) {}  
alpar@395:     };
alpar@395: 
alpar@395:     std::vector<NodeT> nodes;
alpar@397:     //The first node
alpar@397:     int first_node;
alpar@397:     //The first free node
alpar@397:     int first_free_node;
alpar@395:     std::vector<EdgeT> edges;
alpar@397:     //The first free edge
alpar@397:     int first_free_edge;
alpar@395:     
alpar@397:   protected:
alpar@395:     
alpar@395:     template <typename Key> class DynMapBase
alpar@395:     {
alpar@395:     protected:
alpar@397:       const ListGraph* G; 
alpar@395:     public:
alpar@395:       virtual void add(const Key k) = NULL;
alpar@395:       virtual void erase(const Key k) = NULL;
alpar@397:       DynMapBase(const ListGraph &_G) : G(&_G) {}
alpar@395:       virtual ~DynMapBase() {}
alpar@397:       friend class ListGraph;
alpar@395:     };
alpar@395:     
alpar@395:   public:
alpar@395:     template <typename T> class EdgeMap;
alpar@400:     template <typename T> class NodeMap;
alpar@397:     
alpar@395:     class Node;
alpar@395:     class Edge;
alpar@395: 
alpar@395:     //  protected:
alpar@395:     // HELPME:
alpar@395:   protected:
alpar@395:     ///\bug It must be public because of SymEdgeMap.
alpar@395:     ///
alpar@395:     mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
alpar@395:     ///\bug It must be public because of SymEdgeMap.
alpar@395:     ///
alpar@395:     mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
alpar@395:     
alpar@395:   public:
alpar@395: 
alpar@395:     class NodeIt;
alpar@395:     class EdgeIt;
alpar@395:     class OutEdgeIt;
alpar@395:     class InEdgeIt;
alpar@395:     
alpar@395:     template <typename T> class NodeMap;
alpar@395:     template <typename T> class EdgeMap;
alpar@395:     
alpar@395:   public:
alpar@395: 
alpar@397:     ListGraph() : nodes(), first_node(-1),
alpar@397: 		  first_free_node(-1), edges(), first_free_edge(-1) {}
alpar@397:     ListGraph(const ListGraph &_g) : nodes(_g.nodes), first_node(_g.first_node),
alpar@397: 				     first_free_node(_g.first_free_node),
alpar@397: 				     edges(_g.edges),
alpar@397: 				     first_free_edge(_g.first_free_edge) {}
alpar@395:     
alpar@397:     ~ListGraph()
alpar@395:     {
alpar@395:       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@395: 	  i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
alpar@395:       for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
alpar@395: 	  i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
alpar@395:     }
alpar@395: 
alpar@395:     int nodeNum() const { return nodes.size(); }  //FIXME: What is this?
alpar@395:     int edgeNum() const { return edges.size(); }  //FIXME: What is this?
alpar@395: 
alpar@395:     ///\bug This function does something different than
alpar@395:     ///its name would suggests...
alpar@395:     int maxNodeId() const { return nodes.size(); }  //FIXME: What is this?
alpar@395:     ///\bug This function does something different than
alpar@395:     ///its name would suggests...
alpar@395:     int maxEdgeId() const { return edges.size(); }  //FIXME: What is this?
alpar@395: 
alpar@395:     Node tail(Edge e) const { return edges[e.n].tail; }
alpar@395:     Node head(Edge e) const { return edges[e.n].head; }
alpar@395: 
alpar@395:     Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
alpar@395:     Node aNode(InEdgeIt e) const { return edges[e.n].head; }
alpar@395: 
alpar@395:     Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
alpar@395:     Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
alpar@395: 
alpar@395:     NodeIt& first(NodeIt& v) const { 
alpar@395:       v=NodeIt(*this); return v; }
alpar@395:     EdgeIt& first(EdgeIt& e) const { 
alpar@395:       e=EdgeIt(*this); return e; }
alpar@395:     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
alpar@395:       e=OutEdgeIt(*this,v); return e; }
alpar@395:     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
alpar@395:       e=InEdgeIt(*this,v); return e; }
alpar@395: 
alpar@395: //     template< typename It >
alpar@395: //     It first() const { It e; first(e); return e; }
alpar@395: 
alpar@395: //     template< typename It >
alpar@395: //     It first(Node v) const { It e; first(e,v); return e; }
alpar@395: 
alpar@395:     bool valid(Edge e) const { return e.n!=-1; }
alpar@395:     bool valid(Node n) const { return n.n!=-1; }
alpar@395:     
alpar@395:     void setInvalid(Edge &e) { e.n=-1; }
alpar@395:     void setInvalid(Node &n) { n.n=-1; }
alpar@395:     
alpar@395:     template <typename It> It getNext(It it) const
alpar@395:     { It tmp(it); return next(tmp); }
alpar@395: 
alpar@395:     NodeIt& next(NodeIt& it) const { 
alpar@397:       it.n=nodes[it.n].next; 
alpar@395:       return it; 
alpar@395:     }
alpar@395:     OutEdgeIt& next(OutEdgeIt& it) const
alpar@395:     { it.n=edges[it.n].next_out; return it; }
alpar@395:     InEdgeIt& next(InEdgeIt& it) const
alpar@395:     { it.n=edges[it.n].next_in; return it; }
alpar@397:     EdgeIt& next(EdgeIt& it) const {
alpar@397:       if(edges[it.n].next_in!=-1) { 
alpar@397: 	it.n=edges[it.n].next_in;
alpar@397:       }
alpar@397:       else {
alpar@397: 	int n;
alpar@397: 	for(n=nodes[edges[it.n].head].next;
alpar@397: 	    n!=-1 && nodes[n].first_in == -1;
alpar@397: 	    n = nodes[n].next) ;
alpar@397: 	it.n = (n==-1)?-1:nodes[n].first_in;
alpar@397:       }
alpar@397:       return it;
alpar@397:     }
alpar@395: 
alpar@395:     int id(Node v) const { return v.n; }
alpar@395:     int id(Edge e) const { return e.n; }
alpar@395: 
alpar@397:     /// Adds a new node to the graph.
alpar@397: 
alpar@397:     /// \todo It adds the nodes in a reversed order.
alpar@397:     /// (i.e. the lastly added node becomes the first.)
alpar@395:     Node addNode() {
alpar@397:       int n;
alpar@397:       
alpar@397:       if(first_free_node==-1)
alpar@397: 	{
alpar@397: 	  n = nodes.size();
alpar@397: 	  nodes.push_back(NodeT());
alpar@397: 	}
alpar@397:       else {
alpar@397: 	n = first_free_node;
alpar@397: 	first_free_node = nodes[n].next;
alpar@397:       }
alpar@397:       
alpar@397:       nodes[n].next = first_node;
alpar@397:       if(first_node != -1) nodes[first_node].prev = n;
alpar@397:       first_node = n;
alpar@397:       nodes[n].prev = -1;
alpar@397:       
alpar@397:       nodes[n].first_in = nodes[n].first_out = -1;
alpar@397:       
alpar@397:       Node nn; nn.n=n;
alpar@395: 
alpar@397:       //Update dynamic maps
alpar@395:       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@397: 	  i!=dyn_node_maps.end(); ++i) (**i).add(nn);
alpar@395: 
alpar@397:       return nn;
alpar@395:     }
alpar@395:     
alpar@395:     Edge addEdge(Node u, Node v) {
alpar@397:       int n;
alpar@397:       
alpar@397:       if(first_free_edge==-1)
alpar@397: 	{
alpar@397: 	  n = edges.size();
alpar@397: 	  edges.push_back(EdgeT());
alpar@397: 	}
alpar@397:       else {
alpar@397: 	n = first_free_edge;
alpar@397: 	first_free_edge = edges[n].next_in;
alpar@397:       }
alpar@397:       
alpar@397:       edges[n].tail = u.n; edges[n].head = v.n;
alpar@395: 
alpar@397:       edges[n].next_out = nodes[u.n].first_out;
alpar@397:       if(nodes[u.n].first_out != -1) edges[nodes[u.n].first_out].prev_out = n;
alpar@397:       edges[n].next_in = nodes[v.n].first_in;
alpar@397:       if(nodes[v.n].first_in != -1) edges[nodes[v.n].first_in].prev_in = n;
alpar@397:       edges[n].prev_in = edges[n].prev_out = -1;
alpar@397: 	
alpar@397:       nodes[u.n].first_out = nodes[v.n].first_in = n;
alpar@397: 
alpar@397:       Edge e; e.n=n;
alpar@397: 
alpar@397:       //Update dynamic maps
alpar@395:       for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
alpar@395: 	  i!=dyn_edge_maps.end(); ++i) (**i).add(e);
alpar@395: 
alpar@395:       return e;
alpar@395:     }
alpar@395: 
alpar@397:   private:
alpar@397:     void eraseEdge(int n) {
alpar@397:       
alpar@397:       if(edges[n].next_in!=-1)
alpar@397: 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
alpar@397:       if(edges[n].prev_in!=-1)
alpar@397: 	edges[edges[n].prev_in].next_in = edges[n].next_in;
alpar@397:       else nodes[edges[n].head].first_in = edges[n].next_in;
alpar@397:       
alpar@397:       if(edges[n].next_out!=-1)
alpar@397: 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
alpar@397:       if(edges[n].prev_out!=-1)
alpar@397: 	edges[edges[n].prev_out].next_out = edges[n].next_out;
alpar@397:       else nodes[edges[n].tail].first_out = edges[n].next_out;
alpar@397:       
alpar@397:       edges[n].next_in = first_free_edge;
alpar@397:       first_free_edge = -1;      
alpar@397: 
alpar@397:       //Update dynamic maps
alpar@397:       Edge e; e.n=n;
alpar@397:       for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
alpar@397: 	  i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
alpar@397:     }
alpar@397:       
alpar@397:   public:
alpar@397: 
alpar@397:     void erase(Node nn) {
alpar@397:       int n=nn.n;
alpar@397:       
alpar@397:       int m;
alpar@397:       while((m=nodes[n].first_in)!=-1) eraseEdge(m);
alpar@397:       while((m=nodes[n].first_out)!=-1) eraseEdge(m);
alpar@397: 
alpar@397:       if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
alpar@397:       if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
alpar@397:       else first_node = nodes[n].next;
alpar@397:       
alpar@397:       nodes[n].next = first_free_node;
alpar@397:       first_free_node = n;
alpar@397: 
alpar@397:       //Update dynamic maps
alpar@397:       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@397: 	  i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
alpar@397:     }
alpar@397:     
alpar@397:     void erase(Edge e) { eraseEdge(e.n); }
alpar@397: 
alpar@397:     ///\bug Dynamic maps must be updated!
