deba@2440: /* -*- C++ -*- deba@2440: * deba@2440: * This file is a part of LEMON, a generic C++ optimization library deba@2440: * alpar@2553: * Copyright (C) 2003-2008 deba@2440: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport deba@2440: * (Egervary Research Group on Combinatorial Optimization, EGRES). deba@2440: * deba@2440: * Permission to use, modify and distribute this software is granted deba@2440: * provided that this copyright notice appears in all copies. For deba@2440: * precise terms see the accompanying LICENSE file. deba@2440: * deba@2440: * This software is provided "AS IS" with no warranty of any kind, deba@2440: * express or implied, and with no claim as to its suitability for any deba@2440: * purpose. deba@2440: * deba@2440: */ deba@2440: deba@2440: #ifndef LEMON_NETWORK_SIMPLEX_H deba@2440: #define LEMON_NETWORK_SIMPLEX_H deba@2440: deba@2440: /// \ingroup min_cost_flow deba@2440: /// deba@2440: /// \file kpeter@2575: /// \brief Network simplex algorithm for finding a minimum cost flow. deba@2440: kpeter@2575: #include deba@2440: #include kpeter@2630: #include kpeter@2575: kpeter@2509: #include kpeter@2509: #include deba@2440: #include kpeter@2575: #include deba@2440: deba@2440: namespace lemon { deba@2440: deba@2440: /// \addtogroup min_cost_flow deba@2440: /// @{ deba@2440: kpeter@2619: /// \brief Implementation of the primal network simplex algorithm kpeter@2619: /// for finding a minimum cost flow. deba@2440: /// kpeter@2619: /// \ref NetworkSimplex implements the primal network simplex algorithm kpeter@2619: /// for finding a minimum cost flow. deba@2440: /// kpeter@2575: /// \tparam Graph The directed graph type the algorithm runs on. kpeter@2575: /// \tparam LowerMap The type of the lower bound map. kpeter@2575: /// \tparam CapacityMap The type of the capacity (upper bound) map. kpeter@2575: /// \tparam CostMap The type of the cost (length) map. kpeter@2575: /// \tparam SupplyMap The type of the supply map. deba@2440: /// deba@2440: /// \warning kpeter@2575: /// - Edge capacities and costs should be \e non-negative \e integers. kpeter@2575: /// - Supply values should be \e signed \e integers. kpeter@2581: /// - The value types of the maps should be convertible to each other. kpeter@2581: /// - \c CostMap::Value must be signed type. kpeter@2575: /// kpeter@2619: /// \note \ref NetworkSimplex provides five different pivot rule kpeter@2575: /// implementations that significantly affect the efficiency of the kpeter@2575: /// algorithm. kpeter@2619: /// By default "Block Search" pivot rule is used, which proved to be kpeter@2619: /// by far the most efficient according to our benchmark tests. kpeter@2619: /// However another pivot rule can be selected using \ref run() kpeter@2619: /// function with the proper parameter. deba@2440: /// deba@2440: /// \author Peter Kovacs kpeter@2533: template < typename Graph, kpeter@2533: typename LowerMap = typename Graph::template EdgeMap, kpeter@2575: typename CapacityMap = typename Graph::template EdgeMap, kpeter@2533: typename CostMap = typename Graph::template EdgeMap, kpeter@2575: typename SupplyMap = typename Graph::template NodeMap > deba@2440: class NetworkSimplex deba@2440: { deba@2440: typedef typename CapacityMap::Value Capacity; deba@2440: typedef typename CostMap::Value Cost; deba@2440: typedef typename SupplyMap::Value Supply; deba@2440: deba@2440: typedef SmartGraph SGraph; kpeter@2556: GRAPH_TYPEDEFS(typename SGraph); deba@2440: deba@2440: typedef typename SGraph::template EdgeMap SCapacityMap; deba@2440: typedef typename SGraph::template EdgeMap SCostMap; deba@2440: typedef typename SGraph::template NodeMap SSupplyMap; deba@2440: typedef typename SGraph::template NodeMap SPotentialMap; deba@2440: deba@2440: typedef typename SGraph::template NodeMap IntNodeMap; deba@2440: typedef typename SGraph::template NodeMap BoolNodeMap; deba@2440: typedef typename SGraph::template NodeMap NodeNodeMap; deba@2440: typedef typename SGraph::template NodeMap EdgeNodeMap; deba@2440: typedef typename SGraph::template EdgeMap IntEdgeMap; kpeter@2619: typedef typename SGraph::template EdgeMap BoolEdgeMap; deba@2440: deba@2440: typedef typename Graph::template NodeMap NodeRefMap; deba@2440: typedef typename Graph::template EdgeMap EdgeRefMap; deba@2440: kpeter@2619: typedef std::vector EdgeVector; kpeter@2619: deba@2440: public: deba@2440: kpeter@2556: /// The type of the flow map. deba@2440: typedef typename Graph::template EdgeMap FlowMap; kpeter@2556: /// The type of the potential map. deba@2440: typedef typename Graph::template NodeMap PotentialMap; deba@2440: kpeter@2575: public: deba@2440: kpeter@2575: /// Enum type to select the pivot rule used by \ref run(). kpeter@2575: enum PivotRuleEnum { kpeter@2575: FIRST_ELIGIBLE_PIVOT, kpeter@2575: BEST_ELIGIBLE_PIVOT, kpeter@2575: BLOCK_SEARCH_PIVOT, kpeter@2575: CANDIDATE_LIST_PIVOT, kpeter@2619: ALTERING_LIST_PIVOT kpeter@2575: }; kpeter@2575: kpeter@2575: private: kpeter@2575: kpeter@2575: /// \brief Map adaptor class for handling reduced edge costs. kpeter@2575: /// kpeter@2556: /// Map adaptor class for handling reduced edge costs. deba@2440: class ReducedCostMap : public MapBase deba@2440: { deba@2440: private: deba@2440: kpeter@2575: const SGraph &_gr; kpeter@2575: const SCostMap &_cost_map; kpeter@2575: const SPotentialMap &_pot_map; deba@2440: deba@2440: public: deba@2440: kpeter@2575: ///\e kpeter@2575: ReducedCostMap( const SGraph &gr, kpeter@2575: const SCostMap &cost_map, kpeter@2575: const SPotentialMap &pot_map ) : kpeter@2579: _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} deba@2440: kpeter@2575: ///\e kpeter@2509: Cost operator[](const Edge &e) const { kpeter@2575: return _cost_map[e] + _pot_map[_gr.source(e)] kpeter@2630: - _pot_map[_gr.target(e)]; deba@2440: } deba@2440: deba@2440: }; //class ReducedCostMap deba@2440: kpeter@2575: private: deba@2440: kpeter@2575: /// \brief Implementation of the "First Eligible" pivot rule for the kpeter@2575: /// \ref NetworkSimplex "network simplex" algorithm. kpeter@2575: /// kpeter@2575: /// This class implements the "First Eligible" pivot rule kpeter@2575: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@2619: /// kpeter@2619: /// For more information see \ref NetworkSimplex::run(). kpeter@2575: class FirstEligiblePivotRule kpeter@2575: { kpeter@2575: private: deba@2440: kpeter@2619: // References to the NetworkSimplex class kpeter@2575: NetworkSimplex &_ns; kpeter@2619: EdgeVector &_edges; kpeter@2619: kpeter@2619: int _next_edge; deba@2440: kpeter@2575: public: deba@2440: kpeter@2619: /// Constructor kpeter@2619: FirstEligiblePivotRule(NetworkSimplex &ns, EdgeVector &edges) : kpeter@2619: _ns(ns), _edges(edges), _next_edge(0) {} kpeter@2575: kpeter@2619: /// Find next entering edge kpeter@2630: bool findEnteringEdge() { kpeter@2619: Edge e; kpeter@2619: for (int i = _next_edge; i < int(_edges.size()); ++i) { kpeter@2619: e = _edges[i]; kpeter@2575: if (_ns._state[e] * _ns._red_cost[e] < 0) { kpeter@2575: _ns._in_edge = e; kpeter@2619: _next_edge = i + 1; kpeter@2575: return true; kpeter@2575: } kpeter@2575: } kpeter@2619: for (int i = 0; i < _next_edge; ++i) { kpeter@2619: e = _edges[i]; kpeter@2575: if (_ns._state[e] * _ns._red_cost[e] < 0) { kpeter@2575: _ns._in_edge = e; kpeter@2619: _next_edge = i + 1; kpeter@2575: return true; kpeter@2575: } kpeter@2575: } kpeter@2575: return false; kpeter@2575: } kpeter@2575: }; //class FirstEligiblePivotRule kpeter@2575: kpeter@2575: /// \brief Implementation of the "Best Eligible" pivot rule for the kpeter@2575: /// \ref NetworkSimplex "network simplex" algorithm. kpeter@2575: /// kpeter@2575: /// This class implements the "Best Eligible" pivot rule kpeter@2575: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@2619: /// kpeter@2619: /// For more information see \ref NetworkSimplex::run(). kpeter@2575: class BestEligiblePivotRule kpeter@2575: { kpeter@2575: private: kpeter@2575: kpeter@2619: // References to the NetworkSimplex class kpeter@2575: NetworkSimplex &_ns; kpeter@2619: EdgeVector &_edges; kpeter@2575: kpeter@2575: public: kpeter@2575: kpeter@2619: /// Constructor kpeter@2619: BestEligiblePivotRule(NetworkSimplex &ns, EdgeVector &edges) : kpeter@2619: _ns(ns), _edges(edges) {} kpeter@2575: kpeter@2619: /// Find next entering edge kpeter@2630: bool findEnteringEdge() { kpeter@2575: Cost min = 0; kpeter@2619: Edge e; kpeter@2619: for (int i = 0; i < int(_edges.size()); ++i) { kpeter@2619: e = _edges[i]; kpeter@2575: if (_ns._state[e] * _ns._red_cost[e] < min) { kpeter@2575: min = _ns._state[e] * _ns._red_cost[e]; kpeter@2575: _ns._in_edge = e; kpeter@2575: } kpeter@2575: } kpeter@2575: return min < 0; kpeter@2575: } kpeter@2575: }; //class BestEligiblePivotRule kpeter@2575: kpeter@2575: /// \brief Implementation of the "Block Search" pivot rule for the kpeter@2575: /// \ref NetworkSimplex "network simplex" algorithm. kpeter@2575: /// kpeter@2575: /// This class implements the "Block Search" pivot rule kpeter@2575: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@2619: /// kpeter@2619: /// For more information see \ref NetworkSimplex::run(). kpeter@2575: class BlockSearchPivotRule kpeter@2575: { kpeter@2575: private: kpeter@2575: kpeter@2619: // References to the NetworkSimplex class kpeter@2575: NetworkSimplex &_ns; kpeter@2619: EdgeVector &_edges; kpeter@2619: kpeter@2575: int _block_size; kpeter@2619: int _next_edge, _min_edge; kpeter@2575: kpeter@2575: public: kpeter@2575: kpeter@2619: /// Constructor kpeter@2619: BlockSearchPivotRule(NetworkSimplex &ns, EdgeVector &edges) : kpeter@2619: _ns(ns), _edges(edges), _next_edge(0), _min_edge(0) kpeter@2575: { kpeter@2619: // The main parameters of the pivot rule kpeter@2619: const double BLOCK_SIZE_FACTOR = 2.0; kpeter@2619: const int MIN_BLOCK_SIZE = 10; kpeter@2619: kpeter@2619: _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_edges.size())), kpeter@2619: MIN_BLOCK_SIZE ); kpeter@2575: } kpeter@2575: kpeter@2619: /// Find next entering edge kpeter@2630: bool findEnteringEdge() { kpeter@2575: Cost curr, min = 0; kpeter@2619: Edge e; kpeter@2619: int cnt = _block_size; kpeter@2619: int i; kpeter@2619: for (i = _next_edge; i < int(_edges.size()); ++i) { kpeter@2619: e = _edges[i]; kpeter@2575: if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) { kpeter@2575: min = curr; kpeter@2619: _min_edge = i; kpeter@2575: } kpeter@2619: if (--cnt == 0) { kpeter@2575: if (min < 0) break; kpeter@2619: cnt = _block_size; kpeter@2575: } kpeter@2575: } kpeter@2619: if (min == 0 || cnt > 0) { kpeter@2619: for (i = 0; i < _next_edge; ++i) { kpeter@2619: e = _edges[i]; kpeter@2575: if ((curr = _ns._state[e] * _ns._red_cost[e]) < min) { kpeter@2575: min = curr; kpeter@2619: _min_edge = i; kpeter@2575: } kpeter@2619: if (--cnt == 0) { kpeter@2575: if (min < 0) break; kpeter@2619: cnt = _block_size; kpeter@2575: } kpeter@2575: } kpeter@2575: } kpeter@2619: if (min >= 0) return false; kpeter@2619: _ns._in_edge = _edges[_min_edge]; kpeter@2619: _next_edge = i; kpeter@2619: return true; kpeter@2575: } kpeter@2575: }; //class BlockSearchPivotRule kpeter@2575: kpeter@2575: /// \brief Implementation of the "Candidate List" pivot rule for the kpeter@2575: /// \ref NetworkSimplex "network simplex" algorithm. kpeter@2575: /// kpeter@2575: /// This class implements the "Candidate List" pivot rule kpeter@2575: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@2619: /// kpeter@2619: /// For more information see \ref NetworkSimplex::run(). kpeter@2575: class CandidateListPivotRule kpeter@2575: { kpeter@2575: private: kpeter@2575: kpeter@2619: // References to the NetworkSimplex class kpeter@2575: NetworkSimplex &_ns; kpeter@2619: EdgeVector &_edges; kpeter@2575: kpeter@2619: EdgeVector _candidates; kpeter@2619: int _list_length, _minor_limit; kpeter@2619: int _curr_length, _minor_count; kpeter@2619: int _next_edge, _min_edge; kpeter@2575: kpeter@2575: public: kpeter@2575: kpeter@2619: /// Constructor kpeter@2619: CandidateListPivotRule(NetworkSimplex &ns, EdgeVector &edges) : kpeter@2619: _ns(ns), _edges(edges), _next_edge(0), _min_edge(0) kpeter@2575: { kpeter@2619: // The main parameters of the pivot rule kpeter@2619: const double LIST_LENGTH_FACTOR = 1.0; kpeter@2619: const int MIN_LIST_LENGTH = 10; kpeter@2619: const double MINOR_LIMIT_FACTOR = 0.1; kpeter@2619: const int MIN_MINOR_LIMIT = 3; kpeter@2619: kpeter@2619: _list_length = std::max( int(LIST_LENGTH_FACTOR * sqrt(_edges.size())), kpeter@2619: MIN_LIST_LENGTH ); kpeter@2619: _minor_limit = std::max( int(MINOR_LIMIT_FACTOR * _list_length), kpeter@2619: MIN_MINOR_LIMIT ); kpeter@2619: _curr_length = _minor_count = 0; kpeter@2619: _candidates.resize(_list_length); kpeter@2575: } kpeter@2575: kpeter@2619: /// Find next entering edge kpeter@2630: bool findEnteringEdge() { kpeter@2575: Cost min, curr; kpeter@2619: if (_curr_length > 0 && _minor_count < _minor_limit) { kpeter@2630: // Minor iteration: select the best eligible edge from the kpeter@2630: // current candidate list kpeter@2575: ++_minor_count; kpeter@2575: Edge e; kpeter@2575: min = 0; kpeter@2619: for (int i = 0; i < _curr_length; ++i) { kpeter@2575: e = _candidates[i]; kpeter@2619: curr = _ns._state[e] * _ns._red_cost[e]; kpeter@2619: if (curr < min) { kpeter@2575: min = curr; kpeter@2575: _ns._in_edge = e; kpeter@2575: } kpeter@2619: if (curr >= 0) { kpeter@2619: _candidates[i--] = _candidates[--_curr_length]; kpeter@2619: } kpeter@2575: } kpeter@2575: if (min < 0) return true; kpeter@2575: } kpeter@2575: kpeter@2630: // Major iteration: build a new candidate list kpeter@2619: Edge e; kpeter@2575: min = 0; kpeter@2619: _curr_length = 0; kpeter@2619: int i; kpeter@2619: for (i = _next_edge; i < int(_edges.size()); ++i) { kpeter@2619: e = _edges[i]; kpeter@2575: if ((curr = _ns._state[e] * _ns._red_cost[e]) < 0) { kpeter@2619: _candidates[_curr_length++] = e; kpeter@2575: if (curr < min) { kpeter@2575: min = curr; kpeter@2619: _min_edge = i; kpeter@2575: } kpeter@2619: if (_curr_length == _list_length) break; kpeter@2575: } kpeter@2575: } kpeter@2619: if (_curr_length < _list_length) { kpeter@2619: for (i = 0; i < _next_edge; ++i) { kpeter@2619: e = _edges[i]; kpeter@2575: if ((curr = _ns._state[e] * _ns._red_cost[e]) < 0) { kpeter@2619: _candidates[_curr_length++] = e; kpeter@2575: if (curr < min) { kpeter@2575: min = curr; kpeter@2619: _min_edge = i; kpeter@2575: } kpeter@2619: if (_curr_length == _list_length) break; kpeter@2575: } kpeter@2575: } kpeter@2575: } kpeter@2619: if (_curr_length == 0) return false; kpeter@2575: _minor_count = 1; kpeter@2619: _ns._in_edge = _edges[_min_edge]; kpeter@2619: _next_edge = i; kpeter@2575: return true; kpeter@2575: } kpeter@2575: }; //class CandidateListPivotRule kpeter@2575: kpeter@2619: /// \brief Implementation of the "Altering Candidate List" pivot rule kpeter@2619: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@2619: /// kpeter@2619: /// This class implements the "Altering Candidate List" pivot rule kpeter@2619: /// for the \ref NetworkSimplex "network simplex" algorithm. kpeter@2619: /// kpeter@2619: /// For more information see \ref NetworkSimplex::run(). kpeter@2619: class AlteringListPivotRule kpeter@2619: { kpeter@2619: private: kpeter@2619: kpeter@2619: // References to the NetworkSimplex class kpeter@2619: NetworkSimplex &_ns; kpeter@2619: EdgeVector &_edges; kpeter@2619: kpeter@2619: EdgeVector _candidates; kpeter@2619: SCostMap _cand_cost; kpeter@2619: int _block_size, _head_length, _curr_length; kpeter@2619: int _next_edge; kpeter@2619: kpeter@2619: // Functor class to compare edges during sort of the candidate list kpeter@2619: class SortFunc kpeter@2619: { kpeter@2619: private: kpeter@2619: const SCostMap &_map; kpeter@2619: public: kpeter@2619: SortFunc(const SCostMap &map) : _map(map) {} kpeter@2619: bool operator()(const Edge &e1, const Edge &e2) { kpeter@2630: return _map[e1] > _map[e2]; kpeter@2619: } kpeter@2619: }; kpeter@2619: kpeter@2619: SortFunc _sort_func; kpeter@2619: kpeter@2619: public: kpeter@2619: kpeter@2619: /// Constructor kpeter@2619: AlteringListPivotRule(NetworkSimplex &ns, EdgeVector &edges) : kpeter@2619: _ns(ns), _edges(edges), _cand_cost(_ns._graph), kpeter@2619: _next_edge(0), _sort_func(_cand_cost) kpeter@2619: { kpeter@2619: // The main parameters of the pivot rule kpeter@2630: const double BLOCK_SIZE_FACTOR = 1.5; kpeter@2619: const int MIN_BLOCK_SIZE = 10; kpeter@2619: const double HEAD_LENGTH_FACTOR = 0.1; kpeter@2630: const int MIN_HEAD_LENGTH = 3; kpeter@2619: kpeter@2619: _block_size = std::max( int(BLOCK_SIZE_FACTOR * sqrt(_edges.size())), kpeter@2619: MIN_BLOCK_SIZE ); kpeter@2619: _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size), kpeter@2619: MIN_HEAD_LENGTH ); kpeter@2619: _candidates.resize(_head_length + _block_size); kpeter@2619: _curr_length = 0; kpeter@2619: } kpeter@2619: kpeter@2619: /// Find next entering edge kpeter@2630: bool findEnteringEdge() { kpeter@2630: // Check the current candidate list kpeter@2619: Edge e; kpeter@2630: for (int ix = 0; ix < _curr_length; ++ix) { kpeter@2630: e = _candidates[ix]; kpeter@2619: if ((_cand_cost[e] = _ns._state[e] * _ns._red_cost[e]) >= 0) { kpeter@2630: _candidates[ix--] = _candidates[--_curr_length]; kpeter@2619: } kpeter@2619: } kpeter@2619: kpeter@2630: // Extend the list kpeter@2619: int cnt = _block_size; kpeter@2619: int last_edge = 0; kpeter@2619: int limit = _head_length; kpeter@2619: for (int i = _next_edge; i < int(_edges.size()); ++i) { kpeter@2619: e = _edges[i]; kpeter@2619: if ((_cand_cost[e] = _ns._state[e] * _ns._red_cost[e]) < 0) { kpeter@2619: _candidates[_curr_length++] = e; kpeter@2619: last_edge = i; kpeter@2619: } kpeter@2619: if (--cnt == 0) { kpeter@2619: if (_curr_length > limit) break; kpeter@2619: limit = 0; kpeter@2619: cnt = _block_size; kpeter@2619: } kpeter@2619: } kpeter@2619: if (_curr_length <= limit) { kpeter@2619: for (int i = 0; i < _next_edge; ++i) { kpeter@2619: e = _edges[i]; kpeter@2619: if ((_cand_cost[e] = _ns._state[e] * _ns._red_cost[e]) < 0) { kpeter@2619: _candidates[_curr_length++] = e; kpeter@2619: last_edge = i; kpeter@2619: } kpeter@2619: if (--cnt == 0) { kpeter@2619: if (_curr_length > limit) break; kpeter@2619: limit = 0; kpeter@2619: cnt = _block_size; kpeter@2619: } kpeter@2619: } kpeter@2619: } kpeter@2619: if (_curr_length == 0) return false; kpeter@2619: _next_edge = last_edge + 1; kpeter@2619: kpeter@2630: // Make heap of the candidate list (approximating a partial sort) kpeter@2630: make_heap( _candidates.begin(), _candidates.begin() + _curr_length, kpeter@2630: _sort_func ); kpeter@2619: kpeter@2630: // Pop the first element of the heap kpeter@2619: _ns._in_edge = _candidates[0]; kpeter@2630: pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, kpeter@2630: _sort_func ); kpeter@2630: _curr_length = std::min(_head_length, _curr_length - 1); kpeter@2619: return true; kpeter@2619: } kpeter@2619: }; //class AlteringListPivotRule kpeter@2619: kpeter@2575: private: kpeter@2575: kpeter@2579: // State constants for edges kpeter@2579: enum EdgeStateEnum { kpeter@2579: STATE_UPPER = -1, kpeter@2579: STATE_TREE = 0, kpeter@2579: STATE_LOWER = 1 kpeter@2579: }; kpeter@2575: kpeter@2575: private: kpeter@2575: kpeter@2575: // The directed graph the algorithm runs on kpeter@2575: SGraph _graph; kpeter@2575: // The original graph kpeter@2575: const Graph &_graph_ref; kpeter@2575: // The original lower bound map kpeter@2575: const LowerMap *_lower; kpeter@2575: // The capacity map kpeter@2575: SCapacityMap _capacity; kpeter@2575: // The cost map kpeter@2575: SCostMap _cost; kpeter@2575: // The supply map kpeter@2575: SSupplyMap _supply; kpeter@2575: bool _valid_supply; kpeter@2575: kpeter@2575: // Edge map of the current flow kpeter@2575: SCapacityMap _flow; kpeter@2575: // Node map of the current potentials kpeter@2575: SPotentialMap _potential; kpeter@2575: kpeter@2575: // The depth node map of the spanning tree structure kpeter@2575: IntNodeMap _depth; kpeter@2575: // The parent node map of the spanning tree structure kpeter@2575: NodeNodeMap _parent; kpeter@2575: // The pred_edge node map of the spanning tree structure kpeter@2575: EdgeNodeMap _pred_edge; kpeter@2575: // The thread node map of the spanning tree structure kpeter@2575: NodeNodeMap _thread; kpeter@2575: // The forward node map of the spanning tree structure kpeter@2575: BoolNodeMap _forward; kpeter@2575: // The state edge map kpeter@2575: IntEdgeMap _state; kpeter@2630: // The artificial root node of the spanning tree structure kpeter@2575: Node _root; kpeter@2575: kpeter@2575: // The reduced cost map kpeter@2575: ReducedCostMap _red_cost; kpeter@2575: kpeter@2619: // The non-artifical edges kpeter@2619: EdgeVector _edges; kpeter@2619: kpeter@2575: // Members for handling the original graph kpeter@2581: FlowMap *_flow_result; kpeter@2581: PotentialMap *_potential_result; kpeter@2581: bool _local_flow; kpeter@2581: bool _local_potential; kpeter@2575: NodeRefMap _node_ref; kpeter@2575: EdgeRefMap _edge_ref; deba@2440: kpeter@2630: // The entering edge of the current pivot iteration kpeter@2575: Edge _in_edge; kpeter@2575: kpeter@2630: // Temporary nodes used in the current pivot iteration kpeter@2556: Node join, u_in, v_in, u_out, v_out; kpeter@2556: Node right, first, second, last; kpeter@2556: Node stem, par_stem, new_stem; kpeter@2556: // The maximum augment amount along the found cycle in the current kpeter@2630: // pivot iteration kpeter@2556: Capacity delta; deba@2440: deba@2440: public : deba@2440: kpeter@2581: /// \brief General constructor (with lower bounds). deba@2440: /// kpeter@2581: /// General constructor (with lower bounds). deba@2440: /// kpeter@2575: /// \param graph The directed graph the algorithm runs on. kpeter@2575: /// \param lower The lower bounds of the edges. kpeter@2575: /// \param capacity The capacities (upper bounds) of the edges. kpeter@2575: /// \param cost The cost (length) values of the edges. kpeter@2575: /// \param supply The supply values of the nodes (signed). kpeter@2575: NetworkSimplex( const Graph &graph, kpeter@2575: const LowerMap &lower, kpeter@2575: const CapacityMap &capacity, kpeter@2575: const CostMap &cost, kpeter@2575: const SupplyMap &supply ) : kpeter@2575: _graph(), _graph_ref(graph), _lower(&lower), _capacity(_graph), kpeter@2575: _cost(_graph), _supply(_graph), _flow(_graph), kpeter@2575: _potential(_graph), _depth(_graph), _parent(_graph), kpeter@2575: _pred_edge(_graph), _thread(_graph), _forward(_graph), kpeter@2575: _state(_graph), _red_cost(_graph, _cost, _potential), kpeter@2623: _flow_result(NULL), _potential_result(NULL), kpeter@2581: _local_flow(false), _local_potential(false), kpeter@2575: _node_ref(graph), _edge_ref(graph) deba@2440: { kpeter@2629: // Check the sum of supply values deba@2440: Supply sum = 0; kpeter@2575: for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n) kpeter@2575: sum += supply[n]; kpeter@2575: if (!