alpar@2260: /* -*- C++ -*-
alpar@2260:  *
alpar@2260:  * This file is a part of LEMON, a generic C++ optimization library
alpar@2260:  *
alpar@2391:  * Copyright (C) 2003-2007
alpar@2260:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@2260:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@2260:  *
alpar@2260:  * Permission to use, modify and distribute this software is granted
alpar@2260:  * provided that this copyright notice appears in all copies. For
alpar@2260:  * precise terms see the accompanying LICENSE file.
alpar@2260:  *
alpar@2260:  * This software is provided "AS IS" with no warranty of any kind,
alpar@2260:  * express or implied, and with no claim as to its suitability for any
alpar@2260:  * purpose.
alpar@2260:  *
alpar@2260:  */
alpar@2260: 
alpar@2260: ///\ingroup graph_concepts
alpar@2260: ///\file
kpeter@2474: ///\brief The concept of Undirected Graphs.
alpar@2260: 
alpar@2260: #ifndef LEMON_CONCEPT_UGRAPH_H
alpar@2260: #define LEMON_CONCEPT_UGRAPH_H
alpar@2260: 
alpar@2260: #include <lemon/concepts/graph_components.h>
alpar@2260: #include <lemon/concepts/graph.h>
alpar@2260: #include <lemon/bits/utility.h>
alpar@2260: 
alpar@2260: namespace lemon {
alpar@2260:   namespace concepts {
alpar@2260: 
alpar@2260:     /// \addtogroup graph_concepts
alpar@2260:     /// @{
kpeter@2474:     ///
alpar@2260:     /// \brief Class describing the concept of Undirected Graphs.
alpar@2260:     ///
alpar@2260:     /// This class describes the common interface of all Undirected
alpar@2260:     /// Graphs.
alpar@2260:     ///
alpar@2260:     /// As all concept describing classes it provides only interface
alpar@2260:     /// without any sensible implementation. So any algorithm for
alpar@2260:     /// undirected graph should compile with this class, but it will not
alpar@2260:     /// run properly, of course.
alpar@2260:     ///
alpar@2260:     /// The LEMON undirected graphs also fulfill the concept of
alpar@2260:     /// directed graphs (\ref lemon::concepts::Graph "Graph
alpar@2260:     /// Concept"). Each undirected edges can be seen as two opposite
alpar@2260:     /// directed edge and consequently the undirected graph can be
alpar@2260:     /// seen as the direceted graph of these directed edges. The
alpar@2260:     /// UGraph has the UEdge inner class for the undirected edges and
alpar@2260:     /// the Edge type for the directed edges. The Edge type is
alpar@2260:     /// convertible to UEdge or inherited from it so from a directed
alpar@2260:     /// edge we can get the represented undirected edge.
alpar@2260:     ///
alpar@2260:     /// In the sense of the LEMON each undirected edge has a default
alpar@2260:     /// direction (it should be in every computer implementation,
alpar@2260:     /// because the order of undirected edge's nodes defines an
alpar@2260:     /// orientation). With the default orientation we can define that
alpar@2260:     /// the directed edge is forward or backward directed. With the \c
alpar@2260:     /// direction() and \c direct() function we can get the direction
alpar@2260:     /// of the directed edge and we can direct an undirected edge.
alpar@2260:     ///
alpar@2260:     /// The UEdgeIt is an iterator for the undirected edges. We can use
alpar@2260:     /// the UEdgeMap to map values for the undirected edges. The InEdgeIt and
alpar@2260:     /// OutEdgeIt iterates on the same undirected edges but with opposite
alpar@2260:     /// direction. The IncEdgeIt iterates also on the same undirected edges
alpar@2260:     /// as the OutEdgeIt and InEdgeIt but it is not convertible to Edge just
alpar@2260:     /// to UEdge.  
alpar@2260:     class UGraph {
alpar@2260:     public:
alpar@2260:       /// \brief The undirected graph should be tagged by the
alpar@2260:       /// UndirectedTag.
alpar@2260:       ///
alpar@2260:       /// The undirected graph should be tagged by the UndirectedTag. This
alpar@2260:       /// tag helps the enable_if technics to make compile time 
alpar@2260:       /// specializations for undirected graphs.  