alpar@397:     ///
alpar@397:     void clear() {
alpar@397:       nodes.clear();edges.clear();
alpar@397:       first_node=first_free_node=first_free_edge=-1;
alpar@397:     }
alpar@395: 
alpar@395:     class Node {
alpar@397:       friend class ListGraph;
alpar@395:       template <typename T> friend class NodeMap;
alpar@400:        
alpar@395:       friend class Edge;
alpar@395:       friend class OutEdgeIt;
alpar@395:       friend class InEdgeIt;
alpar@395:       friend class SymEdge;
alpar@395: 
alpar@395:     protected:
alpar@395:       int n;
alpar@397:       friend int ListGraph::id(Node v) const; 
alpar@395:       Node(int nn) {n=nn;}
alpar@395:     public:
alpar@395:       Node() {}
alpar@395:       Node (Invalid i) { n=-1; }
alpar@395:       bool operator==(const Node i) const {return n==i.n;}
alpar@395:       bool operator!=(const Node i) const {return n!=i.n;}
alpar@395:       bool operator<(const Node i) const {return n<i.n;}
alpar@395:     };
alpar@395:     
alpar@395:     class NodeIt : public Node {
alpar@397:       friend class ListGraph;
alpar@395:     public:
alpar@400:       NodeIt() : Node() { }
alpar@400:       NodeIt(Invalid i) : Node(i) { }
alpar@397:       NodeIt(const ListGraph& G) : Node(G.first_node) { }
alpar@395:     };
alpar@395: 
alpar@395:     class Edge {
alpar@397:       friend class ListGraph;
alpar@395:       template <typename T> friend class EdgeMap;
alpar@395: 
alpar@397:       //template <typename T> friend class SymListGraph::SymEdgeMap;      
alpar@397:       //friend Edge SymListGraph::opposite(Edge) const;
alpar@395:       
alpar@395:       friend class Node;
alpar@395:       friend class NodeIt;
alpar@395:     protected:
alpar@395:       int n;
alpar@397:       friend int ListGraph::id(Edge e) const;
alpar@395: 
alpar@395:       Edge(int nn) {n=nn;}
alpar@395:     public:
alpar@395:       Edge() { }
alpar@395:       Edge (Invalid) { n=-1; }
alpar@395:       bool operator==(const Edge i) const {return n==i.n;}
alpar@395:       bool operator!=(const Edge i) const {return n!=i.n;}
alpar@395:       bool operator<(const Edge i) const {return n<i.n;}
alpar@395:       ///\bug This is a workaround until somebody tells me how to
alpar@397:       ///make class \c SymListGraph::SymEdgeMap friend of Edge
alpar@395:       int &idref() {return n;}
alpar@395:       const int &idref() const {return n;}
alpar@395:     };
alpar@395:     
alpar@395:     class EdgeIt : public Edge {
alpar@397:       friend class ListGraph;
alpar@395:     public:
alpar@397:       EdgeIt(const ListGraph& G) : Edge() {
alpar@397:       	int m;
alpar@397: 	for(m=G.first_node;
alpar@397: 	    m!=-1 && G.nodes[m].first_in == -1; m = G.nodes[m].next);
alpar@397: 	n = (m==-1)?-1:G.nodes[m].first_in;
alpar@397:       }
alpar@395:       EdgeIt (Invalid i) : Edge(i) { }
alpar@395:       EdgeIt() : Edge() { }
alpar@395:       ///\bug This is a workaround until somebody tells me how to
alpar@397:       ///make class \c SymListGraph::SymEdgeMap friend of Edge
alpar@395:       int &idref() {return n;}
alpar@395:     };
alpar@395:     
alpar@395:     class OutEdgeIt : public Edge {
alpar@397:       friend class ListGraph;
alpar@395:     public: 
alpar@395:       OutEdgeIt() : Edge() { }
alpar@395:       OutEdgeIt (Invalid i) : Edge(i) { }
alpar@395: 
alpar@397:       OutEdgeIt(const ListGraph& G,const Node v)
alpar@395: 	: Edge(G.nodes[v.n].first_out) {}
alpar@395:     };
alpar@395:     
alpar@395:     class InEdgeIt : public Edge {
alpar@397:       friend class ListGraph;
alpar@395:     public: 
alpar@395:       InEdgeIt() : Edge() { }
alpar@395:       InEdgeIt (Invalid i) : Edge(i) { }
alpar@397:       InEdgeIt(const ListGraph& G,Node v) :Edge(G.nodes[v.n].first_in){}
alpar@395:     };
alpar@395: 
alpar@395:     template <typename T> class NodeMap : public DynMapBase<Node>
alpar@395:     {
alpar@395:       std::vector<T> container;
alpar@395: 
alpar@395:     public:
alpar@395:       typedef T ValueType;
alpar@395:       typedef Node KeyType;
alpar@395: 
alpar@397:       NodeMap(const ListGraph &_G) :
alpar@395: 	DynMapBase<Node>(_G), container(_G.maxNodeId())
alpar@395:       {
alpar@395: 	G->dyn_node_maps.push_back(this);
alpar@395:       }
alpar@397:       NodeMap(const ListGraph &_G,const T &t) :
alpar@395: 	DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
alpar@395:       {
alpar@395: 	G->dyn_node_maps.push_back(this);
alpar@395:       }
alpar@395:       
alpar@395:       NodeMap(const NodeMap<T> &m) :
alpar@395:  	DynMapBase<Node>(*m.G), container(m.container)
alpar@395:       {
alpar@395:  	G->dyn_node_maps.push_back(this);
alpar@395:       }
alpar@395: 
alpar@395:       template<typename TT> friend class NodeMap;
alpar@395:  
alpar@395:       ///\todo It can copy between different types.
alpar@395:       ///
alpar@395:       template<typename TT> NodeMap(const NodeMap<TT> &m) :
alpar@395: 	DynMapBase<Node>(*m.G)
alpar@395:       {
alpar@395: 	G->dyn_node_maps.push_back(this);
alpar@395: 	typename std::vector<TT>::const_iterator i;
alpar@395: 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
alpar@395: 	    i!=m.container.end();
alpar@395: 	    i++)
alpar@395: 	  container.push_back(*i);
alpar@395:       }
alpar@395:       ~NodeMap()
alpar@395:       {
alpar@395: 	if(G) {
alpar@395: 	  std::vector<DynMapBase<Node>* >::iterator i;
alpar@395: 	  for(i=G->dyn_node_maps.begin();
alpar@395: 	      i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
alpar@395: 	  //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
alpar@395: 	  //A better way to do that: (Is this really important?)
alpar@395: 	  if(*i==this) {
alpar@395: 	    *i=G->dyn_node_maps.back();
alpar@395: 	    G->dyn_node_maps.pop_back();
alpar@395: 	  }
alpar@395: 	}
alpar@395:       }
alpar@395: 
alpar@395:       void add(const Node k) 
alpar@395:       {
alpar@395: 	if(k.n>=int(container.size())) container.resize(k.n+1);
alpar@395:       }
alpar@395: 
alpar@395:       void erase(const Node) { }
alpar@395:       
alpar@395:       void set(Node n, T a) { container[n.n]=a; }
alpar@395:       //'T& operator[](Node n)' would be wrong here
alpar@395:       typename std::vector<T>::reference
alpar@395:       operator[](Node n) { return container[n.n]; }
alpar@395:       //'const T& operator[](Node n)' would be wrong here
alpar@395:       typename std::vector<T>::const_reference 
alpar@395:       operator[](Node n) const { return container[n.n]; }
alpar@395: 
alpar@395:       ///\warning There is no safety check at all!
