alpar@2260: /* -*- C++ -*-
alpar@2260:  *
alpar@2260:  * This file is a part of LEMON, a generic C++ optimization library
alpar@2260:  *
alpar@2260:  * Copyright (C) 2003-2006
alpar@2260:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@2260:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@2260:  *
alpar@2260:  * Permission to use, modify and distribute this software is granted
alpar@2260:  * provided that this copyright notice appears in all copies. For
alpar@2260:  * precise terms see the accompanying LICENSE file.
alpar@2260:  *
alpar@2260:  * This software is provided "AS IS" with no warranty of any kind,
alpar@2260:  * express or implied, and with no claim as to its suitability for any
alpar@2260:  * purpose.
alpar@2260:  *
alpar@2260:  */
alpar@2260: 
alpar@2260: #ifndef LEMON_CONCEPT_GRAPH_H
alpar@2260: #define LEMON_CONCEPT_GRAPH_H
alpar@2260: 
alpar@2260: ///\ingroup graph_concepts
alpar@2260: ///\file
alpar@2260: ///\brief Declaration of Graph.
alpar@2260: 
alpar@2260: #include <lemon/bits/invalid.h>
alpar@2260: #include <lemon/bits/utility.h>
alpar@2260: #include <lemon/concepts/maps.h>
alpar@2260: #include <lemon/concept_check.h>
alpar@2260: #include <lemon/concepts/graph_components.h>
alpar@2260: 
alpar@2260: namespace lemon {
alpar@2260:   namespace concepts {
alpar@2260: 
alpar@2260:     /// \addtogroup graph_concepts
alpar@2260:     /// @{
alpar@2260: 
alpar@2260:     /// The directed graph concept
alpar@2260: 
alpar@2260:     /// This class describes the \ref concept "concept" of the
alpar@2260:     /// immutable directed graphs.
alpar@2260:     ///
alpar@2260:     /// Note that actual graph implementation like @ref ListGraph or
alpar@2260:     /// @ref SmartGraph may have several additional functionality.
alpar@2260:     ///
alpar@2260:     /// \sa concept
alpar@2260:     class Graph {
alpar@2260:     private:
alpar@2260:       ///Graphs are \e not copy constructible. Use GraphCopy() instead.
alpar@2260:       
alpar@2260:       ///Graphs are \e not copy constructible. Use GraphCopy() instead.
alpar@2260:       ///
alpar@2260:       Graph(const Graph &) {};
alpar@2260:       ///\brief Assignment of \ref Graph "Graph"s to another ones are
alpar@2260:       ///\e not allowed. Use GraphCopy() instead.
alpar@2260:       
alpar@2260:       ///Assignment of \ref Graph "Graph"s to another ones are
alpar@2260:       ///\e not allowed.  Use GraphCopy() instead.
alpar@2260: 
alpar@2260:       void operator=(const Graph &) {}
alpar@2260:     public:
alpar@2260:       ///\e
alpar@2260: 
alpar@2260:       /// Defalult constructor.
alpar@2260: 
alpar@2260:       /// Defalult constructor.
alpar@2260:       ///
alpar@2260:       Graph() { }
alpar@2260:       /// Class for identifying a node of the graph
alpar@2260: 
alpar@2260:       /// This class identifies a node of the graph. It also serves
alpar@2260:       /// as a base class of the node iterators,
alpar@2260:       /// thus they will convert to this type.
alpar@2260:       class Node {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         Node() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         Node(const Node&) { }
alpar@2260: 
alpar@2260:         /// Invalid constructor \& conversion.
alpar@2260: 
alpar@2260:         /// This constructor initializes the iterator to be invalid.
alpar@2260:         /// \sa Invalid for more details.
alpar@2260:         Node(Invalid) { }
alpar@2260:         /// Equality operator
alpar@2260: 
alpar@2260:         /// Two iterators are equal if and only if they point to the
alpar@2260:         /// same object or both are invalid.
alpar@2260:         bool operator==(Node) const { return true; }
alpar@2260: 
alpar@2260:         /// Inequality operator
alpar@2260:         
alpar@2260:         /// \sa operator==(Node n)
alpar@2260:         ///
alpar@2260:         bool operator!=(Node) const { return true; }
alpar@2260: 
alpar@2260: 	/// Artificial ordering operator.
