hegyi@677: // -*- c++ -*-
alpar@921: #ifndef LEMON_NET_GRAPH_H
alpar@921: #define LEMON_NET_GRAPH_H
hegyi@677: 
hegyi@677: ///\file
hegyi@677: ///\brief Declaration of HierarchyGraph.
hegyi@677: 
alpar@921: #include <lemon/invalid.h>
alpar@921: #include <lemon/maps.h>
hegyi@677: 
alpar@921: /// The namespace of LEMON
alpar@921: namespace lemon
hegyi@691: {
hegyi@677: 
hegyi@677:   // @defgroup empty_graph The HierarchyGraph class
hegyi@677:   // @{
hegyi@677: 
hegyi@677:   /// A graph class in that a simple edge can represent a path.
hegyi@690: 
hegyi@677:   /// This class provides common features of a graph structure
hegyi@677:   /// that represents a network. You can handle with it layers. This
hegyi@677:   /// means that a node in one layer can be a complete network in a nother
hegyi@677:   /// layer.
hegyi@677: 
hegyi@691:   template < class Gact, class Gsub > class HierarchyGraph
hegyi@677:   {
hegyi@677: 
hegyi@677:   public:
hegyi@677: 
hegyi@677:     /// The actual layer
hegyi@677:     Gact actuallayer;
hegyi@677: 
hegyi@677: 
hegyi@690:     /// Map of the subnetworks in the sublayer
hegyi@690:     /// The appropriate edge nodes are also stored here
hegyi@677: 
hegyi@690:     class SubNetwork
hegyi@690:     {
hegyi@690: 
hegyi@690:       struct actedgesubnodestruct
hegyi@690:       {
hegyi@691: 	typename Gact::Edge actedge;
hegyi@691: 	typename Gsub::Node subnode;
hegyi@690:       };
hegyi@690: 
hegyi@690:       int edgenumber;
hegyi@690:       bool connectable;
hegyi@691:       Gact *actuallayer;
hegyi@690:       typename Gact::Node * actuallayernode;
hegyi@691:       Gsub *subnetwork;
hegyi@691:       actedgesubnodestruct *assignments;
hegyi@690: 
hegyi@690:     public:
hegyi@690: 
hegyi@691:       int addAssignment (typename Gact::Edge actedge,
hegyi@691: 			 typename Gsub::Node subnode)
hegyi@690:       {
hegyi@691: 	if (!(actuallayer->valid (actedge)))
hegyi@691: 	  {
hegyi@691: 	    cerr << "The given edge is not in the given network!" << endl;
hegyi@691: 	    return -1;
hegyi@691: 	  }
hegyi@691: 	else if ((actuallayer->id (actuallayer->tail (actedge)) !=
hegyi@691: 		  actuallayer->id (*actuallayernode))
hegyi@691: 		 && (actuallayer->id (actuallayer->head (actedge)) !=
hegyi@691: 		     actuallayer->id (*actuallayernode)))
hegyi@691: 	  {
hegyi@691: 	    cerr << "The given edge does not connect to the given node!" <<
hegyi@691: 	      endl;
hegyi@691: 	    return -1;
hegyi@691: 	  }
hegyi@690: 
hegyi@691: 	if (!(subnetwork->valid (subnode)))
hegyi@691: 	  {
hegyi@691: 	    cerr << "The given node is not in the given network!" << endl;
hegyi@691: 	    return -1;
hegyi@691: 	  }
hegyi@690: 
hegyi@691: 	int i = 0;
hegyi@690: 	//while in the array there is valid note that is not equvivalent with the one that would be noted increase i
hegyi@691: 	while ((i < edgenumber)
hegyi@691: 	       && (actuallayer->valid (assignments[i].actedge))
hegyi@691: 	       && (assignments[i].actedge != actedge))
hegyi@691: 	  i++;
hegyi@691: 	if (assignments[i].actedge == actedge)
hegyi@691: 	  {
hegyi@691: 	    cout << "Warning: Redefinement of assigment!!!" << endl;
hegyi@691: 	  }
hegyi@691: 	if (i == edgenumber)
hegyi@691: 	  {
hegyi@691: 	    cout <<
hegyi@691: 	      "This case can't be!!! (because there should be the guven edge in the array already and the cycle had to stop)"
hegyi@691: 	      << endl;
hegyi@691: 	  }
hegyi@690: 	//if(!(actuallayer->valid(assignments[i].actedge)))   //this condition is necessary if we do not obey redefinition
hegyi@690: 	{
hegyi@691: 	  assignments[i].actedge = actedge;
hegyi@691: 	  assignments[i].subnode = subnode;
hegyi@690: 	}
hegyi@690: 
hegyi@690: 	/// If to all of the edges a subnode is assigned then the subnetwork is connectable (attachable?)