alpar@395:       ///Using operator = between maps attached to different graph may
alpar@395:       ///cause serious problem.
alpar@395:       ///\todo Is this really so?
alpar@395:       ///\todo It can copy between different types.
alpar@395:       const NodeMap<T>& operator=(const NodeMap<T> &m)
alpar@395:       {
alpar@395: 	container = m.container;
alpar@395: 	return *this;
alpar@395:       }
alpar@395:       template<typename TT>
alpar@395:       const NodeMap<T>& operator=(const NodeMap<TT> &m)
alpar@395:       {
alpar@395: 	copy(m.container.begin(), m.container.end(), container.begin());
alpar@395: 	return *this;
alpar@395:       }
alpar@395:       
alpar@395:       void update() {}    //Useless for Dynamic Maps
alpar@395:       void update(T a) {}  //Useless for Dynamic Maps
alpar@395:     };
alpar@395:     
alpar@395:     template <typename T> class EdgeMap : public DynMapBase<Edge>
alpar@395:     {
alpar@395:       std::vector<T> container;
alpar@395: 
alpar@395:     public:
alpar@395:       typedef T ValueType;
alpar@395:       typedef Edge KeyType;
alpar@395: 
alpar@397:       EdgeMap(const ListGraph &_G) :
alpar@395: 	DynMapBase<Edge>(_G), container(_G.maxEdgeId())
alpar@395:       {
alpar@395: 	//FIXME: What if there are empty Id's?
alpar@395: 	//FIXME: Can I use 'this' in a constructor?
alpar@395: 	G->dyn_edge_maps.push_back(this);
alpar@395:       }
alpar@397:       EdgeMap(const ListGraph &_G,const T &t) :
alpar@395: 	DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
alpar@395:       {
alpar@395: 	G->dyn_edge_maps.push_back(this);
alpar@395:       } 
alpar@395:       EdgeMap(const EdgeMap<T> &m) :
alpar@395:  	DynMapBase<Edge>(*m.G), container(m.container)
alpar@395:       {
alpar@395:  	G->dyn_node_maps.push_back(this);
alpar@395:       }
alpar@395: 
alpar@395:       template<typename TT> friend class EdgeMap;
alpar@395: 
alpar@395:       ///\todo It can copy between different types.
alpar@395:       ///
alpar@395:       template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
alpar@395: 	DynMapBase<Edge>(*m.G)
alpar@395:       {
alpar@395: 	G->dyn_node_maps.push_back(this);
alpar@395: 	typename std::vector<TT>::const_iterator i;
alpar@395: 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
alpar@395: 	    i!=m.container.end();
alpar@395: 	    i++)
alpar@395: 	  container.push_back(*i);
alpar@395:       }
alpar@395:       ~EdgeMap()
alpar@395:       {
alpar@395: 	if(G) {
alpar@395: 	  std::vector<DynMapBase<Edge>* >::iterator i;
alpar@395: 	  for(i=G->dyn_edge_maps.begin();
alpar@395: 	      i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
alpar@395: 	  //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
alpar@395: 	  //A better way to do that: (Is this really important?)
alpar@395: 	  if(*i==this) {
alpar@395: 	    *i=G->dyn_edge_maps.back();
alpar@395: 	    G->dyn_edge_maps.pop_back();
alpar@395: 	  }
alpar@395: 	}
alpar@395:       }
alpar@395:       
alpar@395:       void add(const Edge k) 
alpar@395:       {
alpar@395: 	if(k.n>=int(container.size())) container.resize(k.n+1);
alpar@395:       }
alpar@395:       void erase(const Edge) { }
alpar@395:       
alpar@395:       void set(Edge n, T a) { container[n.n]=a; }
alpar@395:       //T get(Edge n) const { return container[n.n]; }
alpar@395:       typename std::vector<T>::reference
alpar@395:       operator[](Edge n) { return container[n.n]; }
alpar@395:       typename std::vector<T>::const_reference
alpar@395:       operator[](Edge n) const { return container[n.n]; }
alpar@395: 
alpar@395:       ///\warning There is no safety check at all!
alpar@395:       ///Using operator = between maps attached to different graph may
alpar@395:       ///cause serious problem.
alpar@395:       ///\todo Is this really so?
alpar@395:       ///\todo It can copy between different types.
alpar@395:       const EdgeMap<T>& operator=(const EdgeMap<T> &m)
alpar@395:       {
alpar@395: 	container = m.container;
alpar@395: 	return *this;
alpar@395:       }
alpar@395:       template<typename TT>
alpar@395:       const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
alpar@395:       {
alpar@395: 	copy(m.container.begin(), m.container.end(), container.begin());
alpar@395: 	return *this;
alpar@395:       }
alpar@395:       
alpar@395:       void update() {}    //Useless for DynMaps
alpar@395:       void update(T a) {}  //Useless for DynMaps
alpar@395:     };
alpar@395: 
alpar@395:   };
alpar@395: 
alpar@395:   ///Graph for bidirectional edges.
alpar@395: 
alpar@395:   ///The purpose of this graph structure is to handle graphs
alpar@395:   ///having bidirectional edges. Here the function \c addEdge(u,v) adds a pair
alpar@395:   ///of oppositely directed edges.
alpar@395:   ///There is a new edge map type called
alpar@397:   ///\ref SymListGraph::SymEdgeMap "SymEdgeMap"
alpar@395:   ///that complements this
alpar@395:   ///feature by
alpar@395:   ///storing shared values for the edge pairs. The usual
alpar@395:   ///\ref GraphSkeleton::EdgeMap "EdgeMap"
alpar@395:   ///can be used
alpar@395:   ///as well.
alpar@395:   ///
alpar@395:   ///The oppositely directed edge can also be obtained easily
alpar@395:   ///using \ref opposite.
alpar@397:   ///
alpar@397:   ///Here erase(Edge) deletes a pair of edges.
alpar@397:   ///
alpar@397:   ///\todo this date structure need some reconsiderations. Maybe it
alpar@397:   ///should be implemented independently from ListGraph.
alpar@395: 
alpar@397:   class SymListGraph : public ListGraph
alpar@395:   {
alpar@395:   public:
alpar@395:     template<typename T> class SymEdgeMap;
alpar@395:     template<typename T> friend class SymEdgeMap;
alpar@395: 
alpar@397:     SymListGraph() : ListGraph() { }
alpar@397:     SymListGraph(const ListGraph &_g) : ListGraph(_g) { }
alpar@397:     ///Adds a pair of oppositely directed edges to the graph.
alpar@395:     Edge addEdge(Node u, Node v)
alpar@395:     {
alpar@397:       Edge e = ListGraph::addEdge(u,v);
alpar@397:       ListGraph::addEdge(v,u);
alpar@395:       return e;
alpar@395:     }
alpar@395: 
alpar@397:     void erase(Node n) { ListGraph::erase(n); }
alpar@395:     ///The oppositely directed edge.
alpar@395: 
alpar@395:     ///Returns the oppositely directed
alpar@395:     ///pair of the edge \c e.
alpar@395:     Edge opposite(Edge e) const
alpar@395:     {
alpar@395:       Edge f;
alpar@395:       f.idref() = e.idref() - 2*(e.idref()%2) + 1;
alpar@395:       return f;
alpar@395:     }
alpar@395:     
alpar@397:     ///Removes a pair of oppositely directed edges to the graph.
alpar@397:     void erase(Edge e) {
alpar@397:       ListGraph::erase(opposite(e));
alpar@397:       ListGraph::erase(e);
alpar@397:     }
alpar@397:     
alpar@395:     ///Common data storage for the edge pairs.
alpar@395: 
alpar@395:     ///This map makes it possible to store data shared by the oppositely
alpar@395:     ///directed pairs of edges.
alpar@395:     template <typename T> class SymEdgeMap : public DynMapBase<Edge>
alpar@395:     {
alpar@395:       std::vector<T> container;
alpar@395:       
alpar@395:     public:
alpar@395:       typedef T ValueType;
alpar@395:       typedef Edge KeyType;
alpar@395: 
alpar@397:       SymEdgeMap(const SymListGraph &_G) :
alpar@395: 	DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2)
alpar@395:       {
alpar@397: 	static_cast<const SymListGraph*>(G)->dyn_edge_maps.push_back(this);
alpar@395:       }
alpar@397:       SymEdgeMap(const SymListGraph &_G,const T &t) :
alpar@395: 	DynMapBase<Edge>(_G), container(_G.maxEdgeId()/2,t)
alpar@395:       {
alpar@395: 	G->dyn_edge_maps.push_back(this);
alpar@395:       }
alpar@395: 
alpar@395:       SymEdgeMap(const SymEdgeMap<T> &m) :
alpar@395:  	DynMapBase<SymEdge>(*m.G), container(m.container)
alpar@395:       {
alpar@395:  	G->dyn_node_maps.push_back(this);
alpar@395:       }
alpar@395: 
alpar@395:       //      template<typename TT> friend class SymEdgeMap;
alpar@395: 
alpar@395:       ///\todo It can copy between different types.