alpar@2260: 	
alpar@2260: 	/// To allow the use of graph descriptors as key type in std::map or
alpar@2260: 	/// similar associative container we require this.
alpar@2260: 	///
alpar@2260: 	/// \note This operator only have to define some strict ordering of
alpar@2260: 	/// the items; this order has nothing to do with the iteration
alpar@2260: 	/// ordering of the items.
alpar@2260: 	bool operator<(Node) const { return false; }
alpar@2260: 
alpar@2260:       };
alpar@2260:     
alpar@2260:       /// This iterator goes through each node.
alpar@2260: 
alpar@2260:       /// This iterator goes through each node.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of nodes in graph \c g of type \c Graph like this:
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
alpar@2260:       ///\endcode
alpar@2260:       class NodeIt : public Node {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         NodeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260:         
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         NodeIt(const NodeIt& n) : Node(n) { }
alpar@2260:         /// Invalid constructor \& conversion.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         /// \sa Invalid for more details.
alpar@2260:         NodeIt(Invalid) { }
alpar@2260:         /// Sets the iterator to the first node.
alpar@2260: 
alpar@2260:         /// Sets the iterator to the first node of \c g.
alpar@2260:         ///
alpar@2260:         NodeIt(const Graph&) { }
alpar@2260:         /// Node -> NodeIt conversion.
alpar@2260: 
alpar@2260:         /// Sets the iterator to the node of \c the graph pointed by 
alpar@2260: 	/// the trivial iterator.
alpar@2260:         /// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         NodeIt(const Graph&, const Node&) { }
alpar@2260:         /// Next node.
alpar@2260: 
alpar@2260:         /// Assign the iterator to the next node.
alpar@2260:         ///
alpar@2260:         NodeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260:     
alpar@2260:     
alpar@2260:       /// Class for identifying an edge of the graph
alpar@2260: 
alpar@2260:       /// This class identifies an edge of the graph. It also serves
alpar@2260:       /// as a base class of the edge iterators,
alpar@2260:       /// thus they will convert to this type.
alpar@2260:       class Edge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         Edge() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         Edge(const Edge&) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         Edge(Invalid) { }
alpar@2260:         /// Equality operator
alpar@2260: 
alpar@2260:         /// Two iterators are equal if and only if they point to the
alpar@2260:         /// same object or both are invalid.
alpar@2260:         bool operator==(Edge) const { return true; }
alpar@2260:         /// Inequality operator
alpar@2260: 
alpar@2260:         /// \sa operator==(Edge n)
alpar@2260:         ///
alpar@2260:         bool operator!=(Edge) const { return true; }
alpar@2260: 
alpar@2260: 	/// Artificial ordering operator.
alpar@2260: 	
alpar@2260: 	/// To allow the use of graph descriptors as key type in std::map or
alpar@2260: 	/// similar associative container we require this.
alpar@2260: 	///
alpar@2260: 	/// \note This operator only have to define some strict ordering of
alpar@2260: 	/// the items; this order has nothing to do with the iteration
alpar@2260: 	/// ordering of the items.
alpar@2260: 	bool operator<(Edge) const { return false; }
alpar@2260:       };
alpar@2260:     
alpar@2260:       /// This iterator goes trough the outgoing edges of a node.
alpar@2260: 
alpar@2260:       /// This iterator goes trough the \e outgoing edges of a certain node
alpar@2260:       /// of a graph.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of outgoing edges of a node \c n
alpar@2260:       /// in graph \c g of type \c Graph as follows.
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@2260:       ///\endcode
alpar@2260:     
alpar@2260:       class OutEdgeIt : public Edge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         OutEdgeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         OutEdgeIt(const OutEdgeIt& e) : Edge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         OutEdgeIt(Invalid) { }
alpar@2260:         /// This constructor sets the iterator to the first outgoing edge.
alpar@2260:     
alpar@2260:         /// This constructor sets the iterator to the first outgoing edge of
alpar@2260:         /// the node.
alpar@2260:         OutEdgeIt(const Graph&, const Node&) { }
alpar@2260:         /// Edge -> OutEdgeIt conversion
alpar@2260: 
alpar@2260:         /// Sets the iterator to the value of the trivial iterator.
alpar@2260: 	/// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         OutEdgeIt(const Graph&, const Edge&) { }
alpar@2260:         ///Next outgoing edge
alpar@2260:         
alpar@2260:         /// Assign the iterator to the next 
alpar@2260:         /// outgoing edge of the corresponding node.
alpar@2260:         OutEdgeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// This iterator goes trough the incoming edges of a node.
alpar@2260: 
alpar@2260:       /// This iterator goes trough the \e incoming edges of a certain node
alpar@2260:       /// of a graph.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of outgoing edges of a node \c n
alpar@2260:       /// in graph \c g of type \c Graph as follows.
