alpar@906: /* -*- C++ -*-
alpar@906:  *
alpar@1956:  * This file is a part of LEMON, a generic C++ optimization library
alpar@1956:  *
alpar@1956:  * Copyright (C) 2003-2006
alpar@1956:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
alpar@906:  *
alpar@906:  * Permission to use, modify and distribute this software is granted
alpar@906:  * provided that this copyright notice appears in all copies. For
alpar@906:  * precise terms see the accompanying LICENSE file.
alpar@906:  *
alpar@906:  * This software is provided "AS IS" with no warranty of any kind,
alpar@906:  * express or implied, and with no claim as to its suitability for any
alpar@906:  * purpose.
alpar@906:  *
alpar@906:  */
alpar@591: 
alpar@921: #ifndef LEMON_FULL_GRAPH_H
alpar@921: #define LEMON_FULL_GRAPH_H
alpar@591: 
deba@983: #include <cmath>
deba@983: 
deba@2116: #include <lemon/bits/base_extender.h>
deba@1791: #include <lemon/bits/graph_extender.h>
deba@1566: 
deba@1993: #include <lemon/bits/invalid.h>
deba@1993: #include <lemon/bits/utility.h>
klao@977: 
klao@977: 
alpar@591: ///\ingroup graphs
alpar@591: ///\file
deba@2116: ///\brief FullGraph and FullUGraph classes.
alpar@591: 
alpar@591: 
alpar@921: namespace lemon {
alpar@591: 
deba@1986:   /// \brief Base of the FullGrpah.
deba@1986:   ///
deba@1986:   /// Base of the FullGrpah.
klao@946:   class FullGraphBase {
deba@1566:     int _nodeNum;
deba@1566:     int _edgeNum;
alpar@591:   public:
deba@782: 
klao@946:     typedef FullGraphBase Graph;
alpar@591: 
alpar@591:     class Node;
alpar@591:     class Edge;
deba@782: 
alpar@591:   public:
alpar@591: 
klao@946:     FullGraphBase() {}
klao@946: 
klao@946: 
alpar@591:     ///Creates a full graph with \c n nodes.
deba@1566:     void construct(int n) { _nodeNum = n; _edgeNum = n * n; }
alpar@591:     
klao@977:     typedef True NodeNumTag;
klao@977:     typedef True EdgeNumTag;
klao@977: 
deba@1986:     /// \brief Returns the node with the given index.
deba@1986:     ///
deba@1986:     /// Returns the node with the given index. Because it is a
deba@1986:     /// static size graph the node's of the graph can be indiced
deba@1986:     /// by the range from 0 to \e nodeNum()-1 and the index of
deba@1986:     /// the node can accessed by the \e index() member.
deba@1986:     Node operator()(int index) const { return Node(index); }
deba@1986: 
deba@1986:     /// \brief Returns the index of the node.
deba@1986:     ///
deba@1986:     /// Returns the index of the node. Because it is a
deba@1986:     /// static size graph the node's of the graph can be indiced
deba@1986:     /// by the range from 0 to \e nodeNum()-1 and the index of
deba@1986:     /// the node can accessed by the \e index() member.
deba@1986:     int index(const Node& node) const { return node.id; }
deba@1986: 
alpar@813:     ///Number of nodes.
deba@1566:     int nodeNum() const { return _nodeNum; }
alpar@813:     ///Number of edges.
deba@1566:     int edgeNum() const { return _edgeNum; }
alpar@591: 
alpar@813:     /// Maximum node ID.
alpar@813:     
alpar@813:     /// Maximum node ID.
alpar@813:     ///\sa id(Node)
deba@1791:     int maxNodeId() const { return _nodeNum-1; }
alpar@813:     /// Maximum edge ID.
alpar@813:     
alpar@813:     /// Maximum edge ID.
