athos@1247: /* -*- C++ -*- alpar@1253: * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library athos@1247: * athos@1247: * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport athos@1247: * (Egervary Combinatorial Optimization Research Group, EGRES). athos@1247: * athos@1247: * Permission to use, modify and distribute this software is granted athos@1247: * provided that this copyright notice appears in all copies. For athos@1247: * precise terms see the accompanying LICENSE file. athos@1247: * athos@1247: * This software is provided "AS IS" with no warranty of any kind, athos@1247: * express or implied, and with no claim as to its suitability for any athos@1247: * purpose. athos@1247: * athos@1247: */ athos@1247: athos@1246: #ifndef LEMON_LP_BASE_H athos@1246: #define LEMON_LP_BASE_H athos@1246: alpar@1253: #include alpar@1256: #include alpar@1253: alpar@1256: #include alpar@1253: #include alpar@1256: #include alpar@1253: alpar@1253: #include"lin_expr.h" athos@1246: ///\file athos@1246: ///\brief The interface of the LP solver interface. athos@1246: namespace lemon { alpar@1253: alpar@1253: ///Internal data structure to convert floating id's to fix one's alpar@1253: alpar@1253: ///\todo This might by implemented to be usable in other places. alpar@1253: class _FixId alpar@1253: { alpar@1253: std::vector index; alpar@1253: std::vector cross; alpar@1253: int first_free; alpar@1253: public: alpar@1253: _FixId() : first_free(-1) {}; alpar@1253: ///Convert a floating id to a fix one alpar@1253: alpar@1253: ///\param n is a floating id alpar@1253: ///\return the corresponding fix id alpar@1253: int fixId(int n) {return cross[n];} alpar@1253: ///Convert a fix id to a floating one alpar@1253: alpar@1253: ///\param n is a fix id alpar@1253: ///\return the corresponding floating id alpar@1253: int floatingId(int n) { return index[n];} alpar@1253: ///Add a new floating id. alpar@1253: alpar@1253: ///\param n is a floating id alpar@1253: ///\return the fix id of the new value alpar@1253: ///\todo Multiple additions should also be handled. alpar@1253: int insert(int n) alpar@1253: { alpar@1253: if(n>=int(cross.size())) { alpar@1253: cross.resize(n+1); alpar@1253: if(first_free==-1) { alpar@1253: cross[n]=index.size(); alpar@1253: index.push_back(n); alpar@1253: } alpar@1253: else { alpar@1253: cross[n]=first_free; alpar@1253: int next=index[first_free]; alpar@1253: index[first_free]=n; alpar@1253: first_free=next; alpar@1253: } alpar@1256: return cross[n]; alpar@1253: } alpar@1253: else throw LogicError(); //floatingId-s must form a continuous range; alpar@1253: } alpar@1253: ///Remove a fix id. alpar@1253: alpar@1253: ///\param n is a fix id alpar@1253: /// alpar@1253: void erase(int n) alpar@1253: { alpar@1253: int fl=index[n]; alpar@1253: index[n]=first_free; alpar@1253: first_free=n; alpar@1253: for(int i=fl+1;i Expr; alpar@1264: ///Linear constraint alpar@1264: typedef LinConstr Constr; alpar@1253: alpar@1253: protected: alpar@1253: _FixId rows; alpar@1253: _FixId cols; athos@1246: athos@1246: /// \e athos@1246: virtual int _addCol() = 0; athos@1246: /// \e athos@1246: virtual int _addRow() = 0; athos@1246: /// \e alpar@1253: athos@1246: /// \warning Arrays are indexed from 1 (datum at index 0 is ignored) alpar@1253: /// athos@1246: virtual void _setRowCoeffs(int i, athos@1251: int length, athos@1247: int const * indices, athos@1247: Value const * values ) = 0; athos@1246: /// \e alpar@1253: athos@1246: /// \warning Arrays are indexed from 1 (datum at index 0 is ignored) alpar@1253: /// athos@1246: virtual void _setColCoeffs(int i, athos@1251: int length, athos@1247: int const * indices, athos@1247: Value const * values ) = 0; athos@1246: athos@1247: /// \e alpar@1253: athos@1247: /// The lower bound of a variable (column) have to be given by an athos@1247: /// extended number of type Value, i.e. a finite number of type alpar@1259: /// Value or -\ref INF. athos@1247: virtual void _setColLowerBound(int i, Value value) = 0; athos@1247: /// \e alpar@1253: athos@1247: /// The upper bound of a variable (column) have to be given by an athos@1247: /// extended number of type Value, i.e. a finite number of type alpar@1259: /// Value or \ref INF. athos@1247: virtual void _setColUpperBound(int i, Value value) = 0; athos@1247: /// \e alpar@1253: athos@1247: /// The lower bound of a linear expression (row) have to be given by an athos@1247: /// extended number of type Value, i.e. a finite number of type alpar@1259: /// Value or -\ref INF. athos@1247: virtual void _setRowLowerBound(int i, Value value) = 0; athos@1247: /// \e alpar@1253: athos@1247: /// The upper bound of a linear expression (row) have to be given by an athos@1247: /// extended number of type Value, i.e. a finite number of type alpar@1259: /// Value or \ref INF. athos@1247: virtual void _setRowUpperBound(int i, Value value) = 0; athos@1247: athos@1247: /// \e athos@1247: virtual void _setObjCoeff(int i, Value obj_coef) = 0; alpar@1253: alpar@1253: ///\e alpar@1263: alpar@1263: ///\bug Wrong interface alpar@1263: /// alpar@1263: virtual SolutionType _solve() = 0; alpar@1263: alpar@1263: ///\e alpar@1263: alpar@1263: ///\bug Wrong interface alpar@1263: /// alpar@1263: virtual Value _getSolution(int i) = 0; alpar@1263: ///\e alpar@1253: alpar@1253: ///\bug unimplemented!!!! alpar@1253: void clearObj() {} alpar@1253: public: alpar@1253: alpar@1253: alpar@1253: ///\e alpar@1253: virtual ~LpSolverBase() {} alpar@1253: alpar@1263: ///\name Building up and modification of the LP alpar@1263: alpar@1263: ///@{ alpar@1263: alpar@1253: ///Add a new empty column (i.e a new variable) to the LP alpar@1253: Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;} alpar@1263: alpar@1256: ///\brief Fill the elements of a container with newly created columns alpar@1256: ///(i.e a new variables) alpar@1256: /// alpar@1256: ///This magic function takes container as its argument alpar@1256: ///and fills its elements alpar@1256: ///with new columns (i.e. variables) alpar@1256: ///\param t can be either any standard STL iterable container with alpar@1256: ///\ref Col \c values_type or \c mapped_type alpar@1256: ///like std::vector, alpar@1256: /// std::list or alpar@1256: /// std::map or alpar@1256: ///it can be an iterable lemon map like alpar@1256: /// ListGraph::NodeMap. alpar@1256: ///\return The number of the created column. alpar@1256: ///\bug Iterable nodemap hasn't been implemented yet. alpar@1256: #ifdef DOXYGEN alpar@1256: template alpar@1256: int addColSet(T &t) { return 0;} alpar@1256: #else alpar@1256: template alpar@1256: typename enable_if::type alpar@1256: addColSet(T &t,dummy<0> = 0) { alpar@1256: int s=0; alpar@1256: for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} alpar@1256: return s; alpar@1256: } alpar@1256: template alpar@1256: typename enable_if::type alpar@1256: addColSet(T &t,dummy<1> = 1) { alpar@1256: int s=0; alpar@1256: for(typename T::iterator i=t.begin();i!=t.end();++i) { alpar@1256: i->second=addCol(); alpar@1256: s++; alpar@1256: } alpar@1256: return s; alpar@1256: } alpar@1256: #endif alpar@1263: alpar@1253: ///Add a new empty row (i.e a new constaint) to the LP alpar@1258: alpar@1258: ///This function adds a new empty row (i.e a new constaint) to the LP. alpar@1258: ///\return The created row alpar@1253: Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;} alpar@1253: alpar@1258: ///Set a row (i.e a constaint) of the LP alpar@1253: alpar@1258: ///\param r is the row to be modified alpar@1259: ///\param l is lower bound (-\ref INF means no bound) alpar@1258: ///\param e is a linear expression (see \ref Expr) alpar@1259: ///\param u is the upper bound (\ref INF means no bound) alpar@1253: ///\bug This is a temportary function. The interface will change to alpar@1253: ///a better one. alpar@1258: void setRow(Row r, Value l,const Expr &e, Value u) { alpar@1253: std::vector indices; alpar@1253: std::vector values; alpar@1253: indices.push_back(0); alpar@1253: values.push_back(0); alpar@1258: for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i) alpar@1256: if((*i).second!