hegyi@690: 	/// We do not need to check for further attributes, because to notice an assignment we need
hegyi@690: 	/// all of them to be correctly initialised before.
hegyi@691: 	if (i == edgenumber - 1)
hegyi@691: 	  connectable = 1;
hegyi@690: 
hegyi@690: 	return 0;
hegyi@690:       }
hegyi@690: 
hegyi@691:       int setSubNetwork (Gsub * sn)
hegyi@690:       {
hegyi@691: 	subnetwork = sn;
hegyi@690: 	return 0;
hegyi@690:       }
hegyi@690: 
hegyi@691:       int setActualLayer (Gact * al)
hegyi@690:       {
hegyi@691: 	actuallayer = al;
hegyi@690: 	return 0;
hegyi@690:       }
hegyi@690: 
hegyi@691:       int setActualLayerNode (typename Gact::Node * aln)
hegyi@690:       {
hegyi@690: 	typename Gact::InEdgeIt iei;
hegyi@690: 	typename Gact::OutEdgeIt oei;
hegyi@690: 
hegyi@691: 	actuallayernode = aln;
hegyi@690: 
hegyi@691: 	edgenumber = 0;
hegyi@690: 
hegyi@691: 	if (actuallayer)
hegyi@690: 	  {
hegyi@691: 	    for (iei = actuallayer->first (iei, (*actuallayernode));
hegyi@691: 		 ((actuallayer->valid (iei))
hegyi@691: 		  && (actuallayer->head (iei) == (*actuallayernode)));
hegyi@691: 		 actuallayer->next (iei))
hegyi@691: 	      {
hegyi@691: 		cout << actuallayer->id (actuallayer->
hegyi@691: 					 tail (iei)) << " " << actuallayer->
hegyi@691: 		  id (actuallayer->head (iei)) << endl;
hegyi@691: 		edgenumber++;
hegyi@691: 	      }
hegyi@691: 	    //cout << "Number of in-edges: " << edgenumber << endl;
hegyi@691: 	    for (oei = actuallayer->first (oei, (*actuallayernode));
hegyi@691: 		 ((actuallayer->valid (oei))
hegyi@691: 		  && (actuallayer->tail (oei) == (*actuallayernode)));
hegyi@691: 		 actuallayer->next (oei))
hegyi@691: 	      {
hegyi@691: 		cout << actuallayer->id (actuallayer->
hegyi@691: 					 tail (oei)) << " " << actuallayer->
hegyi@691: 		  id (actuallayer->head (oei)) << endl;
hegyi@691: 		edgenumber++;
hegyi@691: 	      }
hegyi@691: 	    //cout << "Number of in+out-edges: " << edgenumber << endl;
hegyi@691: 	    assignments = new actedgesubnodestruct[edgenumber];
hegyi@691: 	    for (int i = 0; i < edgenumber; i++)
hegyi@691: 	      {
hegyi@691: 		assignments[i].actedge = INVALID;
hegyi@691: 		assignments[i].subnode = INVALID;
hegyi@691: 	      }
hegyi@690: 	  }
hegyi@691: 	else
hegyi@690: 	  {
hegyi@691: 	    cerr << "There is no actual layer defined yet!" << endl;
hegyi@691: 	    return -1;
hegyi@690: 	  }
hegyi@690: 
hegyi@690: 	return 0;
hegyi@690:       }
hegyi@690: 
hegyi@691:     SubNetwork ():edgenumber (0), connectable (false), actuallayer (NULL),
hegyi@691: 	actuallayernode (NULL), subnetwork (NULL),
hegyi@691: 	assignments (NULL)
hegyi@690:       {
hegyi@690:       }
hegyi@690: 
hegyi@690:     };
hegyi@690: 
hegyi@691:     typename Gact::template NodeMap < SubNetwork > subnetworks;
hegyi@677: 
hegyi@677: 
hegyi@677:     /// Defalult constructor.