alpar@2260:       typedef True UndirectedTag;
alpar@2260: 
alpar@2260:       /// \brief The base type of node iterators, 
alpar@2260:       /// or in other words, the trivial node iterator.
alpar@2260:       ///
alpar@2260:       /// This is the base type of each node iterator,
alpar@2260:       /// thus each kind of node iterator converts to this.
alpar@2260:       /// More precisely each kind of node iterator should be inherited 
alpar@2260:       /// from the trivial node iterator.
alpar@2260:       class Node {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         Node() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         Node(const Node&) { }
alpar@2260: 
alpar@2260:         /// Invalid constructor \& conversion.
alpar@2260: 
alpar@2260:         /// This constructor initializes the iterator to be invalid.
alpar@2260:         /// \sa Invalid for more details.
alpar@2260:         Node(Invalid) { }
alpar@2260:         /// Equality operator
alpar@2260: 
alpar@2260:         /// Two iterators are equal if and only if they point to the
alpar@2260:         /// same object or both are invalid.
alpar@2260:         bool operator==(Node) const { return true; }
alpar@2260: 
alpar@2260:         /// Inequality operator
alpar@2260:         
alpar@2260:         /// \sa operator==(Node n)
alpar@2260:         ///
alpar@2260:         bool operator!=(Node) const { return true; }
alpar@2260: 
alpar@2260: 	/// Artificial ordering operator.
alpar@2260: 	
alpar@2260: 	/// To allow the use of graph descriptors as key type in std::map or
alpar@2260: 	/// similar associative container we require this.
alpar@2260: 	///
alpar@2260: 	/// \note This operator only have to define some strict ordering of
alpar@2260: 	/// the items; this order has nothing to do with the iteration
alpar@2260: 	/// ordering of the items.
alpar@2260: 	bool operator<(Node) const { return false; }
alpar@2260: 
alpar@2260:       };
alpar@2260:     
alpar@2260:       /// This iterator goes through each node.
alpar@2260: 
alpar@2260:       /// This iterator goes through each node.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of nodes in graph \c g of type \c Graph like this:
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
alpar@2260:       ///\endcode
alpar@2260:       class NodeIt : public Node {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         NodeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260:         
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         NodeIt(const NodeIt& n) : Node(n) { }
alpar@2260:         /// Invalid constructor \& conversion.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         /// \sa Invalid for more details.
alpar@2260:         NodeIt(Invalid) { }
alpar@2260:         /// Sets the iterator to the first node.
alpar@2260: 
alpar@2260:         /// Sets the iterator to the first node of \c g.
alpar@2260:         ///
alpar@2260:         NodeIt(const UGraph&) { }
alpar@2260:         /// Node -> NodeIt conversion.
alpar@2260: 
alpar@2260:         /// Sets the iterator to the node of \c the graph pointed by 
alpar@2260: 	/// the trivial iterator.
alpar@2260:         /// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         NodeIt(const UGraph&, const Node&) { }
alpar@2260:         /// Next node.
alpar@2260: 
alpar@2260:         /// Assign the iterator to the next node.
alpar@2260:         ///
alpar@2260:         NodeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260:     
alpar@2260:     
alpar@2260:       /// The base type of the undirected edge iterators.
alpar@2260: 
alpar@2260:       /// The base type of the undirected edge iterators.
alpar@2260:       ///
alpar@2260:       class UEdge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         UEdge() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         UEdge(const UEdge&) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         UEdge(Invalid) { }
alpar@2260:         /// Equality operator
alpar@2260: 
alpar@2260:         /// Two iterators are equal if and only if they point to the
alpar@2260:         /// same object or both are invalid.
alpar@2260:         bool operator==(UEdge) const { return true; }
alpar@2260:         /// Inequality operator
alpar@2260: 
alpar@2260:         /// \sa operator==(UEdge n)
alpar@2260:         ///
alpar@2260:         bool operator!=(UEdge) const { return true; }
alpar@2260: 
alpar@2260: 	/// Artificial ordering operator.
alpar@2260: 	
alpar@2260: 	/// To allow the use of graph descriptors as key type in std::map or
alpar@2260: 	/// similar associative container we require this.
alpar@2260: 	///
alpar@2260: 	/// \note This operator only have to define some strict ordering of
alpar@2260: 	/// the items; this order has nothing to do with the iteration
alpar@2260: 	/// ordering of the items.
