klao@959: /* -*- C++ -*- ladanyi@1435: * lemon/concept/graph.h - Part of LEMON, a generic C++ optimization library klao@959: * alpar@1875: * Copyright (C) 2006 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport alpar@1359: * (Egervary Research Group on Combinatorial Optimization, EGRES). klao@959: * klao@959: * Permission to use, modify and distribute this software is granted klao@959: * provided that this copyright notice appears in all copies. For klao@959: * precise terms see the accompanying LICENSE file. klao@959: * klao@959: * This software is provided "AS IS" with no warranty of any kind, klao@959: * express or implied, and with no claim as to its suitability for any klao@959: * purpose. klao@959: * klao@959: */ klao@959: klao@959: #ifndef LEMON_CONCEPT_GRAPH_H klao@959: #define LEMON_CONCEPT_GRAPH_H klao@959: klao@1030: ///\ingroup graph_concepts klao@959: ///\file klao@959: ///\brief Declaration of Graph. klao@959: klao@959: #include alpar@1448: #include klao@959: #include klao@959: #include klao@959: #include klao@959: klao@959: namespace lemon { klao@959: namespace concept { deba@1136: klao@959: klao@961: /**************** The full-featured graph concepts ****************/ klao@959: deba@1136: klao@1760: // \brief Modular static graph class. klao@1760: // klao@1760: // It should be the same as the \c StaticGraph class. deba@1136: class _StaticGraph klao@961: : virtual public BaseGraphComponent, ladanyi@1426: public IterableGraphComponent, public MappableGraphComponent { klao@959: public: alpar@1448: klao@1909: typedef False UTag; alpar@1448: klao@959: typedef BaseGraphComponent::Node Node; klao@959: typedef BaseGraphComponent::Edge Edge; klao@959: deba@989: template deba@989: struct Constraints { ladanyi@1426: void constraints() { ladanyi@1426: checkConcept(); ladanyi@1426: checkConcept(); ladanyi@1426: } deba@989: }; klao@959: }; klao@959: klao@1760: // \brief Modular extendable graph class. klao@1760: // klao@1760: // It should be the same as the \c ExtendableGraph class. deba@1136: class _ExtendableGraph deba@1136: : virtual public BaseGraphComponent, public _StaticGraph, ladanyi@1426: public ExtendableGraphComponent, public ClearableGraphComponent { klao@959: public: klao@959: typedef BaseGraphComponent::Node Node; klao@959: typedef BaseGraphComponent::Edge Edge; klao@959: deba@989: template deba@989: struct Constraints { ladanyi@1426: void constraints() { ladanyi@1426: checkConcept<_StaticGraph, _Graph >(); ladanyi@1426: checkConcept(); ladanyi@1426: checkConcept(); ladanyi@1426: } deba@989: }; klao@959: }; klao@959: klao@1760: // \brief Modular erasable graph class. klao@1760: // klao@1760: // It should be the same as the \c ErasableGraph class. deba@1136: class _ErasableGraph deba@1136: : virtual public BaseGraphComponent, public _ExtendableGraph, ladanyi@1426: public ErasableGraphComponent { klao@959: public: klao@959: typedef BaseGraphComponent::Node Node; klao@959: typedef BaseGraphComponent::Edge Edge; klao@959: deba@989: template deba@989: struct Constraints { ladanyi@1426: void constraints() { ladanyi@1426: checkConcept<_ExtendableGraph, _Graph >(); ladanyi@1426: checkConcept(); ladanyi@1426: } deba@989: }; klao@959: }; klao@959: alpar@1620: /// \addtogroup graph_concepts alpar@1620: /// @{ alpar@1620: deba@1136: /// An empty static graph class. deba@1136: deba@1136: /// This class provides all the common features of a graph structure, deba@1136: /// however completely without implementations and real data structures deba@1136: /// behind the interface. deba@1136: /// All graph algorithms should compile with this class, but it will not deba@1136: /// run properly, of course. deba@1136: /// deba@1136: /// It can be used for checking the interface compatibility, deba@1136: /// or it can serve as a skeleton of a new graph structure. deba@1136: /// deba@1136: /// Also, you will find here the full