hegyi@677:     /// We don't need any extra lines, because the actuallayer
hegyi@677:     /// variable has run its constructor, when we have created this class
hegyi@677:     /// So only the two maps has to be initialised here.
hegyi@691:   HierarchyGraph ():subnetworks (actuallayer)
hegyi@677:     {
hegyi@677:     }
hegyi@677: 
hegyi@677: 
hegyi@677:     ///Copy consructor.
hegyi@691:   HierarchyGraph (const HierarchyGraph < Gact, Gsub > &HG):actuallayer (HG.actuallayer),
hegyi@691:       subnetworks
hegyi@691:       (actuallayer)
hegyi@677:     {
hegyi@677:     }
hegyi@677: 
hegyi@690: 
hegyi@677:     /// The base type of the node iterators.
hegyi@677: 
hegyi@677:     /// This is the base type of each node iterators,
hegyi@677:     /// thus each kind of node iterator will convert to this.
hegyi@677:     /// The Node type of the HierarchyGraph is the Node type of the actual layer.
hegyi@677:     typedef typename Gact::Node Node;
hegyi@677: 
hegyi@690: 
hegyi@677:     /// This iterator goes through each node.
hegyi@677: 
hegyi@677:     /// Its usage is quite simple, for example you can count the number
hegyi@677:     /// of nodes in graph \c G of type \c Graph like this:
hegyi@677:     /// \code
hegyi@677:     ///int count=0;
hegyi@677:     ///for(Graph::NodeIt n(G);G.valid(n);G.next(n)) count++;
hegyi@677:     /// \endcode
hegyi@677:     /// The NodeIt type of the HierarchyGraph is the NodeIt type of the actual layer.
hegyi@677:     typedef typename Gact::NodeIt NodeIt;
hegyi@690: 
hegyi@690: 
hegyi@677:     /// The base type of the edge iterators.
hegyi@677:     /// The Edge type of the HierarchyGraph is the Edge type of the actual layer.
hegyi@691:     typedef typename Gact::Edge Edge;
hegyi@677: 
hegyi@690: 
hegyi@677:     /// This iterator goes trough the outgoing edges of a node.
hegyi@677: 
hegyi@677:     /// This iterator goes trough the \e outgoing edges of a certain node
hegyi@677:     /// of a graph.
hegyi@677:     /// Its usage is quite simple, for example you can count the number
hegyi@677:     /// of outgoing edges of a node \c n
hegyi@677:     /// in graph \c G of type \c Graph as follows.
hegyi@677:     /// \code
hegyi@677:     ///int count=0;
hegyi@677:     ///for(Graph::OutEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
hegyi@677:     /// \endcode
hegyi@677:     /// The OutEdgeIt type of the HierarchyGraph is the OutEdgeIt type of the actual layer.
hegyi@677:     typedef typename Gact::OutEdgeIt OutEdgeIt;
hegyi@677: 
hegyi@677: 
hegyi@677:     /// This iterator goes trough the incoming edges of a node.