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count;
alpar@2260:       ///\endcode
alpar@2260: 
alpar@2260:       class InEdgeIt : public Edge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         InEdgeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         InEdgeIt(const InEdgeIt& e) : Edge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         InEdgeIt(Invalid) { }
alpar@2260:         /// This constructor sets the iterator to first incoming edge.
alpar@2260:     
alpar@2260:         /// This constructor set the iterator to the first incoming edge of
alpar@2260:         /// the node.
alpar@2260:         InEdgeIt(const Graph&, const Node&) { }
alpar@2260:         /// Edge -> InEdgeIt conversion
alpar@2260: 
alpar@2260:         /// Sets the iterator to the value of the trivial iterator \c e.
alpar@2260:         /// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         InEdgeIt(const Graph&, const Edge&) { }
alpar@2260:         /// Next incoming edge
alpar@2260: 
alpar@2260:         /// Assign the iterator to the next inedge of the corresponding node.
alpar@2260:         ///
alpar@2260:         InEdgeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260:       /// This iterator goes through each edge.
alpar@2260: 
alpar@2260:       /// This iterator goes through each edge of a graph.
alpar@2260:       /// Its usage is quite simple, for example you can count the number
alpar@2260:       /// of edges in a graph \c g of type \c Graph as follows:
alpar@2260:       ///\code
alpar@2260:       /// int count=0;
alpar@2260:       /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
alpar@2260:       ///\endcode
alpar@2260:       class EdgeIt : public Edge {
alpar@2260:       public:
alpar@2260:         /// Default constructor
alpar@2260: 
alpar@2260:         /// @warning The default constructor sets the iterator
alpar@2260:         /// to an undefined value.
alpar@2260:         EdgeIt() { }
alpar@2260:         /// Copy constructor.
alpar@2260: 
alpar@2260:         /// Copy constructor.
alpar@2260:         ///
alpar@2260:         EdgeIt(const EdgeIt& e) : Edge(e) { }
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260: 
alpar@2260:         /// Initialize the iterator to be invalid.
alpar@2260:         ///
alpar@2260:         EdgeIt(Invalid) { }
alpar@2260:         /// This constructor sets the iterator to the first edge.
alpar@2260:     
alpar@2260:         /// This constructor sets the iterator to the first edge of \c g.
alpar@2260:         ///@param g the graph
alpar@2260:         EdgeIt(const Graph& g) { ignore_unused_variable_warning(g); }
alpar@2260:         /// Edge -> EdgeIt conversion
alpar@2260: 
alpar@2260:         /// Sets the iterator to the value of the trivial iterator \c e.
alpar@2260:         /// This feature necessitates that each time we 
alpar@2260:         /// iterate the edge-set, the iteration order is the same.
alpar@2260:         EdgeIt(const Graph&, const Edge&) { } 
alpar@2260:         ///Next edge
alpar@2260:         
alpar@2260:         /// Assign the iterator to the next edge.
alpar@2260:         EdgeIt& operator++() { return *this; }
alpar@2260:       };
alpar@2260:       ///Gives back the target node of an edge.
alpar@2260: 
alpar@2260:       ///Gives back the target node of an edge.
alpar@2260:       ///
alpar@2260:       Node target(Edge) const { return INVALID; }
alpar@2260:       ///Gives back the source node of an edge.
alpar@2260: 
alpar@2260:       ///Gives back the source node of an edge.