alpar@813:     ///\sa id(Edge)
deba@1791:     int maxEdgeId() const { return _edgeNum-1; }
alpar@591: 
deba@1566:     Node source(Edge e) const { return e.id % _nodeNum; }
deba@1566:     Node target(Edge e) const { return e.id / _nodeNum; }
alpar@591: 
alpar@591: 
alpar@813:     /// Node ID.
alpar@813:     
alpar@813:     /// The ID of a valid Node is a nonnegative integer not greater than
alpar@813:     /// \ref maxNodeId(). The range of the ID's is not surely continuous
alpar@813:     /// and the greatest node ID can be actually less then \ref maxNodeId().
alpar@813:     ///
alpar@813:     /// The ID of the \ref INVALID node is -1.
alpar@813:     ///\return The ID of the node \c v. 
klao@946: 
klao@946:     static int id(Node v) { return v.id; }
alpar@813:     /// Edge ID.
alpar@813:     
alpar@813:     /// The ID of a valid Edge is a nonnegative integer not greater than
alpar@813:     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
alpar@813:     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
alpar@813:     ///
alpar@813:     /// The ID of the \ref INVALID edge is -1.
alpar@813:     ///\return The ID of the edge \c e. 
klao@946:     static int id(Edge e) { return e.id; }
alpar@591: 
deba@1791:     static Node nodeFromId(int id) { return Node(id);}
deba@1106:     
deba@1791:     static Edge edgeFromId(int id) { return Edge(id);}
deba@1106: 
deba@1566:     typedef True FindEdgeTag;
deba@1566: 
alpar@774:     /// Finds an edge between two nodes.
alpar@774:     
alpar@774:     /// Finds an edge from node \c u to node \c v.
alpar@774:     ///
alpar@774:     /// If \c prev is \ref INVALID (this is the default value), then
alpar@774:     /// It finds the first edge from \c u to \c v. Otherwise it looks for
alpar@774:     /// the next edge from \c u to \c v after \c prev.
alpar@774:     /// \return The found edge or INVALID if there is no such an edge.
deba@1566:     Edge findEdge(Node u,Node v, Edge prev = INVALID) const {
klao@946:       return prev.id == -1 ? Edge(*this, u.id, v.id) : INVALID;
alpar@774:     }
alpar@774:     
alpar@774:       
alpar@591:     class Node {
klao@946:       friend class FullGraphBase;
alpar@591: 
alpar@591:     protected:
klao@946:       int id;
alpar@1643:       Node(int _id) : id(_id) {}
alpar@591:     public:
alpar@591:       Node() {}
alpar@1643:       Node (Invalid) : id(-1) {}
klao@946:       bool operator==(const Node node) const {return id == node.id;}
klao@946:       bool operator!=(const Node node) const {return id != node.id;}
klao@946:       bool operator<(const Node node) const {return id < node.id;}
alpar@591:     };
alpar@591:     
klao@946: 
klao@946: 
klao@946:     class Edge {
klao@946:       friend class FullGraphBase;
klao@946:       
klao@946:     protected:
deba@1566:       int id;  // _nodeNum * target + source;
klao@946: 
klao@946:       Edge(int _id) : id(_id) {}
klao@946: 
alpar@986:       Edge(const FullGraphBase& _graph, int source, int target) 
deba@1566: 	: id(_graph._nodeNum * target+source) {}
alpar@591:     public:
klao@946:       Edge() { }
klao@946:       Edge (Invalid) { id = -1; }
klao@946:       bool operator==(const Edge edge) const {return id == edge.id;}
klao@946:       bool operator!=(const Edge edge) const {return id != edge.id;}
klao@946:       bool operator<(const Edge edge) const {return id < edge.id;}
alpar@591:     };
alpar@591: 
klao@946:     void first(Node& node) const {
deba@1566:       node.id = _nodeNum-1;
klao@946:     }
alpar@591: 
klao@946:     static void next(Node& node) {
klao@946:       --node.id;
klao@946:     }
klao@946: 
klao@946:     void first(Edge& edge) const {
deba@1566:       edge.id = _edgeNum-1;
klao@946:     }
klao@946: 
klao@946:     static void next(Edge& edge) {
klao@946:       --edge.id;
klao@946:     }
klao@946: 
klao@946:     void firstOut(Edge& edge, const Node& node) const {
deba@1566:       edge.id = _edgeNum + node.id - _nodeNum;
klao@946:     }
klao@946: 
klao@946:     void nextOut(Edge& edge) const {
deba@1566:       edge.id -= _nodeNum;
klao@946:       if (edge.id < 0) edge.id = -1;
klao@946:     }
klao@946: 
klao@946:     void firstIn(Edge& edge, const Node& node) const {
deba@1566:       edge.id = node.id * _nodeNum;
klao@946:     }
alpar@591:     
klao@946:     void nextIn(Edge& edge) const {
klao@946:       ++edge.id;
deba@1566:       if (edge.id % _nodeNum == 0) edge.id = -1;
klao@946:     }
alpar@591: 
alpar@591:   };
alpar@591: 
deba@1979:   typedef GraphExtender<FullGraphBase> ExtendedFullGraphBase;
klao@946: 
deba@1566:   /// \ingroup graphs
alpar@951:   ///
deba@1566:   /// \brief A full graph class.