alpar@2260: 	bool operator<(UEdge) const { return false; }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// This iterator goes through each undirected edge.
alpar@2260: 
alpar@2260:       /// This iterator goes through each undirected edge of a graph.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of undirected edges in a graph \c g of type \c Graph as follows:
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count;
alpar@2260:       ///\endcode
alpar@2260:       class UEdgeIt : public UEdge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         UEdgeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         UEdgeIt(const UEdgeIt& e) : UEdge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         UEdgeIt(Invalid) { }
alpar@2260:         /// This constructor sets the iterator to the first undirected edge.
alpar@2260:     
alpar@2260:         /// This constructor sets the iterator to the first undirected edge.
alpar@2260:         UEdgeIt(const UGraph&) { }
alpar@2260:         /// UEdge -> UEdgeIt conversion
alpar@2260: 
alpar@2260:         /// Sets the iterator to the value of the trivial iterator.
alpar@2260:         /// This feature necessitates that each time we
alpar@2260:         /// iterate the undirected edge-set, the iteration order is the 
alpar@2260: 	/// same.
alpar@2260:         UEdgeIt(const UGraph&, const UEdge&) { } 
alpar@2260:         /// Next undirected edge
alpar@2260:         
alpar@2260:         /// Assign the iterator to the next undirected edge.
alpar@2260:         UEdgeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// \brief This iterator goes trough the incident undirected 
alpar@2260:       /// edges of a node.
alpar@2260:       ///
alpar@2260:       /// This iterator goes trough the incident undirected edges
alpar@2260:       /// of a certain node of a graph. You should assume that the 
alpar@2260:       /// loop edges will be iterated twice.
alpar@2260:       /// 
alpar@2260:       /// Its usage is quite simple, for example you can compute the
alpar@2260:       /// degree (i.e. count the number of incident edges of a node \c n
alpar@2260:       /// in graph \c g of type \c Graph as follows. 
alpar@2260:       ///
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@2260:       ///\endcode
alpar@2260:       class IncEdgeIt : public UEdge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         IncEdgeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         IncEdgeIt(Invalid) { }
alpar@2260:         /// This constructor sets the iterator to first incident edge.
alpar@2260:     
alpar@2260:         /// This constructor set the iterator to the first incident edge of
alpar@2260:         /// the node.
alpar@2260:         IncEdgeIt(const UGraph&, const Node&) { }
alpar@2260:         /// UEdge -> IncEdgeIt conversion
alpar@2260: 
alpar@2260:         /// Sets the iterator to the value of the trivial iterator \c e.
alpar@2260:         /// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         IncEdgeIt(const UGraph&, const UEdge&) { }
alpar@2260:         /// Next incident edge
alpar@2260: 
alpar@2260:         /// Assign the iterator to the next incident edge
alpar@2260: 	/// of the corresponding node.
alpar@2260:         IncEdgeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// The directed edge type.
alpar@2260: 
alpar@2260:       /// The directed edge type. It can be converted to the
alpar@2260:       /// undirected edge or it should be inherited from the undirected
alpar@2260:       /// edge.
alpar@2260:       class Edge : public UEdge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         Edge() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         Edge(const Edge& e) : UEdge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         Edge(Invalid) { }
alpar@2260:         /// Equality operator
alpar@2260: 
alpar@2260:         /// Two iterators are equal if and only if they point to the
alpar@2260:         /// same object or both are invalid.
alpar@2260:         bool operator==(Edge) const { return true; }
alpar@2260:         /// Inequality operator
alpar@2260: 
alpar@2260:         /// \sa operator==(Edge n)
alpar@2260:         ///
alpar@2260:         bool operator!=(Edge) const { return true; }
alpar@2260: 
alpar@2260: 	/// Artificial ordering operator.
alpar@2260: 	
alpar@2260: 	/// To allow the use of graph descriptors as key type in std::map or
alpar@2260: 	/// similar associative container we require this.
alpar@2260: 	///
alpar@2260: 	/// \note This operator only have to define some strict ordering of
alpar@2260: 	/// the items; this order has nothing to do with the iteration
alpar@2260: 	/// ordering of the items.
alpar@2260: 	bool operator<(Edge) const { return false; }
alpar@2260: 	
alpar@2260:       }; 
alpar@2260:       /// This iterator goes through each directed edge.
