marci@174: // -*- c++ -*-
alpar@503: #ifndef HUGO_SKELETON_GRAPH_H
alpar@503: #define HUGO_SKELETON_GRAPH_H
alpar@52: 
alpar@242: ///\file
alpar@242: ///\brief Declaration of GraphSkeleton.
alpar@242: 
ladanyi@542: #include <hugo/invalid.h>
alpar@145: 
alpar@163: /// The namespace of HugoLib
alpar@163: namespace hugo {
alpar@163: 
alpar@182:   // @defgroup empty_graph The GraphSkeleton class
alpar@163:   // @{
alpar@163: 
alpar@163:   /// An empty graph class.
alpar@163:   
alpar@186:   /// This class provides all the common features of a graph structure,
alpar@186:   /// however completely without implementations and real data structures
alpar@163:   /// behind the interface.
alpar@163:   /// All graph algorithms should compile with this class, but it will not
alpar@163:   /// run properly, of course.
alpar@163:   ///
alpar@163:   /// It can be used for checking the interface compatibility,
alpar@163:   /// or it can serve as a skeleton of a new graph structure.
alpar@165:   /// 
alpar@165:   /// Also, you will find here the full documentation of a certain graph
alpar@165:   /// feature, the documentation of a real graph imlementation
alpar@165:   /// like @ref ListGraph or
alpar@165:   /// @ref SmartGraph will just refer to this structure.
alpar@182:   class GraphSkeleton
alpar@163:   {
alpar@147:   public:
marci@320:     /// Defalult constructor.
marci@320:     GraphSkeleton() {}
marci@320:     ///Copy consructor.
alpar@321: 
alpar@321:     ///\todo It is not clear, what we expect from a copy constructor.
alpar@321:     ///E.g. How to assign the nodes/edges to each other? What about maps?
marci@320:     GraphSkeleton(const GraphSkeleton &G) {}
marci@320: 
alpar@163:     /// The base type of the node iterators.
alpar@182: 
alpar@186:     /// This is the base type of each node iterators,
alpar@182:     /// thus each kind of node iterator will convert to this.
alpar@163:     class Node {
alpar@163:     public:
alpar@163:       /// @warning The default constructor sets the iterator
alpar@163:       /// to an undefined value.
alpar@163:       Node() {}   //FIXME
alpar@182:       /// Invalid constructor \& conversion.
alpar@182: 
alpar@182:       /// This constructor initializes the iterator to be invalid.
alpar@182:       /// \sa Invalid for more details.
alpar@182: 
marci@174:       Node(Invalid) {}
alpar@182:       //Node(const Node &) {}
alpar@182: 
alpar@182:       /// Two iterators are equal if and only if they point to the
alpar@182:       /// same object or both are invalid.
alpar@503:       bool operator==(Node) const { return true; }
alpar@182: 
alpar@182:       /// \sa \ref operator==(Node n)
alpar@182:       ///
alpar@503:       bool operator!=(Node) const { return true; }
alpar@182: 
alpar@503:       bool operator<(Node) const { return true; }
alpar@163:     };
alpar@147:     
alpar@163:     /// This iterator goes through each node.
alpar@186: 
alpar@186:     /// This iterator goes through each node.
alpar@186:     /// Its usage is quite simple, for example you can count the number
alpar@186:     /// of nodes in graph \c G of type \c Graph like this:
alpar@186:     /// \code
alpar@186:     ///int count=0;
alpar@186:     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
alpar@186:     /// \endcode
alpar@163:     class NodeIt : public Node {
alpar@163:     public:
alpar@163:       /// @warning The default constructor sets the iterator
alpar@163:       /// to an undefined value.
alpar@163:       NodeIt() {} //FIXME
alpar@182:       /// Invalid constructor \& conversion.
alpar@182: 
alpar@163:       /// Initialize the iterator to be invalid
alpar@182:       /// \sa Invalid for more details.
marci@174:       NodeIt(Invalid) {}
alpar@163:       /// Sets the iterator to the first node of \c G.
alpar@515:       NodeIt(const GraphSkeleton &) {}
alpar@182:       /// @warning The default constructor sets the iterator
alpar@182:       /// to an undefined value.
alpar@503:       NodeIt(const NodeIt &n) : Node(n) {}
alpar@163:     };
alpar@163:     
alpar@163:     
alpar@163:     /// The base type of the edge iterators.
alpar@163:     class Edge {
alpar@163:     public:
alpar@163:       /// @warning The default constructor sets the iterator
alpar@163:       /// to an undefined value.