documentation of a certain graph deba@1136: /// feature, the documentation of a real graph imlementation deba@1136: /// like @ref ListGraph or deba@1136: /// @ref SmartGraph will just refer to this structure. deba@1136: /// deba@1136: /// \todo A pages describing the concept of concept description would deba@1136: /// be nice. deba@1136: class StaticGraph deba@1136: { deba@1136: public: alpar@1448: ///\e alpar@1448: alpar@1448: ///\todo undocumented alpar@1448: /// klao@1909: typedef False UTag; alpar@1448: deba@1136: /// Defalult constructor. deba@1136: deba@1136: /// Defalult constructor. deba@1136: /// deba@1136: StaticGraph() { } deba@1136: ///Copy consructor. deba@1136: deba@1136: // ///\todo It is not clear, what we expect from a copy constructor. deba@1136: // ///E.g. How to assign the nodes/edges to each other? What about maps? deba@1136: // StaticGraph(const StaticGraph& g) { } deba@1136: deba@1136: /// The base type of node iterators, deba@1136: /// or in other words, the trivial node iterator. deba@1136: deba@1136: /// This is the base type of each node iterator, deba@1136: /// thus each kind of node iterator converts to this. deba@1136: /// More precisely each kind of node iterator should be inherited deba@1136: /// from the trivial node iterator. deba@1136: class Node { deba@1136: public: ladanyi@1426: /// Default constructor deba@1136: ladanyi@1426: /// @warning The default constructor sets the iterator ladanyi@1426: /// to an undefined value. ladanyi@1426: Node() { } ladanyi@1426: /// Copy constructor. deba@1136: ladanyi@1426: /// Copy constructor. ladanyi@1426: /// ladanyi@1426: Node(const Node&) { } deba@1136: ladanyi@1426: /// Invalid constructor \& conversion. deba@1136: ladanyi@1426: /// This constructor initializes the iterator to be invalid. ladanyi@1426: /// \sa Invalid for more details. ladanyi@1426: Node(Invalid) { } ladanyi@1426: /// Equality operator deba@1136: ladanyi@1426: /// Two iterators are equal if and only if they point to the ladanyi@1426: /// same object or both are invalid. ladanyi@1426: bool operator==(Node) const { return true; } deba@1136: ladanyi@1426: /// Inequality operator ladanyi@1426: ladanyi@1426: /// \sa operator==(Node n) ladanyi@1426: /// ladanyi@1426: bool operator!=(Node) const { return true; } deba@1136: deba@1622: /// Artificial ordering operator. deba@1622: deba@1622: /// To allow the use of graph descriptors as key type in std::map or deba@1622: /// similar associative container we require this. deba@1622: /// deba@1622: /// \note This operator only have to define some strict ordering of deba@1622: /// the items; this order has nothing to do with the iteration deba@1622: /// ordering of the items. deba@1622: /// deba@1622: /// \bug This is a technical requirement. Do we really need this? deba@1622: bool operator<(Node) const { return false; } deba@1622: deba@1136: }; deba@1136: deba@1136: /// This iterator goes through each node. deba@1136: deba@1136: /// This iterator goes through each node. deba@1136: /// Its usage is quite simple, for example you can count the number deba@1136: /// of nodes in graph \c g of type \c Graph like this: alpar@1946: ///\code deba@1136: /// int count=0; ladanyi@1426: /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; alpar@1946: ///\endcode deba@1136: class NodeIt : public Node { deba@1136: public: ladanyi@1426: /// Default constructor deba@1136: ladanyi@1426: /// @warning The default constructor sets the iterator ladanyi@1426: /// to an undefined value. ladanyi@1426: NodeIt() { } ladanyi@1426: /// Copy constructor. ladanyi@1426: ladanyi@1426: /// Copy constructor. ladanyi@1426: /// ladanyi@1426: NodeIt(const NodeIt& n) : Node(n) { } ladanyi@1426: /// Invalid constructor \& conversion. deba@1136: ladanyi@1426: /// Initialize the iterator to be invalid. ladanyi@1426: /// \sa Invalid for more details. ladanyi@1426: NodeIt(Invalid) { } ladanyi@1426: /// Sets the iterator to the first node. deba@1136: ladanyi@1426: /// Sets the iterator to the first node of \c g. ladanyi@1426: /// ladanyi@1426: NodeIt(const StaticGraph&) { } ladanyi@1426: /// Node -> NodeIt conversion. deba@1136: deba@1470: /// Sets the iterator to the node of \c the graph pointed by deba@1470: /// the trivial iterator. ladanyi@1426: /// This feature necessitates that each time we ladanyi@1426: /// iterate the edge-set, the iteration order is the same. deba@1470: NodeIt(const StaticGraph&, const Node&) { } ladanyi@1426: /// Next node. deba@1136: ladanyi@1426: /// Assign the iterator to the next node. ladanyi@1426: /// ladanyi@1426: NodeIt& operator++() { return *this; } deba@1136: }; deba@1136: deba@1136: deba@1136: /// The base type of the edge iterators. deba@1136: deba@1136: /// The base type of the edge iterators. deba@1136: /// deba@1136: class Edge { deba@1136: public: ladanyi@1426: /// Default constructor deba@1136: ladanyi@1426: /// @warning The default constructor sets the iterator ladanyi@1426: /// to an undefined value. ladanyi@1426: Edge() { } ladanyi@1426: /// Copy constructor. deba@1136: ladanyi@1426: /// Copy constructor. ladanyi@1426: /// ladanyi@1426: Edge(const Edge&) { } ladanyi@1426: /// Initialize the iterator to be invalid. deba@1136: ladanyi@1426: /// Initialize the iterator to be invalid. ladanyi@1426: /// ladanyi@1426: Edge(Invalid) { } ladanyi@1426: /// Equality operator deba@1136: ladanyi@1426: /// Two iterators are equal if and only if they point to the ladanyi@1426: /// same object or both are invalid. ladanyi@1426: bool operator==(Edge) const { return true; } ladanyi@1426: /// Inequality operator deba@1136: alpar@1620: /// \sa operator==(Edge n) ladanyi@1426: /// ladanyi@1426: bool operator!=(Edge) const { return true; } deba@1622: deba@1622: /// Artificial ordering operator. deba@1622: deba@1622: /// To allow the use of graph descriptors as key type in std::map or deba@1622: /// similar associative container we require this. deba@1622: /// deba@1622: /// \note This operator only have to define some strict ordering of deba@1622: /// the items; this order has nothing to do with the iteration deba@1622: /// ordering of the items. deba@1622: /// deba@1622: /// \bug This is a technical requirement. Do we really need this? deba@1622: bool operator<(Edge) const { return false; } deba@1136: }; deba@1136: deba@1136: /// This iterator goes trough the outgoing edges of a node. deba@1136: deba@1136: /// This iterator goes trough the \e outgoing edges of a certain node deba@1136: /// of a graph. deba@1136: /// Its usage is quite simple, for example you can count the number deba@1136: /// of outgoing edges of a node \c n deba@1136: /// in graph \c g of type \c Graph as follows. alpar@1946: ///\code deba@1136: /// int count=0; deba@1136: /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; alpar@1946: ///\endcode deba@1136: deba@1136: class OutEdgeIt : public Edge { deba@1136: public: ladanyi@1426: /// Default constructor deba@1136: ladanyi@1426: /// @warning The default constructor sets the iterator ladanyi@1426: /// to an undefined value. ladanyi@1426: OutEdgeIt() { } ladanyi@1426: /// Copy constructor. deba@1136: ladanyi@1426: /// Copy constructor. ladanyi@1426: /// ladanyi@1426: OutEdgeIt(const OutEdgeIt& e) : Edge(e) { } ladanyi@1426: /// Initialize the iterator to be invalid. deba@1136: ladanyi@1426: /// Initialize the iterator to be invalid. ladanyi@1426: /// ladanyi@1426: OutEdgeIt(Invalid) { } ladanyi@1426: /// This constructor sets the iterator to the first outgoing edge. deba@1136: ladanyi@1426: /// This constructor sets the iterator to the first outgoing edge of ladanyi@1426: /// the node. ladanyi@1426: OutEdgeIt(const StaticGraph&, const Node&) { } ladanyi@1426: /// Edge -> OutEdgeIt conversion deba@1136: deba@1470: /// Sets the iterator to the value of the trivial