alpar@395:       ///
alpar@395: 
alpar@395:       template<typename TT> SymEdgeMap(const SymEdgeMap<TT> &m) :
alpar@395: 	DynMapBase<SymEdge>(*m.G)
alpar@395:       {
alpar@395: 	G->dyn_node_maps.push_back(this);
alpar@395: 	typename std::vector<TT>::const_iterator i;
alpar@395: 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
alpar@395: 	    i!=m.container.end();
alpar@395: 	    i++)
alpar@395: 	  container.push_back(*i);
alpar@395:       }
alpar@395:  
alpar@395:       ~SymEdgeMap()
alpar@395:       {
alpar@395: 	if(G) {
alpar@395: 	  std::vector<DynMapBase<Edge>* >::iterator i;
alpar@397: 	  for(i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.begin();
alpar@397: 	      i!=static_cast<const SymListGraph*>(G)->dyn_edge_maps.end()
alpar@395: 		&& *i!=this; ++i) ;
alpar@395: 	  //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
alpar@395: 	  //A better way to do that: (Is this really important?)
alpar@395: 	  if(*i==this) {
alpar@397: 	    *i=static_cast<const SymListGraph*>(G)->dyn_edge_maps.back();
alpar@397: 	    static_cast<const SymListGraph*>(G)->dyn_edge_maps.pop_back();
alpar@395: 	  }
alpar@395: 	}
alpar@395:       }
alpar@395:       
alpar@395:       void add(const Edge k) 
alpar@395:       {
alpar@395: 	if(!k.idref()%2&&k.idref()/2>=int(container.size()))
alpar@395: 	  container.resize(k.idref()/2+1);
alpar@395:       }
alpar@395:       void erase(const Edge k) { }
alpar@395:       
alpar@395:       void set(Edge n, T a) { container[n.idref()/2]=a; }
alpar@395:       //T get(Edge n) const { return container[n.idref()/2]; }
alpar@395:       typename std::vector<T>::reference
alpar@395:       operator[](Edge n) { return container[n.idref()/2]; }
alpar@395:       typename std::vector<T>::const_reference
alpar@395:       operator[](Edge n) const { return container[n.idref()/2]; }
alpar@395: 
alpar@395:       ///\warning There is no safety check at all!
alpar@395:       ///Using operator = between maps attached to different graph may
alpar@395:       ///cause serious problem.
alpar@395:       ///\todo Is this really so?
alpar@395:       ///\todo It can copy between different types.
alpar@395:       const SymEdgeMap<T>& operator=(const SymEdgeMap<T> &m)
alpar@395:       {
alpar@395: 	container = m.container;
alpar@395: 	return *this;
alpar@395:       }
alpar@395:       template<typename TT>
alpar@395:       const SymEdgeMap<T>& operator=(const SymEdgeMap<TT> &m)
alpar@395:       {
alpar@395: 	copy(m.container.begin(), m.container.end(), container.begin());
alpar@395: 	return *this;
alpar@395:       }
alpar@395:       
alpar@395:       void update() {}    //Useless for DynMaps
alpar@395:       void update(T a) {}  //Useless for DynMaps
alpar@395: 
alpar@395:     };
alpar@395: 
alpar@395:   };
alpar@395:   
alpar@400: 
alpar@401:   ///A graph class containing only nodes.
alpar@400: 
alpar@401:   ///This class implements a graph structure without edges.
alpar@401:   ///The most useful application of this class is to be the node set of an
alpar@401:   ///\ref EdgeSet class.
alpar@400:   ///
alpar@400:   ///It conforms to the graph interface documented under
alpar@401:   ///the description of \ref GraphSkeleton with the exception that you cannot
alpar@401:   ///add (or delete) edges. The usual edge iterators are exists, but they are
alpar@401:   ///always \ref INVALID.
alpar@401:   ///\sa \ref GraphSkeleton
alpar@401:   ///\se \ref EdgeSet
alpar@400:   class NodeSet {
alpar@400: 
alpar@400:     //Nodes are double linked.
alpar@400:     //The free nodes are only single linked using the "next" field.
alpar@400:     struct NodeT 
alpar@400:     {
alpar@400:       int first_in,first_out;
alpar@400:       int prev, next;
alpar@400:       //      NodeT() {}
alpar@400:     };
alpar@400: 
alpar@400:     std::vector<NodeT> nodes;
alpar@400:     //The first node
alpar@400:     int first_node;
alpar@400:     //The first free node
alpar@400:     int first_free_node;
alpar@400:     
alpar@400:   protected:
alpar@400:     
alpar@400:     template <typename Key> class DynMapBase
alpar@400:     {
alpar@400:     protected:
alpar@400:       const NodeSet* G; 
alpar@400:     public:
alpar@400:       virtual void add(const Key k) = NULL;
alpar@400:       virtual void erase(const Key k) = NULL;
alpar@400:       DynMapBase(const NodeSet &_G) : G(&_G) {}
alpar@400:       virtual ~DynMapBase() {}
alpar@400:       friend class NodeSet;
alpar@400:     };
alpar@400:     
alpar@400:   public:
alpar@400:     template <typename T> class EdgeMap;
alpar@400:     template <typename T> class NodeMap;
alpar@400:     
alpar@400:     class Node;
alpar@400:     class Edge;
alpar@400: 
alpar@400:     //  protected:
alpar@400:     // HELPME:
alpar@400:   protected:
alpar@400:     ///\bug It must be public because of SymEdgeMap.
alpar@400:     ///
alpar@400:     mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
alpar@400:     //mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
alpar@400:     
alpar@400:   public:
alpar@400: 
alpar@400:     class NodeIt;
alpar@400:     class EdgeIt;
alpar@400:     class OutEdgeIt;
alpar@400:     class InEdgeIt;
alpar@400:     
alpar@400:     template <typename T> class NodeMap;
alpar@400:     template <typename T> class EdgeMap;
alpar@400:     
alpar@400:   public:
alpar@400: 
alpar@408:     ///Default constructor
alpar@400:     NodeSet() : nodes(), first_node(-1),
alpar@400: 		  first_free_node(-1) {}
alpar@408:     ///Copy constructor
alpar@400:     NodeSet(const NodeSet &_g) : nodes(_g.nodes), first_node(_g.first_node),
alpar@400: 				     first_free_node(_g.first_free_node) {}
alpar@400:     
alpar@400:     ~NodeSet()
alpar@400:     {
alpar@400:       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@400: 	  i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
alpar@400:       //for(std::vector<DynMapBase<Edge> * >::iterator i=dyn_edge_maps.begin();
alpar@400:       //	  i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
alpar@400:     }
alpar@400: 
alpar@400:     int nodeNum() const { return nodes.size(); }  //FIXME: What is this?
alpar@400:     int edgeNum() const { return 0; }  //FIXME: What is this?
alpar@400: 
alpar@400:     ///\bug This function does something different than
alpar@400:     ///its name would suggests...
alpar@400:     int maxNodeId() const { return nodes.size(); }  //FIXME: What is this?
alpar@400:     ///\bug This function does something different than
alpar@400:     ///its name would suggests...
alpar@400:     int maxEdgeId() const { return 0; }  //FIXME: What is this?
alpar@400: 
alpar@400:     Node tail(Edge e) const { return INVALID; }
alpar@400:     Node head(Edge e) const { return INVALID; }
alpar@400: 
alpar@400:     Node aNode(OutEdgeIt e) const { return INVALID; }
alpar@400:     Node aNode(InEdgeIt e) const { return INVALID; }
alpar@400: 
alpar@400:     Node bNode(OutEdgeIt e) const { return INVALID; }
alpar@400:     Node bNode(InEdgeIt e) const { return INVALID; }
alpar@400: 
alpar@400:     NodeIt& first(NodeIt& v) const { 
alpar@400:       v=NodeIt(*this); return v; }
alpar@400:     EdgeIt& first(EdgeIt& e) const { 
alpar@400:       e=EdgeIt(*this); return e; }
alpar@400:     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
alpar@400:       e=OutEdgeIt(*this,v); return e; }
alpar@400:     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
alpar@400:       e=InEdgeIt(*this,v); return e; }
alpar@400: 
alpar@400: //     template< typename It >
alpar@400: //     It first() const { It e; first(e); return e; }
alpar@400: 
alpar@400: //     template< typename It >
alpar@400: //     It first(Node v) const { It e; first(e,v); return e; }
alpar@400: 
alpar@400:     bool valid(Edge e) const { return false; }
alpar@400:     bool valid(Node n) const { return n.n!=-1; }
alpar@400:     
alpar@400:     void setInvalid(Edge &e) { }
alpar@400:     void setInvalid(Node &n) { n.n=-1; }
alpar@400:     
alpar@400:     template <typename It> It getNext(It it) const
alpar@400:     { It tmp(it); return next(tmp); }
alpar@400: 
alpar@400:     NodeIt& next(NodeIt& it) const { 
alpar@400:       it.n=nodes[it.n].next; 
alpar@400:       return it; 
alpar@400:     }
alpar@400:     OutEdgeIt& next(OutEdgeIt& it) const { return it; }
alpar@400:     InEdgeIt& next(InEdgeIt& it) const { return it; }
alpar@400:     EdgeIt& next(EdgeIt& it) const { return it; }
alpar@400: 
alpar@400:     int id(Node v) const { return v.n; }
alpar@400:     int id(Edge e) const { return -1; }
alpar@400: 
alpar@400:     /// Adds a new node to the graph.