alpar@163:       Edge() {}   //FIXME
alpar@163:       /// Initialize the iterator to be invalid
marci@174:       Edge(Invalid) {}
alpar@182:       /// Two iterators are equal if and only if they point to the
alpar@182:       /// same object or both are invalid.
alpar@503:       bool operator==(Edge) const { return true; }
alpar@503:       bool operator!=(Edge) const { return true; }
alpar@503:       bool operator<(Edge) const { return true; }
alpar@163:     };
alpar@163:     
alpar@242:     /// This iterator goes trough the outgoing edges of a node.
alpar@186: 
alpar@242:     /// This iterator goes trough the \e outgoing edges of a certain node
alpar@186:     /// of a graph.
alpar@186:     /// Its usage is quite simple, for example you can count the number
alpar@186:     /// of outgoing edges of a node \c n
alpar@186:     /// in graph \c G of type \c Graph as follows.
alpar@186:     /// \code
alpar@186:     ///int count=0;
alpar@186:     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
alpar@186:     /// \endcode
alpar@163:     
alpar@163:     class OutEdgeIt : public Edge {
alpar@163:     public:
alpar@163:       /// @warning The default constructor sets the iterator
alpar@163:       /// to an undefined value.
alpar@163:       OutEdgeIt() {}
alpar@163:       /// Initialize the iterator to be invalid
marci@174:       OutEdgeIt(Invalid) {}
alpar@163:       /// This constructor sets the iterator to first outgoing edge.
alpar@163:     
alpar@163:       /// This constructor set the iterator to the first outgoing edge of
alpar@163:       /// node
alpar@163:       ///@param n the node
alpar@163:       ///@param G the graph
alpar@515:       OutEdgeIt(const GraphSkeleton &, Node) {}
alpar@163:     };
alpar@163: 
alpar@242:     /// This iterator goes trough the incoming edges of a node.
alpar@186: 
alpar@242:     /// This iterator goes trough the \e incoming edges of a certain node
alpar@186:     /// of a graph.
alpar@186:     /// Its usage is quite simple, for example you can count the number
alpar@186:     /// of outgoing edges of a node \c n
alpar@186:     /// in graph \c G of type \c Graph as follows.
alpar@186:     /// \code
alpar@186:     ///int count=0;
alpar@186:     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
alpar@186:     /// \endcode
alpar@186: 
alpar@163:     class InEdgeIt : public Edge {
alpar@163:     public:
alpar@163:       /// @warning The default constructor sets the iterator
alpar@163:       /// to an undefined value.
alpar@163:       InEdgeIt() {}
alpar@163:       /// Initialize the iterator to be invalid
marci@174:       InEdgeIt(Invalid) {}
alpar@182:       InEdgeIt(const GraphSkeleton &, Node) {}    
alpar@163:     };
alpar@163:     //  class SymEdgeIt : public Edge {};
alpar@186: 
alpar@186:     /// This iterator goes through each edge.
alpar@186: 
alpar@186:     /// This iterator goes through each edge of a graph.
alpar@186:     /// Its usage is quite simple, for example you can count the number
alpar@186:     /// of edges in a graph \c G of type \c Graph as follows:
alpar@186:     /// \code
alpar@186:     ///int count=0;
alpar@186:     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
alpar@186:     /// \endcode
alpar@163:     class EdgeIt : public Edge {
alpar@163:     public:
alpar@163:       /// @warning The default constructor sets the iterator
alpar@163:       /// to an undefined value.
alpar@163:       EdgeIt() {}
alpar@163:       /// Initialize the iterator to be invalid
marci@174:       EdgeIt(Invalid) {}
alpar@182:       EdgeIt(const GraphSkeleton &) {}
alpar@163:     };
alpar@163: 
alpar@163:     /// First node of the graph.
alpar@163: 
alpar@463:     /// \retval i the first node.
alpar@463:     /// \return the first node.
alpar@163:     ///
alpar@163:     NodeIt &first(NodeIt &i) const { return i;}
alpar@163: 
alpar@242:     /// The first incoming edge.
alpar@503:     InEdgeIt &first(InEdgeIt &i, Node) const { return i;}
alpar@163:     /// The first outgoing edge.
alpar@503:     OutEdgeIt &first(OutEdgeIt &i, Node) const { return i;}
alpar@163:     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
alpar@163:     /// The first edge of the Graph.
alpar@163:     EdgeIt &first(EdgeIt &i) const { return i;}
alpar@163: 
alpar@163: //     Node getNext(Node) const {}
alpar@163: //     InEdgeIt getNext(InEdgeIt) const {}
alpar@163: //     OutEdgeIt getNext(OutEdgeIt) const {}
alpar@163: //     //SymEdgeIt getNext(SymEdgeIt) const {}
alpar@163: //     EdgeIt getNext(EdgeIt) const {}
alpar@163: 
alpar@163:     /// Go to the next node.