deba@1566:   ///
deba@1566:   /// This is a simple and fast directed full graph implementation.
deba@1566:   /// It is completely static, so you can neither add nor delete either
deba@1566:   /// edges or nodes.
deba@1566:   /// Thus it conforms to
deba@2111:   /// the \ref concept::Graph "Graph" concept
deba@2111:   /// \sa concept::Graph.
deba@1566:   ///
deba@1986:   /// \sa FullGraphBase
deba@1986:   /// \sa FullUGraph
deba@1986:   ///
deba@1566:   /// \author Alpar Juttner
deba@1669:   class FullGraph : public ExtendedFullGraphBase {
klao@946:   public:
klao@946: 
deba@1979:     typedef ExtendedFullGraphBase Parent;
deba@1979: 
deba@1979:     /// \brief Constructor
deba@1987:     FullGraph() { construct(0); }
deba@1987: 
deba@1987:     /// \brief Constructor
deba@1979:     ///
klao@946:     FullGraph(int n) { construct(n); }
deba@1979: 
deba@1979:     /// \brief Resize the graph
deba@1979:     ///
deba@1986:     /// Resize the graph. The function will fully destroy and build the graph.
deba@1986:     /// This cause that the maps of the graph will reallocated
deba@1986:     /// automatically and the previous values will be lost.
deba@1979:     void resize(int n) {
deba@1979:       Parent::getNotifier(Edge()).clear();
deba@1979:       Parent::getNotifier(Node()).clear();
deba@1979:       construct(n);
deba@1979:       Parent::getNotifier(Node()).build();
deba@1979:       Parent::getNotifier(Edge()).build();
deba@1979:     }
klao@946:   };
klao@946: 
deba@2116: 
deba@2116:   /// \brief Base of the FullUGrpah.
deba@2116:   ///
deba@2116:   /// Base of the FullUGrpah.
deba@2116:   class FullUGraphBase {
deba@2116:     int _nodeNum;
deba@2116:     int _edgeNum;
deba@2116:   public:
deba@2116: 
deba@2116:     typedef FullUGraphBase Graph;
deba@2116: 
deba@2116:     class Node;
deba@2116:     class Edge;
deba@2116: 
deba@2116:   public:
deba@2116: 
deba@2116:     FullUGraphBase() {}
deba@2116: 
deba@2116: 
deba@2116:     ///Creates a full graph with \c n nodes.
deba@2116:     void construct(int n) { _nodeNum = n; _edgeNum = n * (n - 1) / 2; }
deba@2116: 
deba@2116:     /// \brief Returns the node with the given index.
deba@2116:     ///
deba@2116:     /// Returns the node with the given index. Because it is a
deba@2116:     /// static size graph the node's of the graph can be indiced
deba@2116:     /// by the range from 0 to \e nodeNum()-1 and the index of
deba@2116:     /// the node can accessed by the \e index() member.