hegyi@677: 
hegyi@677:     /// This iterator goes trough the \e incoming edges of a certain node
hegyi@677:     /// of a graph.
hegyi@677:     /// Its usage is quite simple, for example you can count the number
hegyi@677:     /// of outgoing edges of a node \c n
hegyi@677:     /// in graph \c G of type \c Graph as follows.
hegyi@677:     /// \code
hegyi@677:     ///int count=0;
hegyi@677:     ///for(Graph::InEdgeIt e(G,n);G.valid(e);G.next(e)) count++;
hegyi@677:     /// \endcode
hegyi@677:     /// The InEdgeIt type of the HierarchyGraph is the InEdgeIt type of the actual layer.
hegyi@677:     typedef typename Gact::InEdgeIt InEdgeIt;
hegyi@677: 
hegyi@677: 
hegyi@677:     /// This iterator goes through each edge.
hegyi@677: 
hegyi@677:     /// This iterator goes through each edge of a graph.
hegyi@677:     /// Its usage is quite simple, for example you can count the number
hegyi@677:     /// of edges in a graph \c G of type \c Graph as follows:
hegyi@677:     /// \code
hegyi@677:     ///int count=0;
hegyi@677:     ///for(Graph::EdgeIt e(G);G.valid(e);G.next(e)) count++;
hegyi@677:     /// \endcode
hegyi@677:     /// The EdgeIt type of the HierarchyGraph is the EdgeIt type of the actual layer.
hegyi@677:     typedef typename Gact::EdgeIt EdgeIt;
hegyi@677: 
hegyi@677: 
hegyi@677:     /// First node of the graph.
hegyi@677: 
hegyi@677:     /// \retval i the first node.
hegyi@677:     /// \return the first node.
hegyi@691:     typename Gact::NodeIt & first (typename Gact::NodeIt & i) const
hegyi@691:     {
hegyi@691:       return actuallayer.first (i);
hegyi@691:     }
hegyi@677: 
hegyi@677: 
hegyi@677:     /// The first incoming edge.
hegyi@691:     typename Gact::InEdgeIt & first (typename Gact::InEdgeIt & i,
hegyi@691: 				     typename Gact::Node) const
hegyi@691:     {
hegyi@691:       return actuallayer.first (i);
hegyi@691:     }
hegyi@677: 
hegyi@677: 
hegyi@677:     /// The first outgoing edge.
hegyi@691:     typename Gact::OutEdgeIt & first (typename Gact::OutEdgeIt & i,
hegyi@691: 				      typename Gact::Node) const
hegyi@691:     {
hegyi@691:       return actuallayer.first (i);
hegyi@691:     }
hegyi@677: 
hegyi@677: 
hegyi@677:     //  SymEdgeIt &first(SymEdgeIt &, Node) const { return i;}
hegyi@677:     /// The first edge of the Graph.
hegyi@691:     typename Gact::EdgeIt & first (typename Gact::EdgeIt & i) const
hegyi@691:     {
hegyi@691:       return actuallayer.first (i);
hegyi@691:     }
hegyi@677: 
hegyi@677: 
hegyi@677: //     Node getNext(Node) const {}
hegyi@677: //     InEdgeIt getNext(InEdgeIt) const {}
hegyi@677: //     OutEdgeIt getNext(OutEdgeIt) const {}
hegyi@677: //     //SymEdgeIt getNext(SymEdgeIt) const {}
hegyi@677: //     EdgeIt getNext(EdgeIt) const {}
hegyi@677: 
hegyi@677: 
hegyi@677:     /// Go to the next node.
hegyi@691:     typename Gact::NodeIt & next (typename Gact::NodeIt & i) const
hegyi@691:     {
hegyi@691:       return actuallayer.next (i);
hegyi@691:     }
hegyi@677:     /// Go to the next incoming edge.