marci@178:     NodeIt &next(NodeIt &i) const { return i;}
alpar@163:     /// Go to the next incoming edge.
alpar@163:     InEdgeIt &next(InEdgeIt &i) const { return i;}
alpar@163:     /// Go to the next outgoing edge.
alpar@163:     OutEdgeIt &next(OutEdgeIt &i) const { return i;}
alpar@163:     //SymEdgeIt &next(SymEdgeIt &) const {}
alpar@163:     /// Go to the next edge.
alpar@163:     EdgeIt &next(EdgeIt &i) const { return i;}
alpar@163: 
alpar@163:     ///Gives back the head node of an edge.
alpar@163:     Node head(Edge) const { return INVALID; }
alpar@163:     ///Gives back the tail node of an edge.
alpar@163:     Node tail(Edge) const { return INVALID; }
alpar@52:   
alpar@163:     //   Node aNode(InEdgeIt) const {}
alpar@163:     //   Node aNode(OutEdgeIt) const {}
alpar@163:     //   Node aNode(SymEdgeIt) const {}
alpar@163: 
alpar@163:     //   Node bNode(InEdgeIt) const {}
alpar@163:     //   Node bNode(OutEdgeIt) const {}
alpar@163:     //   Node bNode(SymEdgeIt) const {}
alpar@163: 
alpar@163:     /// Checks if a node iterator is valid
alpar@186: 
alpar@186:     ///\todo Maybe, it would be better if iterator converted to
alpar@186:     ///bool directly, as Jacint prefers.
marci@320:     bool valid(const Node&) const { return true;}
alpar@163:     /// Checks if an edge iterator is valid
alpar@186: 
alpar@186:     ///\todo Maybe, it would be better if iterator converted to
alpar@186:     ///bool directly, as Jacint prefers.
marci@320:     bool valid(const Edge&) const { return true;}
alpar@163: 
alpar@163:     ///Gives back the \e id of a node.
alpar@182: 
alpar@242:     ///\warning Not all graph structures provide this feature.
alpar@182:     ///
marci@320:     int id(const Node&) const { return 0;}
alpar@163:     ///Gives back the \e id of an edge.
alpar@182: 
alpar@242:     ///\warning Not all graph structures provide this feature.
alpar@182:     ///
marci@320:     int id(const Edge&) const { return 0;}
alpar@163: 
alpar@163:     //void setInvalid(Node &) const {};
alpar@163:     //void setInvalid(Edge &) const {};
alpar@163:   
alpar@182:     ///Add a new node to the graph.
alpar@182: 
alpar@182:     /// \return the new node.
alpar@186:     ///
alpar@163:     Node addNode() { return INVALID;}
alpar@182:     ///Add a new edge to the graph.
alpar@182: 
alpar@182:     ///Add a new edge to the graph with tail node \c tail
alpar@182:     ///and head node \c head.
alpar@182:     ///\return the new edge.
alpar@503:     Edge addEdge(Node, Node) { return INVALID;}
alpar@163:     
alpar@242:     /// Resets the graph.
alpar@182: 
alpar@182:     /// This function deletes all edges and nodes of the graph.
alpar@182:     /// It also frees the memory allocated to store them.
alpar@163:     void clear() {}
alpar@163: 
marci@179:     int nodeNum() const { return 0;}
marci@179:     int edgeNum() const { return 0;}
alpar@163: 
alpar@186:     ///Read/write/reference map of the nodes to type \c T.
alpar@182: 
alpar@186:     ///Read/write/reference map of the nodes to type \c T.
alpar@186:     /// \sa MemoryMapSkeleton
alpar@182:     /// \todo We may need copy constructor
alpar@182:     /// \todo We may need conversion from other nodetype
alpar@182:     /// \todo We may need operator=
alpar@216:     /// \warning Making maps that can handle bool type (NodeMap<bool>)
alpar@216:     /// needs extra attention!
alpar@182: 
alpar@163:     template<class T> class NodeMap
alpar@163:     {
alpar@163:     public:
alpar@163:       typedef T ValueType;
alpar@163:       typedef Node KeyType;
alpar@163: 
alpar@515:       NodeMap(const GraphSkeleton &) {}
alpar@515:       NodeMap(const GraphSkeleton &, T) {}
alpar@163: 
alpar@515:       template<typename TT> NodeMap(const NodeMap<TT> &) {}
alpar@182: 
alpar@182:       /// Sets the value of a node.
alpar@182: 
alpar@182:       /// Sets the value associated with node \c i to the value \c t.