deba@2116:     Node operator()(int index) const { return Node(index); }
deba@2116: 
deba@2116:     /// \brief Returns the index of the node.
deba@2116:     ///
deba@2116:     /// Returns the index of the node. Because it is a
deba@2116:     /// static size graph the node's of the graph can be indiced
deba@2116:     /// by the range from 0 to \e nodeNum()-1 and the index of
deba@2116:     /// the node can accessed by the \e index() member.
deba@2116:     int index(const Node& node) const { return node.id; }
deba@2116: 
deba@2116:     typedef True NodeNumTag;
deba@2116:     typedef True EdgeNumTag;
deba@2116: 
deba@2116:     ///Number of nodes.
deba@2116:     int nodeNum() const { return _nodeNum; }
deba@2116:     ///Number of edges.
deba@2116:     int edgeNum() const { return _edgeNum; }
deba@2116: 
deba@2116:     /// Maximum node ID.
deba@2116:     
deba@2116:     /// Maximum node ID.
deba@2116:     ///\sa id(Node)
deba@2116:     int maxNodeId() const { return _nodeNum-1; }
deba@2116:     /// Maximum edge ID.
deba@2116:     
deba@2116:     /// Maximum edge ID.
deba@2116:     ///\sa id(Edge)
deba@2116:     int maxEdgeId() const { return _edgeNum-1; }
deba@2116: 
deba@2116:     /// \brief Returns the node from its \c id.
deba@2116:     ///
deba@2116:     /// Returns the node from its \c id. If there is not node
deba@2116:     /// with the given id the effect of the function is undefinied.
deba@2116:     static Node nodeFromId(int id) { return Node(id);}
deba@2116: 
deba@2116:     /// \brief Returns the edge from its \c id.
deba@2116:     ///
deba@2116:     /// Returns the edge from its \c id. If there is not edge
deba@2116:     /// with the given id the effect of the function is undefinied.
deba@2116:     static Edge edgeFromId(int id) { return Edge(id);}
deba@2116: 
deba@2116:     Node source(Edge e) const { 
deba@2116:       /// \todo we may do it faster
deba@2116:       return Node(((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2);
deba@2116:     }
deba@2116: 
deba@2116:     Node target(Edge e) const { 
deba@2116:       int source = ((int)sqrt((double)(1 + 8 * e.id)) + 1) / 2;;
deba@2116:       return Node(e.id - (source) * (source - 1) / 2);
deba@2116:     }
deba@2116: 
deba@2116: 
deba@2116:     /// \brief Node ID.
deba@2116:     ///
deba@2116:     /// The ID of a valid Node is a nonnegative integer not greater than
deba@2116:     /// \ref maxNodeId(). The range of the ID's is not surely continuous
deba@2116:     /// and the greatest node ID can be actually less then \ref maxNodeId().
deba@2116:     ///
deba@2116:     /// The ID of the \ref INVALID node is -1.
deba@2116:     /// \return The ID of the node \c v. 
deba@2116: 
deba@2116:     static int id(Node v) { return v.id; }
deba@2116: 
deba@2116:     /// \brief Edge ID.
deba@2116:     ///
deba@2116:     /// The ID of a valid Edge is a nonnegative integer not greater than
deba@2116:     /// \ref maxEdgeId(). The range of the ID's is not surely continuous
deba@2116:     /// and the greatest edge ID can be actually less then \ref maxEdgeId().
deba@2116:     ///
deba@2116:     /// The ID of the \ref INVALID edge is -1.
deba@2116:     ///\return The ID of the edge \c e. 
deba@2116:     static int id(Edge e) { return e.id; }
deba@2116: 
deba@2116:     /// \brief Finds an edge between two nodes.
deba@2116:     ///
deba@2116:     /// Finds an edge from node \c u to node \c v.
deba@2116:     ///
deba@2116:     /// If \c prev is \ref INVALID (this is the default value), then
deba@2116:     /// It finds the first edge from \c u to \c v. Otherwise it looks for
deba@2116:     /// the next edge from \c u to \c v after \c prev.