alpar@400: 
alpar@400:     /// \todo It adds the nodes in a reversed order.
alpar@400:     /// (i.e. the lastly added node becomes the first.)
alpar@400:     Node addNode() {
alpar@400:       int n;
alpar@400:       
alpar@400:       if(first_free_node==-1)
alpar@400: 	{
alpar@400: 	  n = nodes.size();
alpar@400: 	  nodes.push_back(NodeT());
alpar@400: 	}
alpar@400:       else {
alpar@400: 	n = first_free_node;
alpar@400: 	first_free_node = nodes[n].next;
alpar@400:       }
alpar@400:       
alpar@400:       nodes[n].next = first_node;
alpar@400:       if(first_node != -1) nodes[first_node].prev = n;
alpar@400:       first_node = n;
alpar@400:       nodes[n].prev = -1;
alpar@400:       
alpar@400:       nodes[n].first_in = nodes[n].first_out = -1;
alpar@400:       
alpar@400:       Node nn; nn.n=n;
alpar@400: 
alpar@400:       //Update dynamic maps
alpar@400:       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@400: 	  i!=dyn_node_maps.end(); ++i) (**i).add(nn);
alpar@400: 
alpar@400:       return nn;
alpar@400:     }
alpar@400:     
alpar@400:     void erase(Node nn) {
alpar@400:       int n=nn.n;
alpar@400:       
alpar@400:       if(nodes[n].next != -1) nodes[nodes[n].next].prev = nodes[n].prev;
alpar@400:       if(nodes[n].prev != -1) nodes[nodes[n].prev].next = nodes[n].next;
alpar@400:       else first_node = nodes[n].next;
alpar@400:       
alpar@400:       nodes[n].next = first_free_node;
alpar@400:       first_free_node = n;
alpar@400: 
alpar@400:       //Update dynamic maps
alpar@400:       for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@400: 	  i!=dyn_node_maps.end(); ++i) (**i).erase(nn);
alpar@400:     }
alpar@400:     
alpar@400:     ///\bug Dynamic maps must be updated!
alpar@400:     ///
alpar@400:     void clear() {
alpar@400:       nodes.clear();
alpar@400:       first_node = first_free_node = -1;
alpar@400:     }
alpar@400: 
alpar@400:     class Node {
alpar@400:       friend class NodeSet;
alpar@400:       template <typename T> friend class NodeMap;
alpar@400:       
alpar@400:       friend class Edge;
alpar@400:       friend class OutEdgeIt;
alpar@400:       friend class InEdgeIt;
alpar@400: 
alpar@400:     protected:
alpar@400:       int n;
alpar@400:       friend int NodeSet::id(Node v) const; 
alpar@400:       Node(int nn) {n=nn;}
alpar@400:     public:
alpar@400:       Node() {}
alpar@400:       Node (Invalid i) { n=-1; }
alpar@400:       bool operator==(const Node i) const {return n==i.n;}
alpar@400:       bool operator!=(const Node i) const {return n!=i.n;}
alpar@400:       bool operator<(const Node i) const {return n<i.n;}
alpar@400:     };
alpar@400:     
alpar@400:     class NodeIt : public Node {
alpar@400:       friend class NodeSet;
alpar@400:     public:
alpar@400:       NodeIt(const NodeSet& G) : Node(G.first_node) { }
alpar@400:       NodeIt() : Node() { }
alpar@400:     };
alpar@400: 
alpar@400:     class Edge {
alpar@400:       //friend class NodeSet;
alpar@400:       //template <typename T> friend class EdgeMap;
alpar@400: 
alpar@400:       //template <typename T> friend class SymNodeSet::SymEdgeMap;      
alpar@400:       //friend Edge SymNodeSet::opposite(Edge) const;
alpar@400:       
alpar@400:       //      friend class Node;
alpar@400:       //      friend class NodeIt;
alpar@400:     protected:
alpar@400:       //friend int NodeSet::id(Edge e) const;
alpar@400:       //      Edge(int nn) {}
alpar@400:     public:
alpar@400:       Edge() { }
alpar@400:       Edge (Invalid) { }
alpar@400:       bool operator==(const Edge i) const {return true;}
alpar@400:       bool operator!=(const Edge i) const {return false;}
alpar@400:       bool operator<(const Edge i) const {return false;}
alpar@400:       ///\bug This is a workaround until somebody tells me how to
alpar@400:       ///make class \c SymNodeSet::SymEdgeMap friend of Edge
alpar@400:       //      int idref() {return -1;}
alpar@400:       //      int idref() const {return -1;}
alpar@400:     };
alpar@400:     
alpar@400:     class EdgeIt : public Edge {
alpar@400:       //friend class NodeSet;
alpar@400:     public:
alpar@400:       EdgeIt(const NodeSet& G) : Edge() { }
alpar@400:       EdgeIt (Invalid i) : Edge(i) { }
alpar@400:       EdgeIt() : Edge() { }
alpar@400:       ///\bug This is a workaround until somebody tells me how to
alpar@400:       ///make class \c SymNodeSet::SymEdgeMap friend of Edge
alpar@400:       //      int idref() {return -1;}
alpar@400:     };
alpar@400:     
alpar@400:     class OutEdgeIt : public Edge {
alpar@400:       friend class NodeSet;
alpar@400:     public: 
alpar@400:       OutEdgeIt() : Edge() { }
alpar@400:       OutEdgeIt (Invalid i) : Edge(i) { }
alpar@400:       OutEdgeIt(const NodeSet& G,const Node v)	: Edge() {}
alpar@400:     };
alpar@400:     
alpar@400:     class InEdgeIt : public Edge {
alpar@400:       friend class NodeSet;
alpar@400:     public: 
alpar@400:       InEdgeIt() : Edge() { }
alpar@400:       InEdgeIt (Invalid i) : Edge(i) { }
alpar@400:       InEdgeIt(const NodeSet& G,Node v) :Edge() {}
alpar@400:     };
alpar@400: 
alpar@400:     template <typename T> class NodeMap : public DynMapBase<Node>
alpar@400:     {
alpar@400:       std::vector<T> container;
alpar@400: 
alpar@400:     public:
alpar@400:       typedef T ValueType;
alpar@400:       typedef Node KeyType;
alpar@400: 
alpar@400:       NodeMap(const NodeSet &_G) :
alpar@400: 	DynMapBase<Node>(_G), container(_G.maxNodeId())
alpar@400:       {
alpar@400: 	G->dyn_node_maps.push_back(this);
alpar@400:       }
alpar@400:       NodeMap(const NodeSet &_G,const T &t) :
alpar@400: 	DynMapBase<Node>(_G), container(_G.maxNodeId(),t)
alpar@400:       {
alpar@400: 	G->dyn_node_maps.push_back(this);
alpar@400:       }
alpar@400:       
alpar@400:       NodeMap(const NodeMap<T> &m) :
alpar@400:  	DynMapBase<Node>(*m.G), container(m.container)
alpar@400:       {
alpar@400:  	G->dyn_node_maps.push_back(this);
alpar@400:       }
alpar@400: 
alpar@400:       template<typename TT> friend class NodeMap;
alpar@400:  
alpar@400:       ///\todo It can copy between different types.
alpar@400:       ///
alpar@400:       template<typename TT> NodeMap(const NodeMap<TT> &m) :
alpar@400: 	DynMapBase<Node>(*m.G)
alpar@400:       {
alpar@400: 	G->dyn_node_maps.push_back(this);
alpar@400: 	typename std::vector<TT>::const_iterator i;
alpar@400: 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
alpar@400: 	    i!=m.container.end();
alpar@400: 	    i++)
alpar@400: 	  container.push_back(*i);
alpar@400:       }
alpar@400:       ~NodeMap()
alpar@400:       {
alpar@400: 	if(G) {
alpar@400: 	  std::vector<DynMapBase<Node>* >::iterator i;
alpar@400: 	  for(i=G->dyn_node_maps.begin();
alpar@400: 	      i!=G->dyn_node_maps.end() && *i!=this; ++i) ;
alpar@400: 	  //if(*i==this) G->dyn_node_maps.erase(i); //FIXME: Way too slow...