hegyi@691:     typename Gact::InEdgeIt & next (typename Gact::InEdgeIt & i) const
hegyi@691:     {
hegyi@691:       return actuallayer.next (i);
hegyi@691:     }
hegyi@677:     /// Go to the next outgoing edge.
hegyi@691:     typename Gact::OutEdgeIt & next (typename Gact::OutEdgeIt & i) const
hegyi@691:     {
hegyi@691:       return actuallayer.next (i);
hegyi@691:     }
hegyi@677:     //SymEdgeIt &next(SymEdgeIt &) const {}
hegyi@677:     /// Go to the next edge.
hegyi@691:     typename Gact::EdgeIt & next (typename Gact::EdgeIt & i) const
hegyi@691:     {
hegyi@691:       return actuallayer.next (i);
hegyi@691:     }
hegyi@677: 
hegyi@677:     ///Gives back the head node of an edge.
hegyi@691:     typename Gact::Node head (typename Gact::Edge edge) const
hegyi@691:     {
hegyi@691:       return actuallayer.head (edge);
hegyi@691:     }
hegyi@677:     ///Gives back the tail node of an edge.
hegyi@691:     typename Gact::Node tail (typename Gact::Edge edge) const
hegyi@691:     {
hegyi@691:       return actuallayer.tail (edge);
hegyi@691:     }
hegyi@690: 
hegyi@677:     //   Node aNode(InEdgeIt) const {}
hegyi@677:     //   Node aNode(OutEdgeIt) const {}
hegyi@677:     //   Node aNode(SymEdgeIt) const {}
hegyi@677: 
hegyi@677:     //   Node bNode(InEdgeIt) const {}
hegyi@677:     //   Node bNode(OutEdgeIt) const {}
hegyi@677:     //   Node bNode(SymEdgeIt) const {}
hegyi@677: 
hegyi@677:     /// Checks if a node iterator is valid
hegyi@677: 
hegyi@677:     ///\todo Maybe, it would be better if iterator converted to
hegyi@677:     ///bool directly, as Jacint prefers.
hegyi@691:     bool valid (const typename Gact::Node & node) const
hegyi@691:     {
hegyi@691:       return actuallayer.valid (node);
hegyi@691:     }
hegyi@677:     /// Checks if an edge iterator is valid
hegyi@677: 
hegyi@677:     ///\todo Maybe, it would be better if iterator converted to
hegyi@677:     ///bool directly, as Jacint prefers.
hegyi@691:     bool valid (const typename Gact::Edge & edge) const
hegyi@691:     {
hegyi@691:       return actuallayer.valid (edge);
hegyi@691:     }
hegyi@677: 
hegyi@677:     ///Gives back the \e id of a node.
hegyi@677: 
hegyi@677:     ///\warning Not all graph structures provide this feature.
hegyi@677:     ///
hegyi@691:     int id (const typename Gact::Node & node) const
hegyi@691:     {
hegyi@691:       return actuallayer.id (node);
hegyi@691:     }
hegyi@677:     ///Gives back the \e id of an edge.
hegyi@677: 
hegyi@677:     ///\warning Not all graph structures provide this feature.
hegyi@677:     ///
hegyi@691:     int id (const typename Gact::Edge & edge) const
hegyi@691:     {
hegyi@691:       return actuallayer.id (edge);
hegyi@691:     }
hegyi@677: 
hegyi@677:     //void setInvalid(Node &) const {};
hegyi@677:     //void setInvalid(Edge &) const {};
hegyi@690: 
hegyi@677:     ///Add a new node to the graph.
hegyi@677: 
hegyi@677:     /// \return the new node.
hegyi@677:     ///
hegyi@691:     typename Gact::Node addNode ()
hegyi@691:     {
hegyi@691:       return actuallayer.addNode ();
hegyi@691:     }
hegyi@677:     ///Add a new edge to the graph.