deba@2116:     /// \return The found edge or INVALID if there is no such an edge.
deba@2116:     Edge findEdge(Node u, Node v, Edge prev = INVALID) const {
deba@2116:       if (prev.id != -1 || u.id <= v.id) return Edge(-1);
deba@2116:       return Edge(u.id * (u.id - 1) / 2 + v.id);
deba@2116:     }
deba@2116: 
deba@2116:     typedef True FindEdgeTag;
deba@2116:     
deba@2116:       
deba@2116:     class Node {
deba@2116:       friend class FullUGraphBase;
deba@2116: 
deba@2116:     protected:
deba@2116:       int id;
deba@2116:       Node(int _id) { id = _id;}
deba@2116:     public:
deba@2116:       Node() {}
deba@2116:       Node (Invalid) { id = -1; }
deba@2116:       bool operator==(const Node node) const {return id == node.id;}
deba@2116:       bool operator!=(const Node node) const {return id != node.id;}
deba@2116:       bool operator<(const Node node) const {return id < node.id;}
deba@2116:     };
deba@2116:     
deba@2116: 
deba@2116: 
deba@2116:     class Edge {
deba@2116:       friend class FullUGraphBase;
deba@2116:       
deba@2116:     protected:
deba@2116:       int id;  // _nodeNum * target + source;
deba@2116: 
deba@2116:       Edge(int _id) : id(_id) {}
deba@2116: 
deba@2116:     public:
deba@2116:       Edge() { }
deba@2116:       Edge (Invalid) { id = -1; }
deba@2116:       bool operator==(const Edge edge) const {return id == edge.id;}
deba@2116:       bool operator!=(const Edge edge) const {return id != edge.id;}
deba@2116:       bool operator<(const Edge edge) const {return id < edge.id;}
deba@2116:     };
deba@2116: 
deba@2116:     void first(Node& node) const {
deba@2116:       node.id = _nodeNum - 1;
deba@2116:     }
deba@2116: 
deba@2116:     static void next(Node& node) {
deba@2116:       --node.id;
deba@2116:     }
deba@2116: 
deba@2116:     void first(Edge& edge) const {
deba@2116:       edge.id = _edgeNum - 1;
deba@2116:     }
deba@2116: 
deba@2116:     static void next(Edge& edge) {
deba@2116:       --edge.id;
deba@2116:     }
deba@2116: 
deba@2116:     void firstOut(Edge& edge, const Node& node) const {      
deba@2116:       int src = node.id;
deba@2116:       int trg = 0;
deba@2116:       edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
deba@2116:     }
deba@2116: 
deba@2116:     /// \todo with specialized iterators we can make faster iterating
deba@2116:     void nextOut(Edge& edge) const {
deba@2116:       int src = source(edge).id;
deba@2116:       int trg = target(edge).id;
deba@2116:       ++trg;
deba@2116:       edge.id = (trg < src ? src * (src - 1) / 2 + trg : -1);
deba@2116:     }
deba@2116: 
deba@2116:     void firstIn(Edge& edge, const Node& node) const {
deba@2116:       int src = node.id + 1;
deba@2116:       int trg = node.id;
deba@2116:       edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
deba@2116:     }
deba@2116:     
deba@2116:     void nextIn(Edge& edge) const {
deba@2116:       int src = source(edge).id;
deba@2116:       int trg = target(edge).id;
deba@2116:       ++src;
deba@2116:       edge.id = (src < _nodeNum ? src * (src - 1) / 2 + trg : -1);
deba@2116:     }
deba@2116: 
deba@2116:   };
deba@2116: 
deba@2116:   typedef UGraphExtender<UndirGraphExtender<FullUGraphBase> > 
deba@2116:   ExtendedFullUGraphBase;
deba@2116: 
deba@2116:   /// \ingroup graphs
deba@2116:   ///
deba@2116:   /// \brief An undirected full graph class.