alpar@182:       ///
alpar@503:       void set(Node, T) {}
alpar@503:       // Gets the value of a node.
alpar@503:       //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
alpar@503:       T &operator[](Node) {return *(T*)0;}
alpar@503:       const T &operator[](Node) const {return *(T*)0;}
alpar@163: 
alpar@182:       /// Updates the map if the graph has been changed
alpar@182: 
alpar@182:       /// \todo Do we need this?
alpar@182:       ///
alpar@163:       void update() {}
alpar@163:       void update(T a) {}   //FIXME: Is it necessary
alpar@163:     };
alpar@163: 
alpar@186:     ///Read/write/reference map of the edges to type \c T.
alpar@182: 
alpar@186:     ///Read/write/reference map of the edges to type \c T.
alpar@186:     ///It behaves exactly in the same way as \ref NodeMap.
alpar@186:     /// \sa NodeMap
alpar@186:     /// \sa MemoryMapSkeleton
alpar@186:     /// \todo We may need copy constructor
alpar@186:     /// \todo We may need conversion from other edgetype
alpar@186:     /// \todo We may need operator=
alpar@163:     template<class T> class EdgeMap
alpar@163:     {
alpar@163:     public:
alpar@163:       typedef T ValueType;
alpar@163:       typedef Edge KeyType;
alpar@163: 
alpar@515:       EdgeMap(const GraphSkeleton &) {}
alpar@515:       EdgeMap(const GraphSkeleton &, T ) {}
alpar@163:     
alpar@503:       ///\todo It can copy between different types.
alpar@503:       ///
alpar@515:       template<typename TT> EdgeMap(const EdgeMap<TT> &) {}
alpar@503: 
alpar@503:       void set(Edge, T) {}
alpar@503:       //T get(Edge) const {return *(T*)0;}
alpar@503:       T &operator[](Edge) {return *(T*)0;}
alpar@503:       const T &operator[](Edge) const {return *(T*)0;}
alpar@163:     
alpar@163:       void update() {}
alpar@163:       void update(T a) {}   //FIXME: Is it necessary
alpar@163:     };
alpar@147:   };
alpar@52: 
alpar@242:   /// An empty eraseable graph class.
alpar@242:   
alpar@242:   /// This class provides all the common features of an \e eraseable graph
alpar@242:   /// structure,
alpar@242:   /// however completely without implementations and real data structures
alpar@242:   /// behind the interface.
alpar@242:   /// All graph algorithms should compile with this class, but it will not
alpar@242:   /// run properly, of course.
alpar@242:   ///
alpar@242:   /// \todo This blabla could be replaced by a sepatate description about
alpar@242:   /// Skeletons.
alpar@242:   ///
alpar@242:   /// It can be used for checking the interface compatibility,
alpar@242:   /// or it can serve as a skeleton of a new graph structure.
alpar@242:   /// 
alpar@242:   /// Also, you will find here the full documentation of a certain graph
alpar@242:   /// feature, the documentation of a real graph imlementation
alpar@242:   /// like @ref ListGraph or
alpar@242:   /// @ref SmartGraph will just refer to this structure.
alpar@242:   class EraseableGraphSkeleton : public GraphSkeleton
alpar@242:   {
alpar@242:   public:
alpar@242:     /// Deletes a node.
alpar@242:     void erase(Node n) {}
alpar@242:     /// Deletes an edge.
alpar@242:     void erase(Edge e) {}
alpar@242: 
alpar@242:     /// Defalult constructor.
alpar@403:     EraseableGraphSkeleton() {}
alpar@242:     ///Copy consructor.
alpar@403:     EraseableGraphSkeleton(const GraphSkeleton &G) {}
alpar@242:   };
alpar@242: 
alpar@242:   
alpar@163:   // @}
alpar@147: 
marci@174: } //namespace hugo
alpar@52: 
alpar@145: 
alpar@145: 
alpar@182: // class EmptyBipGraph : public Graph Skeleton
alpar@147: // {
alpar@163: //   class ANode {};
alpar@163: //   class BNode {};
alpar@145: 
alpar@163: //   ANode &next(ANode &) {}
alpar@163: //   BNode &next(BNode &) {}
alpar@145: 
alpar@163: //   ANode &getFirst(ANode &) const {}
alpar@163: //   BNode &getFirst(BNode &) const {}
alpar@145: 
alpar@147: //   enum NodeClass { A = 0, B = 1 };
alpar@163: //   NodeClass getClass(Node n) {}
alpar@147: 
alpar@147: // }
marci@174: 
alpar@503: #endif // HUGO_SKELETON_GRAPH_H