alpar@1083: namespace lemon{
alpar@202: /*!
alpar@202:
alpar@1043: \page maps-page Maps
alpar@692:
athos@1167: Maps play a central role in LEMON. As their name suggests, they map a
alpar@692: certain range of \e keys to certain \e values. Each map has two
alpar@692: typedef's to determine the types of keys and values, like this:
alpar@692:
alpar@692: \code
alpar@987: typedef Edge Key;
alpar@987: typedef double Value;
alpar@692: \endcode
alpar@692:
athos@1183: A map can be
alpar@2260: \e readable (\ref lemon::concepts::ReadMap "ReadMap", for short),
alpar@2260: \e writable (\ref lemon::concepts::WriteMap "WriteMap") or both
alpar@2260: (\ref lemon::concepts::ReadWriteMap "ReadWriteMap").
alpar@1083: There also exists a special type of
alpar@2260: ReadWrite map called \ref lemon::concepts::ReferenceMap "reference map".
alpar@1083: In addition that you can
alpar@692: read and write the values of a key, a reference map
alpar@692: can also give you a reference to the
alpar@692: value belonging to a key, so you have a direct access to the memory address
alpar@692: where it is stored.
alpar@692:
alpar@921: Each graph structure in LEMON provides two standard map templates called
alpar@692: \c EdgeMap and \c NodeMap. Both are reference maps and you can easily
alpar@692: assign data to the nodes and to the edges of the graph. For example if you
deba@1788: have a graph \c g defined as
alpar@692: \code
deba@1788: ListGraph g;
alpar@692: \endcode
alpar@1083: and you want to assign a floating point value to each edge, you can do
alpar@692: it like this.
alpar@692: \code
deba@1788: ListGraph::EdgeMap length(g);
alpar@692: \endcode
alpar@1083: Note that you must give the underlying graph to the constructor.
alpar@692:
alpar@692: The value of a readable map can be obtained by operator[].
alpar@692: \code
alpar@692: d=length[e];
alpar@692: \endcode
alpar@692: where \c e is an instance of \c ListGraph::Edge.
alpar@692: (Or anything else
alpar@692: that converts to \c ListGraph::Edge, like \c ListGraph::EdgeIt or
alpar@1083: \c ListGraph::OutEdgeIt etc.)
alpar@692:
athos@1167: There are two ways to assign a new value to a key
alpar@692:
alpar@692: - In case of a reference map operator[]
alpar@692: gives you a reference to the
alpar@692: value, thus you can use this.
alpar@692: \code
alpar@692: length[e]=3.5;
alpar@692: \endcode
alpar@692: - Writable maps have
alpar@987: a member function \c set(Key,const Value &)
alpar@692: for this purpose.
alpar@692: \code
alpar@692: length.set(e,3.5);
alpar@692: \endcode
alpar@692:
alpar@692: The first case is more comfortable and if you store complex structures in your
alpar@692: map, it might be more efficient. However, there are writable but
alpar@1083: not reference maps, so if you want to write a generic algorithm, you should
alpar@1083: insist on the second way.
alpar@692:
alpar@697: \section how-to-write-your-own-map How to Write Your Own Maps
alpar@692:
alpar@692: \subsection read-maps Readable Maps
alpar@202:
athos@1167: Readable maps are very frequently used as the input of an
athos@1167: algorithm. For this purpose the most straightforward way is the use of the
alpar@921: default maps provided by LEMON's graph structures.
alpar@692: Very often however, it is more
alpar@289: convenient and/or more efficient to write your own readable map.
alpar@202:
alpar@692: You can find some examples below. In these examples \c Graph is the
alpar@692: type of the particular graph structure you use.
alpar@692:
alpar@202:
alpar@204: This simple map assigns \f$\pi\f$ to each edge.
alpar@204:
alpar@202: \code
alpar@273: struct MyMap
alpar@202: {
alpar@987: typedef double Value;
alpar@987: typedef Graph::Edge Key;
alpar@987: double operator[](Key e) const { return M_PI;}
alpar@204: };
alpar@204: \endcode
alpar@204:
alpar@692: An alternative way to define maps is to use \c MapBase
alpar@692:
alpar@289: \code
alpar@692: struct MyMap : public MapBase
alpar@289: {
alpar@987: Value operator[](Key e) const { return M_PI;}
alpar@289: };
alpar@289: \endcode
alpar@289:
alpar@692: Here is a bit more complex example.
alpar@1083: It provides a length function obtained
alpar@692: from a base length function shifted by a potential difference.
alpar@202:
alpar@202: \code
alpar@1083: class ReducedLengthMap : public MapBase
alpar@202: {
alpar@1083: const Graph &g;
alpar@692: const Graph::EdgeMap &orig_len;
alpar@692: const Graph::NodeMap &pot;
alpar@202:
alpar@273: public:
alpar@987: Value operator[](Key e) const {
deba@1788: return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]);
alpar@210: }
alpar@202:
alpar@1083: ReducedLengthMap(const Graph &_g,
deba@1788: const Graph::EdgeMap &_o,
deba@1788: const Graph::NodeMap &_p)
deba@1788: : g(_g), orig_len(_o), pot(_p) {};
alpar@202: };
alpar@202: \endcode
alpar@202:
alpar@1083: Then, you can call e.g. Dijkstra algoritm on this map like this:
alpar@1083: \code
alpar@1083: ...
alpar@1083: ReducedLengthMap rm(g,len,pot);
alpar@1083: Dijkstra dij(g,rm);
alpar@1083: dij.run(s);
alpar@1083: ...
alpar@1083: \endcode
alpar@1083:
alpar@692:
alpar@692: \subsection write-maps Writable Maps
alpar@692:
alpar@692: To be written...
alpar@692:
alpar@692: \subsection side-effect-maps Maps with Side Effect
alpar@692:
alpar@692: To be written...
alpar@692:
alpar@202: */
athos@1183: }