alpar@400: 	  //A better way to do that: (Is this really important?)
alpar@400: 	  if(*i==this) {
alpar@400: 	    *i=G->dyn_node_maps.back();
alpar@400: 	    G->dyn_node_maps.pop_back();
alpar@400: 	  }
alpar@400: 	}
alpar@400:       }
alpar@400: 
alpar@400:       void add(const Node k) 
alpar@400:       {
alpar@400: 	if(k.n>=int(container.size())) container.resize(k.n+1);
alpar@400:       }
alpar@400: 
alpar@400:       void erase(const Node) { }
alpar@400:       
alpar@400:       void set(Node n, T a) { container[n.n]=a; }
alpar@400:       //'T& operator[](Node n)' would be wrong here
alpar@400:       typename std::vector<T>::reference
alpar@400:       operator[](Node n) { return container[n.n]; }
alpar@400:       //'const T& operator[](Node n)' would be wrong here
alpar@400:       typename std::vector<T>::const_reference 
alpar@400:       operator[](Node n) const { return container[n.n]; }
alpar@400: 
alpar@400:       ///\warning There is no safety check at all!
alpar@400:       ///Using operator = between maps attached to different graph may
alpar@400:       ///cause serious problem.
alpar@400:       ///\todo Is this really so?
alpar@400:       ///\todo It can copy between different types.
alpar@400:       const NodeMap<T>& operator=(const NodeMap<T> &m)
alpar@400:       {
alpar@400: 	container = m.container;
alpar@400: 	return *this;
alpar@400:       }
alpar@400:       template<typename TT>
alpar@400:       const NodeMap<T>& operator=(const NodeMap<TT> &m)
alpar@400:       {
alpar@400: 	copy(m.container.begin(), m.container.end(), container.begin());
alpar@400: 	return *this;
alpar@400:       }
alpar@400:       
alpar@400:       void update() {}    //Useless for Dynamic Maps
alpar@400:       void update(T a) {}  //Useless for Dynamic Maps
alpar@400:     };
alpar@400:     
alpar@400:     template <typename T> class EdgeMap
alpar@400:     {
alpar@400:     public:
alpar@400:       typedef T ValueType;
alpar@400:       typedef Edge KeyType;
alpar@400: 
alpar@400:       EdgeMap(const NodeSet &) { }
alpar@400:       EdgeMap(const NodeSet &,const T &) { }
alpar@400:       EdgeMap(const EdgeMap<T> &) { }
alpar@400:       //      template<typename TT> friend class EdgeMap;
alpar@400: 
alpar@400:       ///\todo It can copy between different types.
alpar@400:       ///
alpar@400:       template<typename TT> EdgeMap(const EdgeMap<TT> &) { }
alpar@400:       ~EdgeMap() { }
alpar@400: 
alpar@400:       void add(const Edge  ) { }
alpar@400:       void erase(const Edge) { }
alpar@400:       
alpar@400:       void set(Edge, T) { }
alpar@400:       //T get(Edge n) const { return container[n.n]; }
alpar@400:       ValueType &operator[](Edge) { return *((T*)(NULL)); }
alpar@400:       const ValueType &operator[](Edge) const { return *((T*)(NULL)); }
alpar@400: 
alpar@400:       const EdgeMap<T>& operator=(const EdgeMap<T> &) { return *this; }
alpar@400:     
alpar@400:       template<typename TT>
alpar@400:       const EdgeMap<T>& operator=(const EdgeMap<TT> &m) { return *this; }
alpar@400:       
alpar@400:       void update() {}
alpar@400:       void update(T a) {}
alpar@400:     };
alpar@400:   };
alpar@400: 
alpar@400: 
alpar@400: 
alpar@401:   ///Graph structure using a node set of another graph.
alpar@401: 
alpar@401:   ///This structure can be used to establish another graph over a node set
alpar@401:   /// of an existing one. The node iterator will go through the nodes of the
alpar@401:   /// original graph, and the NodeMap's of both graphs will convert to
alpar@401:   /// each other.
alpar@401:   ///
alpar@404:   ///\warning Adding or deleting nodes from the graph is not safe if an
alpar@404:   ///\ref EdgeSet is currently attached to it!
alpar@404:   ///
alpar@404:   ///\todo Make it possible to add/delete edges from the base graph
alpar@404:   ///(and from \ref EdgeSet, as well)
alpar@404:   ///
alpar@401:   ///\param GG The type of the graph which shares its node set with this class.
alpar@401:   ///Its interface must conform with \ref GraphSkeleton.
alpar@400:   ///
alpar@400:   ///It conforms to the graph interface documented under
alpar@400:   ///the description of \ref GraphSkeleton.
alpar@400:   ///\sa \ref GraphSkeleton.
alpar@401:   ///\sa \ref NodeSet.
alpar@400:   template<typename GG>
alpar@400:   class EdgeSet {
alpar@400: 
alpar@400:     typedef GG NodeGraphType;
alpar@400: 
alpar@400:     NodeGraphType &G;
alpar@400: 
alpar@400:     class Node;
alpar@400:     
alpar@400:     //Edges are double linked.
alpar@400:     //The free edges are only single linked using the "next_in" field.
alpar@400:     struct NodeT 
alpar@400:     {
alpar@400:       int first_in,first_out;
alpar@400:       NodeT() : first_in(-1), first_out(-1) { }
alpar@400:     };
alpar@400: 
alpar@400:     struct EdgeT 
alpar@400:     {
alpar@400:       Node head, tail;
alpar@400:       int prev_in, prev_out;
alpar@400:       int next_in, next_out;
alpar@400:     };
alpar@400: 
alpar@400:     
alpar@400:     typename NodeGraphType::NodeMap<NodeT> nodes;
alpar@400:     
alpar@400:     std::vector<EdgeT> edges;
alpar@400:     //The first free edge
alpar@400:     int first_free_edge;
alpar@400:     
alpar@400:   protected:
alpar@400:     
alpar@400:     template <typename Key> class DynMapBase
alpar@400:     {
alpar@400:     protected:
alpar@400:       const EdgeSet* G; 
alpar@400:     public:
alpar@400:       virtual void add(const Key k) = NULL;
alpar@400:       virtual void erase(const Key k) = NULL;
alpar@400:       DynMapBase(const EdgeSet &_G) : G(&_G) {}
alpar@400:       virtual ~DynMapBase() {}
alpar@400:       friend class EdgeSet;
alpar@400:     };
alpar@400:     
alpar@400:   public:
alpar@400:     //template <typename T> class NodeMap;
alpar@400:     template <typename T> class EdgeMap;
alpar@400:     
alpar@400:     class Node;
alpar@400:     class Edge;
alpar@400: 
alpar@400:     //  protected:
alpar@400:     // HELPME:
alpar@400:   protected:
alpar@400:     // mutable std::vector<DynMapBase<Node> * > dyn_node_maps;
alpar@400:     ///\bug It must be public because of SymEdgeMap.
alpar@400:     ///
alpar@400:     mutable std::vector<DynMapBase<Edge> * > dyn_edge_maps;
alpar@400:     
alpar@400:   public:
alpar@400: 
alpar@400:     class NodeIt;
alpar@400:     class EdgeIt;
alpar@400:     class OutEdgeIt;
alpar@400:     class InEdgeIt;
alpar@400:     
alpar@400:     template <typename T> class NodeMap;
alpar@400:     template <typename T> class EdgeMap;
alpar@400:     
alpar@400:   public:
alpar@400: 
alpar@408:     ///Constructor
alpar@408:     
alpar@408:     ///Construates a new graph based on the nodeset of an existing one.
alpar@408:     ///\param _G the base graph.
alpar@408:     ///\todo It looks like a copy constructor, but it isn't.
alpar@401:     EdgeSet(NodeGraphType &_G) : G(_G),
alpar@401: 				 nodes(_G), edges(),
alpar@401: 				 first_free_edge(-1) { }
alpar@408:     ///Copy constructor
alpar@408: 
alpar@408:     ///Makes a copy of an EdgeSet.
alpar@408:     ///It will be based on the same graph.
alpar@400:     EdgeSet(const EdgeSet &_g) : G(_g.G), nodes(_g.G), edges(_g.edges),
alpar@401: 				 first_free_edge(_g.first_free_edge) { }
alpar@400:     
alpar@400:     ~EdgeSet()
alpar@400:     {
alpar@400:       // for(std::vector<DynMapBase<Node> * >::iterator i=dyn_node_maps.begin();
alpar@400:       //  i!=dyn_node_maps.end(); ++i) (**i).G=NULL;
alpar@400:       for(typename std::vector<DynMapBase<Edge> * >::iterator
alpar@400: 	    i=dyn_edge_maps.begin();
alpar@400: 	  i!=dyn_edge_maps.end(); ++i) (**i).G=NULL;
alpar@400:     }
alpar@400: 
alpar@400:     int nodeNum() const { return G.nodeNum(); }  //FIXME: What is this?