(_valid_supply = sum == 0)) return; deba@2440: kpeter@2629: // Copy _graph_ref to _graph kpeter@2575: _graph.reserveNode(countNodes(_graph_ref) + 1); kpeter@2575: _graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref)); kpeter@2575: copyGraph(_graph, _graph_ref) kpeter@2629: .edgeMap(_capacity, capacity) kpeter@2575: .edgeMap(_cost, cost) kpeter@2629: .nodeMap(_supply, supply) kpeter@2575: .nodeRef(_node_ref) kpeter@2575: .edgeRef(_edge_ref) kpeter@2556: .run(); deba@2440: kpeter@2629: // Remove non-zero lower bounds kpeter@2575: for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) { kpeter@2629: if (lower[e] != 0) { kpeter@2575: _capacity[_edge_ref[e]] = capacity[e] - lower[e]; kpeter@2629: _supply[_node_ref[_graph_ref.source(e)]] -= lower[e]; kpeter@2629: _supply[_node_ref[_graph_ref.target(e)]] += lower[e]; deba@2440: } deba@2440: } deba@2440: } deba@2440: kpeter@2581: /// \brief General constructor (without lower bounds). deba@2440: /// kpeter@2581: /// General constructor (without lower bounds). deba@2440: /// kpeter@2575: /// \param graph The directed graph the algorithm runs on. kpeter@2575: /// \param capacity The capacities (upper bounds) of the edges. kpeter@2575: /// \param cost The cost (length) values of the edges. kpeter@2575: /// \param supply The supply values of the nodes (signed). kpeter@2575: NetworkSimplex( const Graph &graph, kpeter@2575: const CapacityMap &capacity, kpeter@2575: const CostMap &cost, kpeter@2575: const SupplyMap &supply ) : kpeter@2575: _graph(), _graph_ref(graph), _lower(NULL), _capacity(_graph), kpeter@2575: _cost(_graph), _supply(_graph), _flow(_graph), kpeter@2575: _potential(_graph), _depth(_graph), _parent(_graph), kpeter@2575: _pred_edge(_graph), _thread(_graph), _forward(_graph), kpeter@2575: _state(_graph), _red_cost(_graph, _cost, _potential), kpeter@2623: _flow_result(NULL), _potential_result(NULL), kpeter@2581: _local_flow(false), _local_potential(false), kpeter@2575: _node_ref(graph), _edge_ref(graph) deba@2440: { kpeter@2629: // Check the sum of supply values deba@2440: Supply sum = 0; kpeter@2575: for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n) kpeter@2575: sum += supply[n]; kpeter@2575: if (!(_valid_supply = sum == 0)) return; deba@2440: kpeter@2629: // Copy _graph_ref to _graph kpeter@2629: _graph.reserveNode(countNodes(_graph_ref) + 1); kpeter@2629: _graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref)); kpeter@2575: copyGraph(_graph, _graph_ref) kpeter@2575: .edgeMap(_capacity, capacity) kpeter@2575: .edgeMap(_cost, cost) kpeter@2575: .nodeMap(_supply, supply) kpeter@2575: .nodeRef(_node_ref) kpeter@2575: .edgeRef(_edge_ref) kpeter@2556: .run(); deba@2440: } deba@2440: kpeter@2581: /// \brief Simple constructor (with lower bounds). deba@2440: /// kpeter@2581: /// Simple constructor (with lower bounds). deba@2440: /// kpeter@2575: /// \param graph The directed graph the algorithm runs on. kpeter@2575: /// \param lower The lower bounds of the edges. kpeter@2575: /// \param capacity The capacities (upper bounds) of the edges. kpeter@2575: /// \param cost The cost (length) values of the edges. kpeter@2575: /// \param s The source node. kpeter@2575: /// \param t The target node. kpeter@2575: /// \param flow_value The required amount of flow from node \c s kpeter@2575: /// to node \c t (i.e. the supply of \c s and the demand of \c t). kpeter@2575: NetworkSimplex( const Graph &graph, kpeter@2575: const LowerMap &lower, kpeter@2575: const CapacityMap &capacity, kpeter@2575: const CostMap &cost, kpeter@2575: typename Graph::Node s, kpeter@2575: typename Graph::Node t, kpeter@2575: typename SupplyMap::Value flow_value ) : kpeter@2575: _graph(), _graph_ref(graph), _lower(&lower), _capacity(_graph), kpeter@2629: _cost(_graph), _supply(_graph, 0), _flow(_graph), kpeter@2575: _potential(_graph), _depth(_graph), _parent(_graph), kpeter@2575: _pred_edge(_graph), _thread(_graph), _forward(_graph), kpeter@2575: _state(_graph), _red_cost(_graph, _cost, _potential), kpeter@2623: _flow_result(NULL), _potential_result(NULL), kpeter@2581: _local_flow(false), _local_potential(false), kpeter@2575: _node_ref(graph), _edge_ref(graph) deba@2440: { kpeter@2629: // Copy _graph_ref to graph kpeter@2629: _graph.reserveNode(countNodes(_graph_ref) + 1); kpeter@2629: _graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref)); kpeter@2575: copyGraph(_graph, _graph_ref) kpeter@2629: .edgeMap(_capacity, capacity) kpeter@2575: .edgeMap(_cost, cost) kpeter@2575: .nodeRef(_node_ref) kpeter@2575: .edgeRef(_edge_ref) kpeter@2556: .run(); deba@2440: kpeter@2629: // Remove non-zero lower bounds kpeter@2629: _supply[_node_ref[s]] = flow_value; kpeter@2629: _supply[_node_ref[t]] = -flow_value; kpeter@2575: for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) { kpeter@2629: if (lower[e] != 0) { kpeter@2575: _capacity[_edge_ref[e]] = capacity[e] - lower[e]; kpeter@2629: _supply[_node_ref[_graph_ref.source(e)]] -= lower[e]; kpeter@2629: _supply[_node_ref[_graph_ref.target(e)]] += lower[e]; deba@2440: } deba@2440: } kpeter@2575: _valid_supply = true; deba@2440: } deba@2440: kpeter@2581: /// \brief Simple constructor (without lower bounds). deba@2440: /// kpeter@2581: /// Simple constructor (without lower bounds). deba@2440: /// kpeter@2575: /// \param graph The directed graph the algorithm runs on. kpeter@2575: /// \param capacity The capacities (upper bounds) of the edges. kpeter@2575: /// \param cost The cost (length) values of the edges. kpeter@2575: /// \param s The source node. kpeter@2575: /// \param t The target node. kpeter@2575: /// \param flow_value The required amount of flow from node \c s kpeter@2575: /// to node \c t (i.e. the supply of \c s and the demand of \c t). kpeter@2575: NetworkSimplex( const Graph &graph, kpeter@2575: const CapacityMap &capacity, kpeter@2575: const CostMap &cost, kpeter@2575: typename Graph::Node s, kpeter@2575: typename Graph::Node t, kpeter@2575: typename SupplyMap::Value flow_value ) : kpeter@2575: _graph(), _graph_ref(graph), _lower(NULL), _capacity(_graph), kpeter@2575: _cost(_graph), _supply(_graph, 0), _flow(_graph), kpeter@2575: _potential(_graph), _depth(_graph), _parent(_graph), kpeter@2575: _pred_edge(_graph), _thread(_graph), _forward(_graph), kpeter@2575: _state(_graph), _red_cost(_graph, _cost, _potential), kpeter@2623: _flow_result(NULL), _potential_result(NULL), kpeter@2581: _local_flow(false), _local_potential(false), kpeter@2575: _node_ref(graph), _edge_ref(graph) deba@2440: { kpeter@2629: // Copy _graph_ref to graph kpeter@2629: _graph.reserveNode(countNodes(_graph_ref) + 1); kpeter@2629: _graph.reserveEdge(countEdges(_graph_ref) + countNodes(_graph_ref)); kpeter@2575: copyGraph(_graph, _graph_ref) kpeter@2575: .edgeMap(_capacity, capacity) kpeter@2575: .edgeMap(_cost, cost) kpeter@2575: .nodeRef(_node_ref) kpeter@2575: .edgeRef(_edge_ref) kpeter@2556: .run(); kpeter@2575: _supply[_node_ref[s]] = flow_value; kpeter@2575: _supply[_node_ref[t]] = -flow_value; kpeter@2575: _valid_supply = true; deba@2440: } deba@2440: kpeter@2581: /// Destructor. kpeter@2581: ~NetworkSimplex() { kpeter@2581: if (_local_flow) delete _flow_result; kpeter@2581: if (_local_potential) delete _potential_result; kpeter@2581: } kpeter@2581: kpeter@2619: /// \brief Set the flow map. kpeter@2581: /// kpeter@2619: /// Set the flow map. kpeter@2581: /// kpeter@2581: /// \return \c (*this) kpeter@2581: NetworkSimplex& flowMap(FlowMap &map) { kpeter@2581: if (_local_flow) { kpeter@2581: delete _flow_result; kpeter@2581: _local_flow = false; kpeter@2581: } kpeter@2581: _flow_result = ↦ kpeter@2581: return *this; kpeter@2581: } kpeter@2581: kpeter@2619: /// \brief Set the potential map. kpeter@2581: /// kpeter@2619: /// Set the potential map. kpeter@2581: /// kpeter@2581: /// \return \c (*this) kpeter@2581: NetworkSimplex& potentialMap(PotentialMap &map) { kpeter@2581: if (_local_potential) { kpeter@2581: delete _potential_result; kpeter@2581: _local_potential = false; kpeter@2581: } kpeter@2581: _potential_result = ↦ kpeter@2581: return *this; kpeter@2581: } kpeter@2581: kpeter@2581: /// \name Execution control kpeter@2581: kpeter@2581: /// @{ kpeter@2581: kpeter@2556: /// \brief Runs the algorithm. kpeter@2556: /// kpeter@2556: /// Runs the algorithm. kpeter@2556: /// kpeter@2575: /// \param pivot_rule The pivot rule that is used during the kpeter@2575: /// algorithm. kpeter@2575: /// kpeter@2575: /// The available pivot rules: kpeter@2575: /// kpeter@2575: /// - FIRST_ELIGIBLE_PIVOT The next eligible edge is selected in kpeter@2575: /// a wraparound fashion in every iteration kpeter@2575: /// (\ref FirstEligiblePivotRule). kpeter@2575: /// kpeter@2575: /// - BEST_ELIGIBLE_PIVOT The best eligible edge is selected in kpeter@2575: /// every iteration (\ref BestEligiblePivotRule). kpeter@2575: /// kpeter@2575: /// - BLOCK_SEARCH_PIVOT A specified number of edges are examined in kpeter@2575: /// every iteration in a wraparound fashion and the best eligible kpeter@2575: /// edge is selected from this block (\ref BlockSearchPivotRule). kpeter@2575: /// kpeter@2619: /// - CANDIDATE_LIST_PIVOT In a major iteration a candidate list is kpeter@2619: /// built from eligible edges in a wraparound fashion and in the kpeter@2619: /// following minor iterations the best eligible edge is selected kpeter@2619: /// from this list (\ref CandidateListPivotRule). kpeter@2575: /// kpeter@2619: /// - ALTERING_LIST_PIVOT It is a modified version of the kpeter@2619: /// "Candidate List" pivot rule. It keeps only the several best kpeter@2619: /// eligible edges from the former candidate list and extends this kpeter@2619: /// list in every iteration (\ref AlteringListPivotRule). kpeter@2575: /// kpeter@2619: /// According to our comprehensive benchmark tests the "Block Search" kpeter@2630: /// pivot rule proved to be the fastest and the most robust on kpeter@2630: /// various test inputs. Thus it is the default option. kpeter@2575: /// kpeter@2556: /// \return \c true if a feasible flow can be found. kpeter@2619: bool run(PivotRuleEnum pivot_rule = BLOCK_SEARCH_PIVOT) { kpeter@2575: return init() && start(pivot_rule); kpeter@2556: } kpeter@2556: kpeter@2581: /// @} kpeter@2581: kpeter@2581: /// \name Query Functions kpeter@2619: /// The results of the algorithm can be obtained using these kpeter@2619: /// functions.\n kpeter@2619: /// \ref lemon::NetworkSimplex::run() "run()" must be called before kpeter@2619: /// using them. kpeter@2581: kpeter@2581: /// @{ kpeter@2581: kpeter@2619: /// \brief Return a const reference to the edge map storing the kpeter@2575: /// found flow. deba@2440: /// kpeter@2619: /// Return a const reference to the edge map storing the found flow. deba@2440: /// deba@2440: /// \pre \ref run() must be called before using this function. deba@2440: const FlowMap& flowMap() const { kpeter@2581: return *_flow_result; deba@2440: } deba@2440: kpeter@2619: /// \brief Return a const reference to the node map storing the kpeter@2575: /// found potentials (the dual solution). deba@2440: /// kpeter@2619: /// Return a const reference to the node map storing the found kpeter@2575: /// potentials (the dual solution). deba@2440: /// deba@2440: /// \pre \ref run() must be called before using this function. deba@2440: const PotentialMap& potentialMap() const { kpeter@2581: return *_potential_result; kpeter@2581: } kpeter@2581: kpeter@2619: /// \brief Return the flow on the given edge. kpeter@2581: /// kpeter@2619: /// Return the flow on the given edge. kpeter@2581: /// kpeter@2581: /// \pre \ref run() must be called before using this function. kpeter@2581: Capacity flow(const typename Graph::Edge& edge) const { kpeter@2581: return (*_flow_result)[edge]; kpeter@2581: } kpeter@2581: kpeter@2619: /// \brief Return the potential of the given node. kpeter@2581: /// kpeter@2619: /// Return the potential of the given node. kpeter@2581: /// kpeter@2581: /// \pre \ref run() must be called before using this function. kpeter@2581: Cost potential(const typename Graph::Node& node) const { kpeter@2581: return (*_potential_result)[node]; deba@2440: } deba@2440: kpeter@2619: /// \brief Return the total cost of the found flow. deba@2440: /// kpeter@2619: /// Return the total cost of the found flow. The complexity of the deba@2440: /// function is \f$ O(e) \f$. deba@2440: /// deba@2440: /// \pre \ref run() must be called before using this function. deba@2440: Cost totalCost() const { deba@2440: Cost c = 0; kpeter@2575: for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) kpeter@2581: c += (*_flow_result)[e] * _cost[_edge_ref[e]]; deba@2440: return c; deba@2440: } deba@2440: kpeter@2581: /// @} kpeter@2581: kpeter@2575: private: deba@2440: kpeter@2630: // Extend the underlying graph and initialize all the node and edge maps deba@2440: bool init() { kpeter@2575: if (!_valid_supply) return false; deba@2440: kpeter@2630: // Initialize result maps kpeter@2581: if (!_flow_result) { kpeter@2581: _flow_result = new FlowMap(_graph_ref); kpeter@2581: _local_flow = true; kpeter@2581: } kpeter@2581: if (!_potential_result) { kpeter@2581: _potential_result = new PotentialMap(_graph_ref); kpeter@2581: _local_potential = true; kpeter@2581: } kpeter@2581: kpeter@2630: // Initialize the edge vector and the edge maps kpeter@2619: _edges.reserve(countEdges(_graph)); kpeter@2575: for (EdgeIt e(_graph); e != INVALID; ++e) { kpeter@2619: _edges.push_back(e); kpeter@2575: _flow[e] = 0; kpeter@2575: _state[e] = STATE_LOWER; deba@2440: } deba@2440: kpeter@2630: // Add an artificial root node to the graph kpeter@2575: _root = _graph.addNode(); kpeter@2575: _parent[_root] = INVALID; kpeter@2575: _pred_edge[_root] = INVALID; kpeter@2575: _depth[_root] = 0; kpeter@2575: _supply[_root] = 0; kpeter@2575: _potential[_root] = 0; deba@2440: kpeter@2630: // Add artificial edges to the graph and initialize the node maps kpeter@2630: // of the spanning tree data structure kpeter@2575: Node last = _root; deba@2440: Edge e; deba@2440: Cost max_cost = std::numeric_limits::max() / 4; kpeter@2575: for (NodeIt u(_graph); u != INVALID; ++u) { kpeter@2575: if (u == _root) continue; kpeter@2575: _thread[last] = u; kpeter@2556: last = u; kpeter@2575: _parent[u] = _root; kpeter@2575: _depth[u] = 1; kpeter@2575: if (_supply[u] >= 0) { kpeter@2575: e = _graph.addEdge(u, _root); kpeter@2575: _flow[e] = _supply[u]; kpeter@2575: _forward[u] = true; kpeter@2575: _potential[u] = -max_cost; kpeter@2556: } else { kpeter@2575: e = _graph.addEdge(_root, u); kpeter@2575: _flow[e] = -_supply[u]; kpeter@2575: _forward[u] = false; kpeter@2575: _potential[u] = max_cost; kpeter@2556: } kpeter@2575: _cost[e] = max_cost; kpeter@2575: _capacity[e] = std::numeric_limits::max(); kpeter@2575: _state[e] = STATE_TREE; kpeter@2575: _pred_edge[u] = e; deba@2440: } kpeter@2575: _thread[last] = _root; deba@2440: kpeter@2575: return true; deba@2440: } deba@2440: kpeter@2630: // Find the join node kpeter@2630: void findJoinNode() { kpeter@2575: Node u = _graph.source(_in_edge); kpeter@2575: Node v = _graph.target(_in_edge); kpeter@2575: while (u != v) { kpeter@2575: if (_depth[u] == _depth[v]) { kpeter@2575: u = _parent[u]; kpeter@2575: v = _parent[v]; kpeter@2556: } kpeter@2575: else if (_depth[u] > _depth[v]) u = _parent[u]; kpeter@2575: else v = _parent[v]; deba@2440: } kpeter@2630: join = u; deba@2440: } deba@2440: kpeter@2630: // Find the leaving edge of the cycle and returns true if the kpeter@2630: // leaving edge is not the same as the entering edge kpeter@2630: bool findLeavingEdge() { kpeter@2630: // Initialize first and second nodes according to the direction deba@2440: // of the cycle kpeter@2575: if (_state[_in_edge] == STATE_LOWER) { kpeter@2575: first = _graph.source(_in_edge); kpeter@2575: second = _graph.target(_in_edge); deba@2440: } else { kpeter@2575: first = _graph.target(_in_edge); kpeter@2575: second = _graph.source(_in_edge); deba@2440: } kpeter@2575: delta = _capacity[_in_edge]; deba@2440: bool result = false; deba@2440: Capacity d; deba@2440: Edge e; deba@2440: kpeter@2630: // Search the cycle along the path form the first node to the root kpeter@2575: for (Node u = first; u != join; u = _parent[u]) { kpeter@2575: e = _pred_edge[u]; kpeter@2575: d = _forward[u] ? _flow[e] : _capacity[e] - _flow[e]; kpeter@2556: if (d < delta) { kpeter@2556: delta = d; kpeter@2556: u_out = u; kpeter@2556: u_in = first; kpeter@2556: v_in = second; kpeter@2556: result = true; kpeter@2556: } deba@2440: } kpeter@2630: // Search the cycle along the path form the second node to the root kpeter@2575: for (Node u = second; u != join; u = _parent[u]) { kpeter@2575: e = _pred_edge[u]; kpeter@2575: d = _forward[u] ? _capacity[e] - _flow[e] : _flow[e]; kpeter@2556: if (d <= delta) { kpeter@2556: delta = d; kpeter@2556: u_out = u; kpeter@2556: u_in = second; kpeter@2556: v_in = first; kpeter@2556: result = true; kpeter@2556: } deba@2440: } deba@2440: return result; deba@2440: } deba@2440: kpeter@2630: // Change _flow and _state edge maps kpeter@2630: void changeFlows(bool change) { kpeter@2630: // Augment along the cycle deba@2440: if (delta > 0) { kpeter@2575: Capacity val = _state[_in_edge] * delta; kpeter@2575: _flow[_in_edge] += val; kpeter@2575: for (Node u = _graph.source(_in_edge); u != join; u = _parent[u]) { kpeter@2575: _flow[_pred_edge[u]] += _forward[u] ? -val : val; kpeter@2556: } kpeter@2575: for (Node u = _graph.target(_in_edge); u != join; u = _parent[u]) { kpeter@2575: _flow[_pred_edge[u]] += _forward[u] ? val : -val; kpeter@2556: } deba@2440: } kpeter@2630: // Update the state of the entering and leaving edges deba@2440: if (change) { kpeter@2575: _state[_in_edge] = STATE_TREE; kpeter@2575: _state[_pred_edge[u_out]] = kpeter@2575: (_flow[_pred_edge[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; deba@2440: } else { kpeter@2575: _state[_in_edge] = -_state[_in_edge]; deba@2440: } deba@2440: } deba@2440: kpeter@2630: // Update _thread and _parent node maps kpeter@2630: void updateThreadParent() { deba@2440: Node u; kpeter@2575: v_out = _parent[u_out]; deba@2440: kpeter@2630: // Handle the case when join and v_out coincide deba@2440: bool par_first = false; deba@2440: if (join == v_out) { kpeter@2575: for (u = join; u != u_in && u != v_in; u = _thread[u]) ; kpeter@2556: if (u == v_in) { kpeter@2556: par_first = true; kpeter@2575: while (_thread[u] != u_out) u = _thread[u]; kpeter@2556: first = u; kpeter@2556: } deba@2440: } deba@2440: kpeter@2630: // Find the last successor of u_in (u) and the node after it (right) kpeter@2630: // according to the thread index kpeter@2575: for (u = u_in; _depth[_thread[u]] > _depth[u_in]; u = _thread[u]) ; kpeter@2575: right = _thread[u]; kpeter@2575: if (_thread[v_in] == u_out) { kpeter@2575: for (last = u; _depth[last] > _depth[u_out]; last = _thread[last]) ; kpeter@2575: if (last == u_out) last = _thread[last]; deba@2440: } kpeter@2575: else last = _thread[v_in]; deba@2440: kpeter@2630: // Update stem nodes kpeter@2575: _thread[v_in] = stem = u_in; deba@2440: par_stem = v_in; deba@2440: while (stem != u_out) { kpeter@2575: _thread[u] = new_stem = _parent[stem]; deba@2440: kpeter@2630: // Find the node just before the stem node (u) according to kpeter@2556: // the original thread index kpeter@2575: for (u = new_stem; _thread[u] != stem; u = _thread[u]) ; kpeter@2575: _thread[u] = right; deba@2440: kpeter@2630: // Change the parent node of stem and shift stem and par_stem nodes kpeter@2575: _parent[stem] = par_stem; kpeter@2556: par_stem = stem; kpeter@2556: stem = new_stem; deba@2440: kpeter@2630: // Find the last successor of stem (u) and the node after it (right) kpeter@2630: // according to the thread index kpeter@2575: for (u = stem; _depth[_thread[u]] > _depth[stem]; u = _thread[u]) ; kpeter@2575: right = _thread[u]; deba@2440: } kpeter@2575: _parent[u_out] = par_stem; kpeter@2575: _thread[u] = last; deba@2440: deba@2440: if (join == v_out && par_first) { kpeter@2575: if (first != v_in) _thread[first] = right; deba@2440: } else { kpeter@2575: for (u = v_out; _thread[u] != u_out; u = _thread[u]) ; kpeter@2575: _thread[u] = right; deba@2440: } deba@2440: } deba@2440: kpeter@2630: // Update _pred_edge and _forward node maps. kpeter@2630: void updatePredEdge() { deba@2440: Node u = u_out, v; deba@2440: while (u != u_in) { kpeter@2575: v = _parent[u]; kpeter@2575: _pred_edge[u] = _pred_edge[v]; kpeter@2575: _forward[u] = !_forward[v]; kpeter@2556: u = v; deba@2440: } kpeter@2575: _pred_edge[u_in] = _in_edge; kpeter@2575: _forward[u_in] = (u_in == _graph.source(_in_edge)); deba@2440: } deba@2440: kpeter@2630: // Update _depth and _potential node maps kpeter@2630: void updateDepthPotential() { kpeter@2575: _depth[u_in] = _depth[v_in] + 1; kpeter@2628: Cost sigma = _forward[u_in] ? kpeter@2628: _potential[v_in] - _potential[u_in] - _cost[_pred_edge[u_in]] : kpeter@2628: _potential[v_in] - _potential[u_in] + _cost[_pred_edge[u_in]]; kpeter@2628: _potential[u_in] += sigma; kpeter@2628: for(Node u = _thread[u_in]; _parent[u] != INVALID; u = _thread[u]) { kpeter@2628: _depth[u] = _depth[_parent[u]] + 1; kpeter@2628: if (_depth[u] <= _depth[u_in]) break; kpeter@2628: _potential[u] += sigma; deba@2440: } deba@2440: } deba@2440: kpeter@2630: // Execute the algorithm kpeter@2575: bool start(PivotRuleEnum pivot_rule) { kpeter@2630: // Select the pivot rule implementation kpeter@2575: switch (pivot_rule) { kpeter@2575: case FIRST_ELIGIBLE_PIVOT: kpeter@2575: return start(); kpeter@2575: case BEST_ELIGIBLE_PIVOT: kpeter@2575: return start(); kpeter@2575: case BLOCK_SEARCH_PIVOT: kpeter@2575: return start(); kpeter@2575: case CANDIDATE_LIST_PIVOT: kpeter@2575: return start(); kpeter@2619: case ALTERING_LIST_PIVOT: kpeter@2619: return start(); kpeter@2575: } kpeter@2575: return false; kpeter@2575: } kpeter@2575: kpeter@2575: template deba@2440: bool start() { kpeter@2619: PivotRuleImplementation pivot(*this, _edges); kpeter@2575: kpeter@2630: // Execute the network simplex algorithm kpeter@2575: while (pivot.findEnteringEdge()) { kpeter@2630: findJoinNode(); kpeter@2556: bool change = findLeavingEdge(); kpeter@2556: changeFlows(change); kpeter@2556: if (change) { kpeter@2556: updateThreadParent(); kpeter@2556: updatePredEdge(); kpeter@2556: updateDepthPotential(); kpeter@2556: } deba@2440: } deba@2440: kpeter@2630: // Check if the flow amount equals zero on all the artificial edges kpeter@2575: for (InEdgeIt e(_graph, _root); e != INVALID; ++e) kpeter@2575: if (_flow[e] > 0) return false; kpeter@2575: for (OutEdgeIt e(_graph, _root); e != INVALID; ++e) kpeter@2575: if (_flow[e] > 0) return false; deba@2440: kpeter@2630: // Copy flow values to _flow_result kpeter@2575: if (_lower) { kpeter@2575: for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) kpeter@2581: (*_flow_result)[e] = (*_lower)[e] + _flow[_edge_ref[e]]; deba@2440: } else { kpeter@2575: for (typename Graph::EdgeIt e(_graph_ref); e != INVALID; ++e) kpeter@2581: (*_flow_result)[e] = _flow[_edge_ref[e]]; deba@2440: } kpeter@2630: // Copy potential values to _potential_result kpeter@2575: for (typename Graph::NodeIt n(_graph_ref); n != INVALID; ++n) kpeter@2581: (*_potential_result)[n] = _potential[_node_ref[n]]; deba@2440: deba@2440: return true; deba@2440: } deba@2440: deba@2440: }; //class NetworkSimplex deba@2440: deba@2440: ///@} deba@2440: deba@2440: } //namespace lemon deba@2440: deba@2440: #endif //LEMON_NETWORK_SIMPLEX_H