hegyi@677: 
hegyi@677:     ///Add a new edge to the graph with tail node \c tail
hegyi@677:     ///and head node \c head.
hegyi@677:     ///\return the new edge.
hegyi@691:     typename Gact::Edge addEdge (typename Gact::Node node1,
hegyi@691: 				 typename Gact::Node node2)
hegyi@691:     {
hegyi@691:       return actuallayer.addEdge (node1, node2);
hegyi@691:     }
hegyi@690: 
hegyi@677:     /// Resets the graph.
hegyi@677: 
hegyi@677:     /// This function deletes all edges and nodes of the graph.
hegyi@677:     /// It also frees the memory allocated to store them.
hegyi@691:     void clear ()
hegyi@691:     {
hegyi@691:       actuallayer.clear ();
hegyi@691:     }
hegyi@677: 
hegyi@691:     int nodeNum () const
hegyi@691:     {
hegyi@691:       return actuallayer.nodeNum ();
hegyi@691:     }
hegyi@691:     int edgeNum () const
hegyi@691:     {
hegyi@691:       return actuallayer.edgeNum ();
hegyi@691:     }
hegyi@677: 
hegyi@677:     ///Read/write/reference map of the nodes to type \c T.
hegyi@677: 
hegyi@677:     ///Read/write/reference map of the nodes to type \c T.
alpar@880:     /// \sa MemoryMap
hegyi@677:     /// \todo We may need copy constructor
hegyi@677:     /// \todo We may need conversion from other nodetype
hegyi@677:     /// \todo We may need operator=
hegyi@677:     /// \warning Making maps that can handle bool type (NodeMap<bool>)
hegyi@677:     /// needs extra attention!
hegyi@677: 
hegyi@691:     template < class T > class NodeMap
hegyi@677:     {
hegyi@677:     public:
hegyi@677:       typedef T ValueType;
hegyi@677:       typedef Node KeyType;
hegyi@677: 
hegyi@691:       NodeMap (const HierarchyGraph &)
hegyi@691:       {
hegyi@691:       }
hegyi@691:       NodeMap (const HierarchyGraph &, T)
hegyi@691:       {
hegyi@691:       }
hegyi@677: 
hegyi@691:       template < typename TT > NodeMap (const NodeMap < TT > &)
hegyi@691:       {
hegyi@691:       }
hegyi@677: 
hegyi@677:       /// Sets the value of a node.
hegyi@677: 
hegyi@677:       /// Sets the value associated with node \c i to the value \c t.
hegyi@677:       ///
hegyi@691:       void set (Node, T)
hegyi@691:       {
hegyi@691:       }
hegyi@677:       // Gets the value of a node.
hegyi@677:       //T get(Node i) const {return *(T*)0;}  //FIXME: Is it necessary?
hegyi@691:       T & operator[](Node)
hegyi@691:       {
hegyi@691: 	return *(T *) 0;
hegyi@691:       }
hegyi@691:       const T & operator[] (Node) const
hegyi@691:       {
hegyi@691: 	return *(T *) 0;
hegyi@691:       }
hegyi@677: 
hegyi@677:       /// Updates the map if the graph has been changed
hegyi@677: 
hegyi@677:       /// \todo Do we need this?
hegyi@677:       ///
hegyi@691:       void update ()
hegyi@691:       {
hegyi@691:       }
hegyi@691:       void update (T a)
hegyi@691:       {
hegyi@691:       }				//FIXME: Is it necessary
hegyi@677:     };
hegyi@677: 
hegyi@677:     ///Read/write/reference map of the edges to type \c T.
hegyi@677: 
hegyi@677:     ///Read/write/reference map of the edges to type \c T.
hegyi@677:     ///It behaves exactly in the same way as \ref NodeMap.