deba@2116:   ///
deba@2116:   /// This is a simple and fast undirected full graph implementation.
deba@2116:   /// It is completely static, so you can neither add nor delete either
deba@2116:   /// edges or nodes.
deba@2116:   ///
deba@2116:   /// The main difference beetween the \e FullGraph and \e FullUGraph class
deba@2116:   /// is that this class conforms to the undirected graph concept and
deba@2116:   /// it does not contain the loop edges.
deba@2116:   ///
deba@2116:   /// \sa FullUGraphBase
deba@2116:   /// \sa FullGraph
deba@2116:   ///
deba@2116:   /// \author Balazs Dezso
deba@2116:   class FullUGraph : public ExtendedFullUGraphBase {
deba@2116:   public:
deba@2116: 
deba@2116:     typedef ExtendedFullUGraphBase Parent;
deba@2116: 
deba@2116:     /// \brief Constructor
deba@2116:     FullUGraph() { construct(0); }
deba@2116: 
deba@2116:     /// \brief Constructor
deba@2116:     FullUGraph(int n) { construct(n); }
deba@2116: 
deba@2116:     /// \brief Resize the graph
deba@2116:     ///
deba@2116:     /// Resize the graph. The function will fully destroy and build the graph.
deba@2116:     /// This cause that the maps of the graph will reallocated
deba@2116:     /// automatically and the previous values will be lost.
deba@2116:     void resize(int n) {
deba@2116:       Parent::getNotifier(Edge()).clear();
deba@2116:       Parent::getNotifier(UEdge()).clear();
deba@2116:       Parent::getNotifier(Node()).clear();
deba@2116:       construct(n);
deba@2116:       Parent::getNotifier(Node()).build();
deba@2116:       Parent::getNotifier(UEdge()).build();
deba@2116:       Parent::getNotifier(Edge()).build();
deba@2116:     }
deba@2116:   };
deba@2116: 
deba@2116: 
deba@2116:   class FullBpUGraphBase {
deba@2116:   protected:
deba@2116: 
deba@2116:     int _aNodeNum;
deba@2116:     int _bNodeNum;
deba@2116: 
deba@2116:     int _edgeNum;
deba@2116: 
deba@2116:   public:
deba@2116: 
deba@2116:     class NodeSetError : public LogicError {
deba@2116:       virtual const char* exceptionName() const { 
deba@2116: 	return "lemon::FullBpUGraph::NodeSetError";
deba@2116:       }
deba@2116:     };
deba@2116:   
deba@2116:     class Node {
deba@2116:       friend class FullBpUGraphBase;
deba@2116:     protected:
deba@2116:       int id;
deba@2116: 
deba@2116:       Node(int _id) : id(_id) {}
deba@2116:     public:
deba@2116:       Node() {}
deba@2116:       Node(Invalid) { id = -1; }
deba@2116:       bool operator==(const Node i) const {return id==i.id;}
deba@2116:       bool operator!=(const Node i) const {return id!=i.id;}
deba@2116:       bool operator<(const Node i) const {return id<i.id;}
deba@2116:     };
deba@2116: 
deba@2116:     class UEdge {
deba@2116:       friend class FullBpUGraphBase;
deba@2116:     protected:
deba@2116:       int id;
deba@2116: 