alpar@2260:       ///
alpar@2260:       Node source(Edge) const { return INVALID; }
alpar@2260: 
alpar@2260:       void first(Node&) const {}
alpar@2260:       void next(Node&) const {}
alpar@2260: 
alpar@2260:       void first(Edge&) const {}
alpar@2260:       void next(Edge&) const {}
alpar@2260: 
alpar@2260: 
alpar@2260:       void firstIn(Edge&, const Node&) const {}
alpar@2260:       void nextIn(Edge&) const {}
alpar@2260: 
alpar@2260:       void firstOut(Edge&, const Node&) const {}
alpar@2260:       void nextOut(Edge&) const {}
alpar@2260: 
alpar@2260:       /// \brief The base node of the iterator.
alpar@2260:       ///
alpar@2260:       /// Gives back the base node of the iterator.
alpar@2260:       /// It is always the target of the pointed edge.
alpar@2260:       Node baseNode(const InEdgeIt&) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief The running node of the iterator.
alpar@2260:       ///
alpar@2260:       /// Gives back the running node of the iterator.
alpar@2260:       /// It is always the source of the pointed edge.
alpar@2260:       Node runningNode(const InEdgeIt&) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief The base node of the iterator.
alpar@2260:       ///
alpar@2260:       /// Gives back the base node of the iterator.
alpar@2260:       /// It is always the source of the pointed edge.
alpar@2260:       Node baseNode(const OutEdgeIt&) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief The running node of the iterator.
alpar@2260:       ///
alpar@2260:       /// Gives back the running node of the iterator.
alpar@2260:       /// It is always the target of the pointed edge.
alpar@2260:       Node runningNode(const OutEdgeIt&) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief The opposite node on the given edge.
alpar@2260:       ///
alpar@2260:       /// Gives back the opposite node on the given edge.
alpar@2260:       Node oppositeNode(const Node&, const Edge&) const { return INVALID; }
alpar@2260: 
alpar@2260:       /// \brief Read write map of the nodes to type \c T.
alpar@2260:       /// 
alpar@2260:       /// ReadWrite map of the nodes to type \c T.
alpar@2260:       /// \sa Reference
alpar@2260:       template<class T> 
alpar@2260:       class NodeMap : public ReadWriteMap< Node, T > {
alpar@2260:       public:
alpar@2260: 
alpar@2260:         ///\e
alpar@2260:         NodeMap(const Graph&) { }
alpar@2260:         ///\e
alpar@2260:         NodeMap(const Graph&, T) { }
alpar@2260: 
alpar@2260:         ///Copy constructor
alpar@2260:         NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
alpar@2260:         ///Assignment operator
alpar@2260:         template <typename CMap>
alpar@2260:         NodeMap& operator=(const CMap&) { 
alpar@2260:           checkConcept<ReadMap<Node, T>, CMap>();
alpar@2260:           return *this; 
alpar@2260:         }
alpar@2260:       };
alpar@2260: 
alpar@2260:       /// \brief Read write map of the edges to type \c T.
alpar@2260:       ///
alpar@2260:       /// Reference map of the edges to type \c T.
alpar@2260:       /// \sa Reference
alpar@2260:       template<class T> 
alpar@2260:       class EdgeMap : public ReadWriteMap<Edge,T> {
alpar@2260:       public:
alpar@2260: 
alpar@2260:         ///\e
alpar@2260:         EdgeMap(const Graph&) { }
alpar@2260:         ///\e
alpar@2260:         EdgeMap(const Graph&, T) { }
alpar@2260:         ///Copy constructor
alpar@2260:         EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { }
alpar@2260:         ///Assignment operator
alpar@2260:         template <typename CMap>
alpar@2260:         EdgeMap& operator=(const CMap&) { 
alpar@2260:           checkConcept<ReadMap<Edge, T>, CMap>();
alpar@2260:           return *this; 
alpar@2260:         }
alpar@2260:       };
alpar@2260: 
alpar@2260:       template <typename RGraph>
alpar@2260:       struct Constraints {
alpar@2260:         void constraints() {
alpar@2260:           checkConcept<IterableGraphComponent<>, Graph>();
alpar@2260:           checkConcept<MappableGraphComponent<>, Graph>();
alpar@2260:         }
alpar@2260:       };
alpar@2260: 
alpar@2260:     };
alpar@2260:     
alpar@2260:     // @}
alpar@2260:   } //namespace concepts  
alpar@2260: } //namespace lemon
alpar@2260: 
alpar@2260: 
alpar@2260: 
alpar@2260: #endif // LEMON_CONCEPT_GRAPH_H