alpar@2260: 
alpar@2260:       /// This iterator goes through each edge of a graph.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of edges in a graph \c g of type \c Graph as follows:
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
alpar@2260:       ///\endcode
alpar@2260:       class EdgeIt : public Edge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         EdgeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         EdgeIt(const EdgeIt& e) : Edge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         EdgeIt(Invalid) { }
alpar@2260:         /// This constructor sets the iterator to the first edge.
alpar@2260:     
alpar@2260:         /// This constructor sets the iterator to the first edge of \c g.
alpar@2260:         ///@param g the graph
alpar@2260:         EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); }
alpar@2260:         /// Edge -> EdgeIt conversion
alpar@2260: 
alpar@2260:         /// Sets the iterator to the value of the trivial iterator \c e.
alpar@2260:         /// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         EdgeIt(const UGraph&, const Edge&) { } 
alpar@2260:         ///Next edge
alpar@2260:         
alpar@2260:         /// Assign the iterator to the next edge.
alpar@2260:         EdgeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260:    
alpar@2260:       /// This iterator goes trough the outgoing directed edges of a node.
alpar@2260: 
alpar@2260:       /// This iterator goes trough the \e outgoing edges of a certain node
alpar@2260:       /// of a graph.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of outgoing edges of a node \c n
alpar@2260:       /// in graph \c g of type \c Graph as follows.
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@2260:       ///\endcode
alpar@2260:     
alpar@2260:       class OutEdgeIt : public Edge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         OutEdgeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         OutEdgeIt(Invalid) { }
alpar@2260:         /// This constructor sets the iterator to the first outgoing edge.
alpar@2260:     
alpar@2260:         /// This constructor sets the iterator to the first outgoing edge of
alpar@2260:         /// the node.
alpar@2260:         ///@param n the node
alpar@2260:         ///@param g the graph
alpar@2260:         OutEdgeIt(const UGraph& n, const Node& g) {
alpar@2260: 	  ignore_unused_variable_warning(n);
alpar@2260: 	  ignore_unused_variable_warning(g);
alpar@2260: 	}
alpar@2260:         /// Edge -> OutEdgeIt conversion
alpar@2260: 
alpar@2260:         /// Sets the iterator to the value of the trivial iterator.
alpar@2260: 	/// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         OutEdgeIt(const UGraph&, const Edge&) { }
alpar@2260:         ///Next outgoing edge
alpar@2260:         
alpar@2260:         /// Assign the iterator to the next 
alpar@2260:         /// outgoing edge of the corresponding node.
alpar@2260:         OutEdgeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// This iterator goes trough the incoming directed edges of a node.
alpar@2260: 
alpar@2260:       /// This iterator goes trough the \e incoming edges of a certain node
alpar@2260:       /// of a graph.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of outgoing edges of a node \c n
alpar@2260:       /// in graph \c g of type \c Graph as follows.
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@2260:       ///\endcode
alpar@2260: 
alpar@2260:       class InEdgeIt : public Edge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         InEdgeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         InEdgeIt(Invalid) { }
alpar@2260:         /// This constructor sets the iterator to first incoming edge.
alpar@2260:     
alpar@2260:         /// This constructor set the iterator to the first incoming edge of
alpar@2260:         /// the node.
alpar@2260:         ///@param n the node
alpar@2260:         ///@param g the graph
alpar@2260:         InEdgeIt(const UGraph& g, const Node& n) { 
alpar@2260: 	  ignore_unused_variable_warning(n);
alpar@2260: 	  ignore_unused_variable_warning(g);
alpar@2260: 	}
alpar@2260:         /// Edge -> InEdgeIt conversion
alpar@2260: 
alpar@2260:         /// Sets the iterator to the value of the trivial iterator \c e.
alpar@2260:         /// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         InEdgeIt(const UGraph&, const Edge&) { }
alpar@2260:         /// Next incoming edge
alpar@2260: 
alpar@2260:         /// Assign the iterator to the next inedge of the corresponding node.
alpar@2260:         ///
alpar@2260:         InEdgeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// \brief Read write map of the nodes to type \c T.
alpar@2260:       /// 
alpar@2260:       /// ReadWrite map of the nodes to type \c T.