deba@2116:       UEdge(int _id) { id = _id;}
deba@2116:     public:
deba@2116:       UEdge() {}
deba@2116:       UEdge (Invalid) { id = -1; }
deba@2116:       bool operator==(const UEdge i) const {return id==i.id;}
deba@2116:       bool operator!=(const UEdge i) const {return id!=i.id;}
deba@2116:       bool operator<(const UEdge i) const {return id<i.id;}
deba@2116:     };
deba@2116: 
deba@2116:     void construct(int aNodeNum, int bNodeNum) {
deba@2116:       _aNodeNum = aNodeNum;
deba@2116:       _bNodeNum = bNodeNum;
deba@2116:       _edgeNum = aNodeNum * bNodeNum;
deba@2116:     }
deba@2116: 
deba@2116:     void firstANode(Node& node) const {
deba@2116:       node.id = 2 * _aNodeNum - 2;
deba@2116:       if (node.id < 0) node.id = -1; 
deba@2116:     }
deba@2116:     void nextANode(Node& node) const {
deba@2116:       node.id -= 2;
deba@2116:       if (node.id < 0) node.id = -1; 
deba@2116:     }
deba@2116: 
deba@2116:     void firstBNode(Node& node) const {
deba@2116:       node.id = 2 * _bNodeNum - 1;
deba@2116:     }
deba@2116:     void nextBNode(Node& node) const {
deba@2116:       node.id -= 2;
deba@2116:     }
deba@2116: 
deba@2116:     void first(Node& node) const {
deba@2116:       if (_aNodeNum > 0) {
deba@2116: 	node.id = 2 * _aNodeNum - 2;
deba@2116:       } else {
deba@2116: 	node.id = 2 * _bNodeNum - 1;
deba@2116:       }
deba@2116:     }
deba@2116:     void next(Node& node) const {
deba@2116:       node.id -= 2;
deba@2116:       if (node.id == -2) {
deba@2116: 	node.id = 2 * _bNodeNum - 1;
deba@2116:       }
deba@2116:     }
deba@2116:   
deba@2116:     void first(UEdge& edge) const {
deba@2116:       edge.id = _edgeNum - 1;
deba@2116:     }
deba@2116:     void next(UEdge& edge) const {
deba@2116:       --edge.id;
deba@2116:     }
deba@2116: 
deba@2116:     void firstFromANode(UEdge& edge, const Node& node) const {
deba@2116:       LEMON_ASSERT((node.id & 1) == 0, NodeSetError());
deba@2116:       edge.id = (node.id >> 1) * _bNodeNum;
deba@2116:     }
deba@2116:     void nextFromANode(UEdge& edge) const {
deba@2116:       ++(edge.id);
deba@2116:       if (edge.id % _bNodeNum == 0) edge.id = -1;
deba@2116:     }
deba@2116: 
deba@2116:     void firstFromBNode(UEdge& edge, const Node& node) const {
deba@2116:       LEMON_ASSERT((node.id & 1) == 1, NodeSetError());
deba@2116:       edge.id = (node.id >> 1);
deba@2116:     }
deba@2116:     void nextFromBNode(UEdge& edge) const {
deba@2116:       edge.id += _bNodeNum;
deba@2116:       if (edge.id >= _edgeNum) edge.id = -1;
deba@2116:     }
deba@2116: 
deba@2116:     static int id(const Node& node) {
deba@2116:       return node.id;
deba@2116:     }
deba@2116:     static Node nodeFromId(int id) {
deba@2116:       return Node(id);
deba@2116:     }
deba@2116:     int maxNodeId() const {
deba@2116:       return _aNodeNum > _bNodeNum ? 