alpar@400:     int edgeNum() const { return edges.size(); }  //FIXME: What is this?
alpar@400: 
alpar@400:     ///\bug This function does something different than
alpar@400:     ///its name would suggests...
alpar@400:     int maxNodeId() const { return G.maxNodeId(); }  //FIXME: What is this?
alpar@400:     ///\bug This function does something different than
alpar@400:     ///its name would suggests...
alpar@400:     int maxEdgeId() const { return edges.size(); }  //FIXME: What is this?
alpar@400: 
alpar@400:     Node tail(Edge e) const { return edges[e.n].tail; }
alpar@400:     Node head(Edge e) const { return edges[e.n].head; }
alpar@400: 
alpar@400:     Node aNode(OutEdgeIt e) const { return edges[e.n].tail; }
alpar@400:     Node aNode(InEdgeIt e) const { return edges[e.n].head; }
alpar@400: 
alpar@400:     Node bNode(OutEdgeIt e) const { return edges[e.n].head; }
alpar@400:     Node bNode(InEdgeIt e) const { return edges[e.n].tail; }
alpar@400: 
alpar@400:     NodeIt& first(NodeIt& v) const { 
alpar@400:       v=NodeIt(*this); return v; }
alpar@400:     EdgeIt& first(EdgeIt& e) const { 
alpar@400:       e=EdgeIt(*this); return e; }
alpar@400:     OutEdgeIt& first(OutEdgeIt& e, const Node v) const { 
alpar@400:       e=OutEdgeIt(*this,v); return e; }
alpar@400:     InEdgeIt& first(InEdgeIt& e, const Node v) const { 
alpar@400:       e=InEdgeIt(*this,v); return e; }
alpar@400: 
alpar@400: //     template< typename It >
alpar@400: //     It first() const { It e; first(e); return e; }
alpar@400: 
alpar@400: //     template< typename It >
alpar@400: //     It first(Node v) const { It e; first(e,v); return e; }
alpar@400: 
alpar@400:     bool valid(Edge e) const { return e.n!=-1; }
alpar@400:     bool valid(Node n) const { return G.valid(n); }
alpar@400:     
alpar@400:     void setInvalid(Edge &e) { e.n=-1; }
alpar@400:     void setInvalid(Node &n) { G.setInvalid(n); }
alpar@400:     
alpar@400:     template <typename It> It getNext(It it) const
alpar@400:     { It tmp(it); return next(tmp); }
alpar@400: 
alpar@400:     NodeIt& next(NodeIt& it) const { G.next(it); return it; }
alpar@400:     OutEdgeIt& next(OutEdgeIt& it) const
alpar@400:     { it.n=edges[it.n].next_out; return it; }
alpar@400:     InEdgeIt& next(InEdgeIt& it) const
alpar@400:     { it.n=edges[it.n].next_in; return it; }
alpar@400:     EdgeIt& next(EdgeIt& it) const {
alpar@400:       if(edges[it.n].next_in!=-1) { 
alpar@400: 	it.n=edges[it.n].next_in;
alpar@400:       }
alpar@400:       else {
alpar@400: 	typename NodeGraphType::Node n;
alpar@400: 	for(n=G.next(edges[it.n].head);
alpar@400: 	    G.valid(n) && nodes[n].first_in == -1;
alpar@400: 	    G.next(n)) ;
alpar@400: 	it.n = (G.valid(n))?-1:nodes[n].first_in;
alpar@400:       }
alpar@400:       return it;
alpar@400:     }
alpar@400: 
alpar@400:     int id(Node v) const { return G.id(v); }
alpar@400:     int id(Edge e) const { return e.n; }
alpar@400: 
alpar@400:     /// Adds a new node to the graph.
alpar@400:     Node addNode() { return G.AddNode(); }
alpar@400:     
alpar@400:     Edge addEdge(Node u, Node v) {
alpar@400:       int n;
alpar@400:       
alpar@400:       if(first_free_edge==-1)
alpar@400: 	{
alpar@400: 	  n = edges.size();
alpar@400: 	  edges.push_back(EdgeT());
alpar@400: 	}
alpar@400:       else {
alpar@400: 	n = first_free_edge;
alpar@400: 	first_free_edge = edges[n].next_in;
alpar@400:       }
alpar@400:       
alpar@401:       edges[n].tail = u; edges[n].head = v;
alpar@400: 
alpar@401:       edges[n].next_out = nodes[u].first_out;
alpar@401:       if(nodes[u].first_out != -1) edges[nodes[u].first_out].prev_out = n;
alpar@401:       edges[n].next_in = nodes[v].first_in;
alpar@401:       if(nodes[v].first_in != -1) edges[nodes[v].first_in].prev_in = n;
alpar@400:       edges[n].prev_in = edges[n].prev_out = -1;
alpar@400: 	
alpar@401:       nodes[u].first_out = nodes[v].first_in = n;
alpar@400: 
alpar@400:       Edge e; e.n=n;
alpar@400: 
alpar@400:       //Update dynamic maps
alpar@400:       for(typename std::vector<DynMapBase<Edge> * >::iterator
alpar@400: 	    i=dyn_edge_maps.begin();
alpar@400: 	  i!=dyn_edge_maps.end(); ++i) (**i).add(e);
alpar@400: 
alpar@400:       return e;
alpar@400:     }
alpar@400: 
alpar@400:   private:
alpar@400:     void eraseEdge(int n) {
alpar@400:       
alpar@400:       if(edges[n].next_in!=-1)
alpar@400: 	edges[edges[n].next_in].prev_in = edges[n].prev_in;
alpar@400:       if(edges[n].prev_in!=-1)
alpar@400: 	edges[edges[n].prev_in].next_in = edges[n].next_in;
alpar@400:       else nodes[edges[n].head].first_in = edges[n].next_in;
alpar@400:       
alpar@400:       if(edges[n].next_out!=-1)
alpar@400: 	edges[edges[n].next_out].prev_out = edges[n].prev_out;
alpar@400:       if(edges[n].prev_out!=-1)
alpar@400: 	edges[edges[n].prev_out].next_out = edges[n].next_out;
alpar@400:       else nodes[edges[n].tail].first_out = edges[n].next_out;
alpar@400:       
alpar@400:       edges[n].next_in = first_free_edge;
alpar@400:       first_free_edge = -1;      
alpar@400: 
alpar@400:       //Update dynamic maps
alpar@400:       Edge e; e.n=n;
alpar@400:       for(typename std::vector<DynMapBase<Edge> * >::iterator
alpar@400: 	    i=dyn_edge_maps.begin();
alpar@400: 	  i!=dyn_edge_maps.end(); ++i) (**i).erase(e);
alpar@400:     }
alpar@400:       
alpar@400:   public:
alpar@400: 
alpar@400: //     void erase(Node nn) {
alpar@400: //       int n=nn.n;
alpar@400: //       int m;
alpar@400: //       while((m=nodes[n].first_in)!=-1) eraseEdge(m);
alpar@400: //       while((m=nodes[n].first_out)!=-1) eraseEdge(m);
alpar@400: //     }
alpar@400:     
alpar@400:     void erase(Edge e) { eraseEdge(e.n); }
alpar@400: 
alpar@400: //     //\bug Dynamic maps must be updated!