alpar@2260:       /// \sa Reference
alpar@2260:       template<class T> 
alpar@2260:       class NodeMap : public ReadWriteMap< Node, T >
alpar@2260:       {
alpar@2260:       public:
alpar@2260: 
alpar@2260:         ///\e
alpar@2260:         NodeMap(const UGraph&) { }
alpar@2260:         ///\e
alpar@2260:         NodeMap(const UGraph&, T) { }
alpar@2260: 
alpar@2260:         ///Copy constructor
alpar@2260:         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
alpar@2260:         ///Assignment operator
alpar@2260:         template <typename CMap>
alpar@2260:         NodeMap& operator=(const CMap&) { 
alpar@2260:           checkConcept<ReadMap<Node, T>, CMap>();
alpar@2260:           return *this; 
alpar@2260:         }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// \brief Read write map of the directed edges to type \c T.
alpar@2260:       ///
alpar@2260:       /// Reference map of the directed edges to type \c T.
alpar@2260:       /// \sa Reference
alpar@2260:       template<class T> 
alpar@2260:       class EdgeMap : public ReadWriteMap<Edge,T>
alpar@2260:       {
alpar@2260:       public:
alpar@2260: 
alpar@2260:         ///\e
alpar@2260:         EdgeMap(const UGraph&) { }
alpar@2260:         ///\e
alpar@2260:         EdgeMap(const UGraph&, T) { }
alpar@2260:         ///Copy constructor
alpar@2260:         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
alpar@2260:         ///Assignment operator
alpar@2260:         template <typename CMap>
alpar@2260:         EdgeMap& operator=(const CMap&) { 
alpar@2260:           checkConcept<ReadMap<Edge, T>, CMap>();
alpar@2260:           return *this; 
alpar@2260:         }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// Read write map of the undirected edges to type \c T.
alpar@2260: 
alpar@2260:       /// Reference map of the edges to type \c T.
alpar@2260:       /// \sa Reference
alpar@2260:       template<class T> 
alpar@2260:       class UEdgeMap : public ReadWriteMap<UEdge,T>
alpar@2260:       {
alpar@2260:       public:
alpar@2260: 
alpar@2260:         ///\e
alpar@2260:         UEdgeMap(const UGraph&) { }
alpar@2260:         ///\e
alpar@2260:         UEdgeMap(const UGraph&, T) { }
alpar@2260:         ///Copy constructor
alpar@2260:         UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {}
alpar@2260:         ///Assignment operator
alpar@2260:         template <typename CMap>
alpar@2260:         UEdgeMap& operator=(const CMap&) { 
alpar@2260:           checkConcept<ReadMap<UEdge, T>, CMap>();
alpar@2260:           return *this; 
alpar@2260:         }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// \brief Direct the given undirected edge.
alpar@2260:       ///
alpar@2260:       /// Direct the given undirected edge. The returned edge source
alpar@2260:       /// will be the given node.
alpar@2260:       Edge direct(const UEdge&, const Node&) const {
alpar@2260: 	return INVALID;
alpar@2260:       }
alpar@2260: 
alpar@2260:       /// \brief Direct the given undirected edge.
alpar@2260:       ///
alpar@2260:       /// Direct the given undirected edge. The returned edge
deba@2291:       /// represents the given undirected edge and the direction comes
alpar@2260:       /// from the given bool.  The source of the undirected edge and
alpar@2260:       /// the directed edge is the same when the given bool is true.
alpar@2260:       Edge direct(const UEdge&, bool) const {
alpar@2260: 	return INVALID;
alpar@2260:       }
alpar@2260: 
alpar@2260:       /// \brief Returns true if the edge has default orientation.
alpar@2260:       ///
alpar@2260:       /// Returns whether the given directed edge is same orientation as
alpar@2260:       /// the corresponding undirected edge's default orientation.
alpar@2260:       bool direction(Edge) const { return true; }
alpar@2260: 
alpar@2260:       /// \brief Returns the opposite directed edge.
alpar@2260:       ///
alpar@2260:       /// Returns the opposite directed edge.
alpar@2260:       Edge oppositeEdge(Edge) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief Opposite node on an edge
alpar@2260:       ///
alpar@2260:       /// \return the opposite of the given Node on the given UEdge
alpar@2260:       Node oppositeNode(Node, UEdge) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief First node of the undirected edge.