deba@2116: 	_aNodeNum * 2 - 2 : _bNodeNum * 2 - 1;
deba@2116:     }
deba@2116:   
deba@2116:     static int id(const UEdge& edge) {
deba@2116:       return edge.id;
deba@2116:     }
deba@2116:     static UEdge uEdgeFromId(int id) {
deba@2116:       return UEdge(id);
deba@2116:     }
deba@2116:     int maxUEdgeId() const {
deba@2116:       return _edgeNum - 1;
deba@2116:     }
deba@2116:   
deba@2116:     static int aNodeId(const Node& node) {
deba@2116:       return node.id >> 1;
deba@2116:     }
deba@2116:     static Node fromANodeId(int id) {
deba@2116:       return Node(id << 1);
deba@2116:     }
deba@2116:     int maxANodeId() const {
deba@2116:       return _aNodeNum;
deba@2116:     }
deba@2116: 
deba@2116:     static int bNodeId(const Node& node) {
deba@2116:       return node.id >> 1;
deba@2116:     }
deba@2116:     static Node fromBNodeId(int id) {
deba@2116:       return Node((id << 1) + 1);
deba@2116:     }
deba@2116:     int maxBNodeId() const {
deba@2116:       return _bNodeNum;
deba@2116:     }
deba@2116: 
deba@2116:     Node aNode(const UEdge& edge) const {
deba@2116:       return Node((edge.id / _bNodeNum) << 1);
deba@2116:     }
deba@2116:     Node bNode(const UEdge& edge) const {
deba@2116:       return Node(((edge.id % _bNodeNum) << 1) + 1);
deba@2116:     }
deba@2116: 
deba@2116:     static bool aNode(const Node& node) {
deba@2116:       return (node.id & 1) == 0;
deba@2116:     }
deba@2116: 
deba@2116:     static bool bNode(const Node& node) {
deba@2116:       return (node.id & 1) == 1;
deba@2116:     }
deba@2116: 
deba@2116:     static Node aNode(int index) {
deba@2116:       return Node(index << 1);
deba@2116:     }
deba@2116: 
deba@2116:     static Node bNode(int index) {
deba@2116:       return Node((index << 1) + 1);
deba@2116:     }
deba@2116: 
deba@2116:     typedef True NodeNumTag;
deba@2116:     int nodeNum() const { return _aNodeNum + _bNodeNum; }
deba@2116:     int aNodeNum() const { return _aNodeNum; }
deba@2116:     int bNodeNum() const { return _bNodeNum; }
deba@2116: 
deba@2116:     typedef True EdgeNumTag;
deba@2116:     int uEdgeNum() const { return _edgeNum; }
deba@2116: 
deba@2116:   };
deba@2116: 
deba@2116: 
deba@2116:   typedef BpUGraphExtender<FullBpUGraphBase> ExtendedFullBpUGraphBase;
deba@2116: 
deba@2116: 
deba@2116:   /// \ingroup graphs
deba@2116:   ///
deba@2116:   /// \brief An undirected full bipartite graph class.
deba@2116:   ///
deba@2116:   /// This is a simple and fast bipartite undirected full graph implementation.
deba@2116:   /// It is completely static, so you can neither add nor delete either
deba@2116:   /// edges or nodes.
deba@2116:   ///
deba@2116:   /// \sa FullUGraphBase
deba@2116:   /// \sa FullGraph
deba@2116:   ///
deba@2116:   /// \author Balazs Dezso
deba@2116:   class FullBpUGraph : 
deba@2116:     public ExtendedFullBpUGraphBase {
deba@2116:   public:
deba@2116: 
deba@2116:     typedef ExtendedFullBpUGraphBase Parent;
deba@2116: 
deba@2116:     FullBpUGraph() {
deba@2116:       Parent::construct(0, 0);
deba@2116:     }
deba@2116: 
deba@2116:     FullBpUGraph(int aNodeNum, int bNodeNum) {
deba@2116:       Parent::construct(aNodeNum, bNodeNum);
deba@2116:     }
deba@2116: 
deba@2116:     /// \brief Resize the graph
deba@2116:     ///
deba@2116:     void resize(int n, int m) {
deba@2116:       Parent::getNotifier(Edge()).clear();
deba@2116:       Parent::getNotifier(UEdge()).clear();
deba@2116:       Parent::getNotifier(Node()).clear();
deba@2116:       Parent::getNotifier(ANode()).clear();
deba@2116:       Parent::getNotifier(BNode()).clear();
deba@2116:       construct(n, m);
deba@2116:       Parent::getNotifier(ANode()).build();
deba@2116:       Parent::getNotifier(BNode()).build();
deba@2116:       Parent::getNotifier(Node()).build();
deba@2116:       Parent::getNotifier(UEdge()).build();
deba@2116:       Parent::getNotifier(Edge()).build();
deba@2116:     }
deba@2116:   };
deba@2116: 
alpar@921: } //namespace lemon
alpar@591: 
alpar@591: 
alpar@921: #endif //LEMON_FULL_GRAPH_H