alpar@400: //     //
alpar@400: //     void clear() {
alpar@400: //       nodes.clear();edges.clear();
alpar@400: //       first_node=first_free_node=first_free_edge=-1;
alpar@400: //     }
alpar@400: 
alpar@400:     class Node : public NodeGraphType::Node {
alpar@400:       friend class EdgeSet;
alpar@400:       //      template <typename T> friend class NodeMap;
alpar@400:       
alpar@400:       friend class Edge;
alpar@400:       friend class OutEdgeIt;
alpar@400:       friend class InEdgeIt;
alpar@400:       friend class SymEdge;
alpar@400: 
alpar@400:     protected:
alpar@400:       friend int EdgeSet::id(Node v) const; 
alpar@400:       //      Node(int nn) {n=nn;}
alpar@400:     public:
alpar@400:       Node() : NodeGraphType::Node() {}
alpar@400:       Node (Invalid i) : NodeGraphType::Node(i) {}
alpar@400:       Node(const typename NodeGraphType::Node &n) : NodeGraphType::Node(n) {}
alpar@400:     };
alpar@400:     
alpar@400:     class NodeIt : public NodeGraphType::NodeIt {
alpar@400:       friend class EdgeSet;
alpar@400:     public:
alpar@400:       NodeIt() : NodeGraphType::NodeIt() { }
alpar@400:       NodeIt (Invalid i) : NodeGraphType::NodeIt(i) {}
alpar@401:       NodeIt(const EdgeSet& _G) : NodeGraphType::NodeIt(_G.G) { }
alpar@400:       NodeIt(const typename NodeGraphType::NodeIt &n)
alpar@400: 	: NodeGraphType::NodeIt(n) {}
alpar@400:       operator Node() { return Node(*this);}
alpar@400:     };
alpar@400: 
alpar@400:     class Edge {
alpar@400:       friend class EdgeSet;
alpar@400:       template <typename T> friend class EdgeMap;
alpar@400: 
alpar@400:       //template <typename T> friend class SymEdgeSet::SymEdgeMap;      
alpar@400:       //friend Edge SymEdgeSet::opposite(Edge) const;
alpar@400:       
alpar@400:       friend class Node;
alpar@400:       friend class NodeIt;
alpar@400:     protected:
alpar@400:       int n;
alpar@400:       friend int EdgeSet::id(Edge e) const;
alpar@400: 
alpar@400:       Edge(int nn) {n=nn;}
alpar@400:     public:
alpar@400:       Edge() { }
alpar@400:       Edge (Invalid) { n=-1; }
alpar@400:       bool operator==(const Edge i) const {return n==i.n;}
alpar@400:       bool operator!=(const Edge i) const {return n!=i.n;}
alpar@400:       bool operator<(const Edge i) const {return n<i.n;}
alpar@400:       ///\bug This is a workaround until somebody tells me how to
alpar@400:       ///make class \c SymEdgeSet::SymEdgeMap friend of Edge
alpar@400:       int &idref() {return n;}
alpar@400:       const int &idref() const {return n;}
alpar@400:     };
alpar@400:     
alpar@400:     class EdgeIt : public Edge {
alpar@400:       friend class EdgeSet;
alpar@400:     public:
alpar@400:       EdgeIt(const EdgeSet& G) : Edge() {
alpar@400:       	typename NodeGraphType::Node m;
alpar@400: 	for(G.first(m);
alpar@400: 	    G.valid(m) && nodes[m].first_in == -1;  G.next[m]);
alpar@400: 	n = G.valid(m)?-1:nodes[m].first_in;
alpar@400:       }
alpar@400:       EdgeIt (Invalid i) : Edge(i) { }
alpar@400:       EdgeIt() : Edge() { }
alpar@400:       ///\bug This is a workaround until somebody tells me how to
alpar@400:       ///make class \c SymEdgeSet::SymEdgeMap friend of Edge
alpar@400:       int &idref() {return n;}
alpar@400:     };
alpar@400:     
alpar@400:     class OutEdgeIt : public Edge {
alpar@400:       friend class EdgeSet;
alpar@400:     public: 
alpar@400:       OutEdgeIt() : Edge() { }
alpar@400:       OutEdgeIt (Invalid i) : Edge(i) { }
alpar@400: 
alpar@400:       OutEdgeIt(const EdgeSet& G,const Node v) : Edge(nodes[v].first_out) { }
alpar@400:     };
alpar@400:     
alpar@400:     class InEdgeIt : public Edge {
alpar@400:       friend class EdgeSet;
alpar@400:     public: 
alpar@400:       InEdgeIt() : Edge() { }
alpar@400:       InEdgeIt (Invalid i) : Edge(i) { }
alpar@400:       InEdgeIt(const EdgeSet& G,Node v) :Edge(nodes[v].first_in) { }
alpar@400:     };
alpar@400: 
alpar@400:     template <typename T> class NodeMap : public NodeGraphType::NodeMap<T>
alpar@400:     {
alpar@400:     public:
alpar@400:       NodeMap(const EdgeSet &_G) :
alpar@400: 	NodeGraphType::NodeMap<T>(_G.G) { }
alpar@400:       NodeMap(const EdgeSet &_G,const T &t) :
alpar@400: 	NodeGraphType::NodeMap<T>(_G.G,t) { }
alpar@400:       //It is unnecessary
alpar@400:       NodeMap(const typename NodeGraphType::NodeMap<T> &m)
alpar@400: 	: NodeGraphType::NodeMap<T>(m) { }
alpar@400: 
alpar@400:       ///\todo It can copy between different types.
alpar@400:       ///
alpar@401:       template<typename TT>
alpar@400:       NodeMap(const typename NodeGraphType::NodeMap<TT> &m)
alpar@400: 	: NodeGraphType::NodeMap<T>(m) { }
alpar@400:     };
alpar@400:     
alpar@400:     template <typename T> class EdgeMap : public DynMapBase<Edge>
alpar@400:     {
alpar@400:       std::vector<T> container;
alpar@400: 
alpar@400:     public:
alpar@400:       typedef T ValueType;
alpar@400:       typedef Edge KeyType;
alpar@400: 
alpar@400:       EdgeMap(const EdgeSet &_G) :
alpar@400: 	DynMapBase<Edge>(_G), container(_G.maxEdgeId())
alpar@400:       {
alpar@400: 	//FIXME: What if there are empty Id's?
alpar@400: 	//FIXME: Can I use 'this' in a constructor?
alpar@400: 	G->dyn_edge_maps.push_back(this);
alpar@400:       }
alpar@400:       EdgeMap(const EdgeSet &_G,const T &t) :
alpar@400: 	DynMapBase<Edge>(_G), container(_G.maxEdgeId(),t)
alpar@400:       {
alpar@400: 	G->dyn_edge_maps.push_back(this);
alpar@400:       } 
alpar@400:       EdgeMap(const EdgeMap<T> &m) :
alpar@400:  	DynMapBase<Edge>(*m.G), container(m.container)
alpar@400:       {
alpar@400:  	G->dyn_node_maps.push_back(this);
alpar@400:       }
alpar@400: 
alpar@400:       template<typename TT> friend class EdgeMap;
alpar@400: 
alpar@400:       ///\todo It can copy between different types.
alpar@400:       ///
alpar@400:       template<typename TT> EdgeMap(const EdgeMap<TT> &m) :
alpar@400: 	DynMapBase<Edge>(*m.G)
alpar@400:       {
alpar@400: 	G->dyn_node_maps.push_back(this);
alpar@400: 	typename std::vector<TT>::const_iterator i;
alpar@400: 	for(typename std::vector<TT>::const_iterator i=m.container.begin();
alpar@400: 	    i!=m.container.end();
alpar@400: 	    i++)
alpar@400: 	  container.push_back(*i);
alpar@400:       }
alpar@400:       ~EdgeMap()
alpar@400:       {
alpar@400: 	if(G) {
alpar@400: 	  typename std::vector<DynMapBase<Edge>* >::iterator i;
alpar@400: 	  for(i=G->dyn_edge_maps.begin();
alpar@400: 	      i!=G->dyn_edge_maps.end() && *i!=this; ++i) ;
alpar@400: 	  //if(*i==this) G->dyn_edge_maps.erase(i); //Way too slow...
alpar@400: 	  //A better way to do that: (Is this really important?)
alpar@400: 	  if(*i==this) {
alpar@400: 	    *i=G->dyn_edge_maps.back();
alpar@400: 	    G->dyn_edge_maps.pop_back();
alpar@400: 	  }
alpar@400: 	}
alpar@400:       }
alpar@400:       
alpar@400:       void add(const Edge k) 
alpar@400:       {
alpar@400: 	if(k.n>=int(container.size())) container.resize(k.n+1);
alpar@400:       }
alpar@400:       void erase(const Edge) { }
alpar@400:       
alpar@400:       void set(Edge n, T a) { container[n.n]=a; }
alpar@400:       //T get(Edge n) const { return container[n.n]; }
alpar@400:       typename std::vector<T>::reference
alpar@400:       operator[](Edge n) { return container[n.n]; }
alpar@400:       typename std::vector<T>::const_reference
alpar@400:       operator[](Edge n) const { return container[n.n]; }
alpar@400: 
alpar@400:       ///\warning There is no safety check at all!
alpar@400:       ///Using operator = between maps attached to different graph may
alpar@400:       ///cause serious problem.
alpar@400:       ///\todo Is this really so?
alpar@400:       ///\todo It can copy between different types.
alpar@400:       const EdgeMap<T>& operator=(const EdgeMap<T> &m)
alpar@400:       {
alpar@400: 	container = m.container;
alpar@400: 	return *this;
alpar@400:       }
alpar@400:       template<typename TT>
alpar@400:       const EdgeMap<T>& operator=(const EdgeMap<TT> &m)
alpar@400:       {
alpar@400: 	copy(m.container.begin(), m.container.end(), container.begin());
alpar@400: 	return *this;
alpar@400:       }
alpar@400:       
alpar@400:       void update() {}    //Useless for DynMaps
alpar@400:       void update(T a) {}  //Useless for DynMaps
alpar@400:     };
alpar@400: 
alpar@400:   };
alpar@406: 
alpar@406: /// @}  
alpar@406: 
alpar@395: } //namespace hugo
alpar@395: 
alpar@405: #endif //HUGO_LIST_GRAPH_H