alpar@2260:       ///
alpar@2260:       /// \return the first node of the given UEdge.
alpar@2260:       ///
alpar@2260:       /// Naturally undirected edges don't have direction and thus
alpar@2260:       /// don't have source and target node. But we use these two methods
alpar@2260:       /// to query the two nodes of the edge. The direction of the edge
alpar@2260:       /// which arises this way is called the inherent direction of the
alpar@2260:       /// undirected edge, and is used to define the "default" direction
alpar@2260:       /// of the directed versions of the edges.
alpar@2260:       /// \sa direction
alpar@2260:       Node source(UEdge) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief Second node of the undirected edge.
alpar@2260:       Node target(UEdge) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief Source node of the directed edge.
alpar@2260:       Node source(Edge) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief Target node of the directed edge.
alpar@2260:       Node target(Edge) const { return INVALID; }
alpar@2260: 
alpar@2260:       void first(Node&) const {}
alpar@2260:       void next(Node&) const {}
alpar@2260: 
alpar@2260:       void first(UEdge&) const {}
alpar@2260:       void next(UEdge&) const {}
alpar@2260: 
alpar@2260:       void first(Edge&) const {}
alpar@2260:       void next(Edge&) const {}
alpar@2260: 
alpar@2260:       void firstOut(Edge&, Node) const {}
alpar@2260:       void nextOut(Edge&) const {}
alpar@2260: 
alpar@2260:       void firstIn(Edge&, Node) const {}
alpar@2260:       void nextIn(Edge&) const {}
alpar@2260: 
alpar@2260: 
alpar@2260:       void firstInc(UEdge &, bool &, const Node &) const {}
alpar@2260:       void nextInc(UEdge &, bool &) const {}
alpar@2260: 
alpar@2260:       /// \brief Base node of the iterator
alpar@2260:       ///
alpar@2260:       /// Returns the base node (the source in this case) of the iterator
alpar@2260:       Node baseNode(OutEdgeIt e) const {
alpar@2260: 	return source(e);
alpar@2260:       }
alpar@2260:       /// \brief Running node of the iterator
alpar@2260:       ///
alpar@2260:       /// Returns the running node (the target in this case) of the
alpar@2260:       /// iterator
alpar@2260:       Node runningNode(OutEdgeIt e) const {
alpar@2260: 	return target(e);
alpar@2260:       }
alpar@2260: 
alpar@2260:       /// \brief Base node of the iterator
alpar@2260:       ///
alpar@2260:       /// Returns the base node (the target in this case) of the iterator
alpar@2260:       Node baseNode(InEdgeIt e) const {
alpar@2260: 	return target(e);
alpar@2260:       }
alpar@2260:       /// \brief Running node of the iterator
alpar@2260:       ///
alpar@2260:       /// Returns the running node (the source in this case) of the
alpar@2260:       /// iterator
alpar@2260:       Node runningNode(InEdgeIt e) const {
alpar@2260: 	return source(e);
alpar@2260:       }
alpar@2260: 
alpar@2260:       /// \brief Base node of the iterator
alpar@2260:       ///
alpar@2260:       /// Returns the base node of the iterator
alpar@2260:       Node baseNode(IncEdgeIt) const {
alpar@2260: 	return INVALID;
alpar@2260:       }
alpar@2260:       
alpar@2260:       /// \brief Running node of the iterator
alpar@2260:       ///
alpar@2260:       /// Returns the running node of the iterator
alpar@2260:       Node runningNode(IncEdgeIt) const {
alpar@2260: 	return INVALID;
alpar@2260:       }
alpar@2260: 
alpar@2260:       template <typename Graph>
alpar@2260:       struct Constraints {
alpar@2260: 	void constraints() {
alpar@2260: 	  checkConcept<IterableUGraphComponent<>, Graph>();
alpar@2260: 	  checkConcept<MappableUGraphComponent<>, Graph>();
alpar@2260: 	}
alpar@2260:       };
alpar@2260: 
alpar@2260:     };
alpar@2260: 
alpar@2260:     /// @}
alpar@2260: 
alpar@2260:   }
alpar@2260: 
alpar@2260: }
alpar@2260: 
alpar@2260: #endif