=0) { ///\bug EPSILON would be necessary here!!! alpar@1256: indices.push_back(cols.floatingId((*i).first.id)); alpar@1256: values.push_back((*i).second); alpar@1256: } alpar@1253: _setRowCoeffs(rows.floatingId(r.id),indices.size()-1, alpar@1253: &indices[0],&values[0]); alpar@1256: _setRowLowerBound(rows.floatingId(r.id),l-e.constComp()); alpar@1256: _setRowUpperBound(rows.floatingId(r.id),u-e.constComp()); alpar@1258: } alpar@1258: alpar@1264: ///Set a row (i.e a constaint) of the LP alpar@1264: alpar@1264: ///\param r is the row to be modified alpar@1264: ///\param c is a linear expression (see \ref Constr) alpar@1264: ///\bug This is a temportary function. The interface will change to alpar@1264: ///a better one. alpar@1264: void setRow(Row r, const Constr &c) { alpar@1264: Value lb= c.lb==NaN?-INF:lb; alpar@1264: Value ub= c.ub==NaN?INF:lb; alpar@1264: setRow(r,lb,c.expr,ub); alpar@1264: } alpar@1264: alpar@1258: ///Add a new row (i.e a new constaint) to the LP alpar@1258: alpar@1259: ///\param l is the lower bound (-\ref INF means no bound) alpar@1258: ///\param e is a linear expression (see \ref Expr) alpar@1259: ///\param u is the upper bound (\ref INF means no bound) alpar@1258: ///\return The created row. alpar@1258: ///\bug This is a temportary function. The interface will change to alpar@1258: ///a better one. alpar@1258: Row addRow(Value l,const Expr &e, Value u) { alpar@1258: Row r=addRow(); alpar@1258: setRow(r,l,e,u); alpar@1253: return r; alpar@1253: } alpar@1253: alpar@1264: ///Add a new row (i.e a new constaint) to the LP alpar@1264: alpar@1264: ///\param c is a linear expression (see \ref Constr) alpar@1264: ///\return The created row. alpar@1264: ///\bug This is a temportary function. The interface will change to alpar@1264: ///a better one. alpar@1264: Row addRow(const Constr &c) { alpar@1264: Row r=addRow(); alpar@1264: setRow(r,c); alpar@1264: return r; alpar@1264: } alpar@1264: alpar@1253: /// Set the lower bound of a column (i.e a variable) alpar@1253: alpar@1253: /// The upper bound of a variable (column) have to be given by an alpar@1253: /// extended number of type Value, i.e. a finite number of type alpar@1259: /// Value or -\ref INF. alpar@1253: virtual void setColLowerBound(Col c, Value value) { alpar@1253: _setColLowerBound(cols.floatingId(c.id),value); alpar@1253: } alpar@1253: /// Set the upper bound of a column (i.e a variable) alpar@1253: alpar@1253: /// The upper bound of a variable (column) have to be given by an alpar@1253: /// extended number of type Value, i.e. a finite number of type alpar@1259: /// Value or \ref INF. alpar@1253: virtual void setColUpperBound(Col c, Value value) { alpar@1253: _setColUpperBound(cols.floatingId(c.id),value); alpar@1253: }; alpar@1253: /// Set the lower bound of a row (i.e a constraint) alpar@1253: alpar@1253: /// The lower bound of a linear expression (row) have to be given by an alpar@1253: /// extended number of type Value, i.e. a finite number of type alpar@1259: /// Value or -\ref INF. alpar@1253: virtual void setRowLowerBound(Row r, Value value) { alpar@1253: _setRowLowerBound(rows.floatingId(r.id),value); alpar@1253: }; alpar@1253: /// Set the upper bound of a row (i.e a constraint) alpar@1253: alpar@1253: /// The upper bound of a linear expression (row) have to be given by an alpar@1253: /// extended number of type Value, i.e. a finite number of type alpar@1259: /// Value or \ref INF. alpar@1253: virtual void setRowUpperBound(Row r, Value value) { alpar@1253: _setRowUpperBound(rows.floatingId(r.id),value); alpar@1253: }; alpar@1253: ///Set an element of the objective function alpar@1253: void setObjCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); }; alpar@1253: ///Set the objective function alpar@1253: alpar@1253: ///\param e is a linear expression of type \ref Expr. alpar@1253: ///\todo What to do with the constant component? alpar@1253: void setObj(Expr e) { alpar@1253: clearObj(); alpar@1253: for (Expr::iterator i=e.begin(); i!=e.end(); ++i) alpar@1253: setObjCoeff((*i).first,(*i).second); alpar@1253: } alpar@1263: alpar@1263: ///@} alpar@1263: alpar@1263: alpar@1263: ///\name Solving the LP alpar@1263: alpar@1263: ///@{ alpar@1263: alpar@1263: ///\e alpar@1263: SolutionType solve() { return _solve(); } alpar@1263: alpar@1263: ///@} alpar@1263: alpar@1263: ///\name Obtaining the solution LP alpar@1263: alpar@1263: ///@{ alpar@1263: alpar@1263: ///\e alpar@1263: Value solution(Col c) { return _getSolution(cols.floatingId(c.id)); } alpar@1263: alpar@1263: ///@} alpar@1253: athos@1248: }; athos@1246: athos@1246: } //namespace lemon athos@1246: athos@1246: #endif //LEMON_LP_BASE_H