iterator. deba@1470: /// This feature necessitates that each time we ladanyi@1426: /// iterate the edge-set, the iteration order is the same. deba@1470: OutEdgeIt(const StaticGraph&, const Edge&) { } ladanyi@1426: ///Next outgoing edge ladanyi@1426: ladanyi@1426: /// Assign the iterator to the next ladanyi@1426: /// outgoing edge of the corresponding node. ladanyi@1426: OutEdgeIt& operator++() { return *this; } deba@1136: }; deba@1136: deba@1136: /// This iterator goes trough the incoming edges of a node. deba@1136: deba@1136: /// This iterator goes trough the \e incoming edges of a certain node deba@1136: /// of a graph. deba@1136: /// Its usage is quite simple, for example you can count the number deba@1136: /// of outgoing edges of a node \c n deba@1136: /// in graph \c g of type \c Graph as follows. alpar@1946: ///\code deba@1136: /// int count=0; deba@1136: /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; alpar@1946: ///\endcode deba@1136: deba@1136: class InEdgeIt : public Edge { deba@1136: public: ladanyi@1426: /// Default constructor deba@1136: ladanyi@1426: /// @warning The default constructor sets the iterator ladanyi@1426: /// to an undefined value. ladanyi@1426: InEdgeIt() { } ladanyi@1426: /// Copy constructor. deba@1136: ladanyi@1426: /// Copy constructor. ladanyi@1426: /// ladanyi@1426: InEdgeIt(const InEdgeIt& e) : Edge(e) { } ladanyi@1426: /// Initialize the iterator to be invalid. deba@1136: ladanyi@1426: /// Initialize the iterator to be invalid. ladanyi@1426: /// ladanyi@1426: InEdgeIt(Invalid) { } ladanyi@1426: /// This constructor sets the iterator to first incoming edge. deba@1136: ladanyi@1426: /// This constructor set the iterator to the first incoming edge of ladanyi@1426: /// the node. ladanyi@1426: InEdgeIt(const StaticGraph&, const Node&) { } ladanyi@1426: /// Edge -> InEdgeIt conversion deba@1136: ladanyi@1426: /// Sets the iterator to the value of the trivial iterator \c e. ladanyi@1426: /// This feature necessitates that each time we ladanyi@1426: /// iterate the edge-set, the iteration order is the same. ladanyi@1426: InEdgeIt(const StaticGraph&, const Edge&) { } ladanyi@1426: /// Next incoming edge deba@1136: ladanyi@1426: /// Assign the iterator to the next inedge of the corresponding node. ladanyi@1426: /// ladanyi@1426: InEdgeIt& operator++() { return *this; } deba@1136: }; deba@1136: /// This iterator goes through each edge. deba@1136: deba@1136: /// This iterator goes through each edge of a graph. deba@1136: /// Its usage is quite simple, for example you can count the number deba@1136: /// of edges in a graph \c g of type \c Graph as follows: alpar@1946: ///\code deba@1136: /// int count=0; deba@1136: /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; alpar@1946: ///\endcode deba@1136: class EdgeIt : public Edge { deba@1136: public: ladanyi@1426: /// Default constructor deba@1136: ladanyi@1426: /// @warning The default constructor sets the iterator ladanyi@1426: /// to an undefined value. ladanyi@1426: EdgeIt() { } ladanyi@1426: /// Copy constructor. deba@1136: ladanyi@1426: /// Copy constructor. ladanyi@1426: /// ladanyi@1426: EdgeIt(const EdgeIt& e) : Edge(e) { } ladanyi@1426: /// Initialize the iterator to be invalid. deba@1136: ladanyi@1426: /// Initialize the iterator to be invalid. ladanyi@1426: /// ladanyi@1426: EdgeIt(Invalid) { } ladanyi@1426: /// This constructor sets the iterator to the first edge. deba@1136: ladanyi@1426: /// This constructor sets the iterator to the first edge of \c g. ladanyi@1426: ///@param g the graph alpar@1643: EdgeIt(const StaticGraph& g) { ignore_unused_variable_warning(g); } ladanyi@1426: /// Edge -> EdgeIt conversion deba@1136: ladanyi@1426: /// Sets the iterator to the value of the trivial iterator \c e. ladanyi@1426: /// This feature necessitates that each time we ladanyi@1426: /// iterate the edge-set, the iteration order is the same. ladanyi@1426: EdgeIt(const StaticGraph&, const Edge&) { } ladanyi@1426: ///Next edge ladanyi@1426: ladanyi@1426: /// Assign the iterator to the next edge. ladanyi@1426: EdgeIt& operator++() { return *this; } deba@1136: }; deba@1136: ///Gives back the target node of an edge. deba@1136: deba@1136: ///Gives back the target node of an edge. deba@1136: /// deba@1136: Node target(Edge) const { return INVALID; } deba@1136: ///Gives back the source node of an edge. deba@1136: deba@1136: ///Gives back the source node of an edge. deba@1136: /// deba@1136: Node source(Edge) const { return INVALID; } deba@1563: alpar@1630: // /// Gives back the first Node in the iterating order. deba@1563: alpar@1630: // /// Gives back the first Node in the iterating order. alpar@1630: // /// deba@1563: void first(Node&) const {} deba@1563: alpar@1630: // /// Gives back the next Node in the iterating order. deba@1563: alpar@1630: // /// Gives back the next Node in the iterating order. alpar@1630: // /// deba@1563: void next(Node&) const {} deba@1563: alpar@1630: // /// Gives back the first Edge in the iterating order. deba@1563: alpar@1630: // /// Gives back the first Edge in the iterating order. alpar@1630: // /// deba@1563: void first(Edge&) const {} alpar@1630: // /// Gives back the next Edge in the iterating order. deba@1563: alpar@1630: // /// Gives back the next Edge in the iterating order. alpar@1630: // /// deba@1563: void next(Edge&) const {} deba@1563: deba@1563: alpar@1630: // /// Gives back the first of the Edges point to the given Node. deba@1563: alpar@1630: // /// Gives back the first of the Edges point to the given Node. alpar@1630: // /// deba@1563: void firstIn(Edge&, const Node&) const {} deba@1563: alpar@1630: // /// Gives back the next of the Edges points to the given Node. deba@1563: deba@1563: alpar@1630: // /// Gives back the next of the Edges points to the given Node. alpar@1630: // /// deba@1563: void nextIn(Edge&) const {} deba@1563: alpar@1630: // /// Gives back the first of the Edges start from the given Node. deba@1563: alpar@1630: // /// Gives back the first of the Edges start from the given Node. alpar@1630: // /// deba@1563: void firstOut(Edge&, const Node&) const {} deba@1563: alpar@1630: // /// Gives back the next of the Edges start from the given Node. deba@1563: alpar@1630: // /// Gives back the next of the Edges start from the given Node. alpar@1630: // /// deba@1563: void nextOut(Edge&) const {} deba@1563: deba@1563: /// \brief The base node of the iterator. deba@1563: /// deba@1563: /// Gives back the base node of the iterator. deba@1627: /// It is always the target of the pointed edge. deba@1563: Node baseNode(const InEdgeIt&) const { return INVALID; } deba@1563: deba@1563: /// \brief The running node of the iterator. deba@1563: /// deba@1563: /// Gives back the running node of the iterator. deba@1627: /// It is always the source of the pointed edge. deba@1563: Node runningNode(const InEdgeIt&) const { return INVALID; } deba@1563: deba@1563: /// \brief The base node of the iterator. deba@1563: /// deba@1563: /// Gives back the base node of the iterator. deba@1627: /// It is always the source of the pointed edge. deba@1563: Node baseNode(const OutEdgeIt&) const { return INVALID; } deba@1563: deba@1563: /// \brief The running node of the iterator. deba@1563: /// deba@1563: /// Gives back the running node of the iterator. deba@1627: /// It is always the target of the pointed edge. deba@1563: Node runningNode(const OutEdgeIt&) const { return INVALID; } deba@1136: deba@1627: /// \brief The opposite node on the given edge. deba@1627: /// deba@1627: /// Gives back the opposite node on the given edge. deba@1627: Node oppositeNode(const Node&, const Edge&) const { return INVALID; } deba@1627: deba@1627: /// \brief Read write map of the nodes to type \c T. deba@1627: /// deba@1136: /// ReadWrite map of the nodes to type \c T. deba@1136: /// \sa Reference deba@1136: /// \warning Making maps that can handle bool type (NodeMap) deba@1136: /// needs some extra attention! alpar@1630: /// \todo Wrong documentation deba@1136: template deba@1136: class NodeMap : public ReadWriteMap< Node, T > deba@1136: { deba@1136: public: deba@1136: ladanyi@1426: ///\e ladanyi@1426: NodeMap(const StaticGraph&) { } ladanyi@1426: ///\e ladanyi@1426: NodeMap(const StaticGraph&, T) { } deba@1136: ladanyi@1426: ///Copy constructor ladanyi@1426: NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } ladanyi@1426: ///Assignment operator ladanyi@1426: NodeMap& operator=(const NodeMap&) { return *this; } ladanyi@1426: // \todo fix this concept deba@1136: }; deba@1136: deba@1627: /// \brief Read write map of the edges to type \c T. deba@1627: /// deba@1627: /// Reference map of the edges to type \c T. deba@1136: /// \sa Reference deba@1136: /// \warning Making maps that can handle bool type (EdgeMap) deba@1136: /// needs some extra attention! alpar@1630: /// \todo Wrong documentation deba@1136: template deba@1136: class EdgeMap : public ReadWriteMap deba@1136: { deba@1136: public: deba@1136: ladanyi@1426: ///\e ladanyi@1426: EdgeMap(const StaticGraph&) { } ladanyi@1426: ///\e ladanyi@1426: EdgeMap(const StaticGraph&, T) { } ladanyi@1426: ///Copy constructor ladanyi@1426: EdgeMap(const EdgeMap& em) : ReadWriteMap(em) { } ladanyi@1426: ///Assignment operator ladanyi@1426: EdgeMap& operator=(const EdgeMap&) { return *this; } ladanyi@1426: // \todo fix this concept deba@1136: }; deba@1136: deba@1136: template deba@1136: struct Constraints : public _StaticGraph::Constraints<_Graph> {}; deba@1136: deba@1136: }; deba@1136: deba@1136: /// An empty non-static graph class. deba@1136: ladanyi@1426: /// This class provides everything that \ref StaticGraph does. ladanyi@1426: /// Additionally it enables building graphs from scratch. deba@1136: class ExtendableGraph : public StaticGraph deba@1136: { deba@1136: public: deba@1136: /// Defalult constructor. deba@1136: deba@1136: /// Defalult constructor. deba@1136: /// deba@1136: ExtendableGraph() { } deba@1136: ///Add a new node to the graph. deba@1136: deba@1136: /// \return the new node. deba@1136: /// deba@1136: Node addNode() { return INVALID; } deba@1136: ///Add a new edge to the graph. deba@1136: deba@1136: ///Add a new edge to the graph with source node \c s deba@1136: ///and target node \c t. deba@1136: ///\return the new edge. alpar@1367: Edge addEdge(Node, Node) { return INVALID; } deba@1136: deba@1136: /// Resets the graph. deba@1136: deba@1136: /// This function deletes all edges and nodes of the graph. deba@1136: /// It also frees the memory allocated to store them. deba@1136: /// \todo It might belong to \ref ErasableGraph. deba@1136: void clear() { } deba@1136: deba@1136: template deba@1136: struct Constraints : public _ExtendableGraph::Constraints<_Graph> {}; deba@1136: deba@1136: }; deba@1136: deba@1136: /// An empty erasable graph class. deba@1136: ladanyi@1426: /// This class is an extension of \ref ExtendableGraph. It makes it deba@1136: /// possible to erase edges or nodes. deba@1136: class ErasableGraph : public ExtendableGraph deba@1136: { deba@1136: public: deba@1136: /// Defalult constructor. deba@1136: deba@1136: /// Defalult constructor. deba@1136: /// deba@1136: ErasableGraph() { } deba@1136: /// Deletes a node. deba@1136: deba@1136: /// Deletes node \c n node. deba@1136: /// alpar@1367: void erase(Node) { } deba@1136: /// Deletes an edge. deba@1136: deba@1136: /// Deletes edge \c e edge. deba@1136: /// alpar@1367: void erase(Edge) { } deba@1136: deba@1136: template deba@1136: struct Constraints : public _ErasableGraph::Constraints<_Graph> {}; deba@1136: deba@1136: }; deba@1136: klao@959: // @} klao@959: } //namespace concept klao@959: } //namespace lemon klao@959: klao@959: klao@959: klao@959: #endif // LEMON_CONCEPT_GRAPH_H