hegyi@677:     /// \sa NodeMap
alpar@880:     /// \sa MemoryMap
hegyi@677:     /// \todo We may need copy constructor
hegyi@677:     /// \todo We may need conversion from other edgetype
hegyi@677:     /// \todo We may need operator=
hegyi@691:     template < class T > class EdgeMap
hegyi@677:     {
hegyi@677:     public:
hegyi@677:       typedef T ValueType;
hegyi@677:       typedef Edge KeyType;
hegyi@677: 
hegyi@691:       EdgeMap (const HierarchyGraph &)
hegyi@691:       {
hegyi@691:       }
hegyi@691:       EdgeMap (const HierarchyGraph &, T)
hegyi@691:       {
hegyi@691:       }
hegyi@690: 
hegyi@677:       ///\todo It can copy between different types.
hegyi@677:       ///
hegyi@691:       template < typename TT > EdgeMap (const EdgeMap < TT > &)
hegyi@691:       {
hegyi@691:       }
hegyi@677: 
hegyi@691:       void set (Edge, T)
hegyi@691:       {
hegyi@691:       }
hegyi@677:       //T get(Edge) const {return *(T*)0;}
hegyi@691:       T & operator[](Edge)
hegyi@691:       {
hegyi@691: 	return *(T *) 0;
hegyi@691:       }
hegyi@691:       const T & operator[] (Edge) const
hegyi@691:       {
hegyi@691: 	return *(T *) 0;
hegyi@691:       }
hegyi@690: 
hegyi@691:       void update ()
hegyi@691:       {
hegyi@691:       }
hegyi@691:       void update (T a)
hegyi@691:       {
hegyi@691:       }				//FIXME: Is it necessary
hegyi@677:     };
hegyi@677:   };
hegyi@677: 
alpar@826:   /// An empty erasable graph class.
hegyi@690: 
alpar@826:   /// This class provides all the common features of an \e erasable graph
hegyi@677:   /// structure,
hegyi@677:   /// however completely without implementations and real data structures
hegyi@677:   /// behind the interface.
hegyi@677:   /// All graph algorithms should compile with this class, but it will not
hegyi@677:   /// run properly, of course.
hegyi@677:   ///
hegyi@677:   /// \todo This blabla could be replaced by a sepatate description about
alpar@880:   /// s.
hegyi@677:   ///
hegyi@677:   /// It can be used for checking the interface compatibility,
hegyi@677:   /// or it can serve as a skeleton of a new graph structure.
hegyi@690:   ///
hegyi@677:   /// Also, you will find here the full documentation of a certain graph
hegyi@677:   /// feature, the documentation of a real graph imlementation
hegyi@677:   /// like @ref ListGraph or
hegyi@677:   /// @ref SmartGraph will just refer to this structure.
alpar@826: template < typename Gact, typename Gsub > class ErasableHierarchyGraph:public HierarchyGraph < Gact,
hegyi@691:     Gsub
hegyi@691:     >
hegyi@677:   {
hegyi@677:   public:
hegyi@677:     /// Deletes a node.
hegyi@691:     void erase (typename Gact::Node n)
hegyi@691:     {
hegyi@691:       actuallayer.erase (n);
hegyi@691:     }
hegyi@677:     /// Deletes an edge.
hegyi@691:     void erase (typename Gact::Edge e)
hegyi@691:     {
hegyi@691:       actuallayer.erase (e);
hegyi@691:     }
hegyi@677: 
hegyi@677:     /// Defalult constructor.
alpar@826:     ErasableHierarchyGraph ()
hegyi@691:     {
hegyi@691:     }
hegyi@677:     ///Copy consructor.
alpar@826:     ErasableHierarchyGraph (const HierarchyGraph < Gact, Gsub > &EPG)
hegyi@691:     {
hegyi@691:     }
hegyi@677:   };
hegyi@677: 
hegyi@690: 
hegyi@677:   // @}
hegyi@677: 
alpar@921: }				//namespace lemon
hegyi@677: 
hegyi@677: 
alpar@921: #endif // LEMON_SKELETON_GRAPH_H