deba@1967: /* -*- C++ -*-
deba@1975:  * lemon/min_cut.h - Part of LEMON, a generic C++ optimization library
deba@1967:  *
deba@1967:  * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
deba@1967:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
deba@1967:  *
deba@1967:  * Permission to use, modify and distribute this software is granted
deba@1967:  * provided that this copyright notice appears in all copies. For
deba@1967:  * precise terms see the accompanying LICENSE file.
deba@1967:  *
deba@1967:  * This software is provided "AS IS" with no warranty of any kind,
deba@1967:  * express or implied, and with no claim as to its suitability for any
deba@1967:  * purpose.
deba@1967:  *
deba@1967:  */
deba@1967: 
deba@1975: #ifndef LEMON_MIN_CUT_H
deba@1975: #define LEMON_MIN_CUT_H
deba@1967: 
deba@1967: 
deba@1967: /// \ingroup topology
deba@1967: /// \file
deba@1975: /// \brief Maximum cardinality search and min cut in undirected graphs.
deba@1967: 
deba@1967: #include <lemon/list_graph.h>
deba@1967: #include <lemon/bin_heap.h>
deba@1967: #include <lemon/linear_heap.h>
deba@1967: 
deba@1967: #include <lemon/invalid.h>
deba@1967: #include <lemon/error.h>
deba@1967: #include <lemon/maps.h>
deba@1967: 
deba@1967: #include <functional>
deba@1967: 
deba@1967: namespace lemon {
deba@1967: 
deba@1975:   namespace _min_cut_bits {
deba@1967: 
deba@1967:     template <typename CapacityMap>
deba@1967:     struct HeapSelector {
deba@1967:       template <typename Key, typename Value, typename Ref>
deba@1967:       struct Selector {
deba@1967:         typedef BinHeap<Key, Value, Ref, std::greater<Value> > Heap;
deba@1967:       };
deba@1967:     };
deba@1967: 
deba@1967:     template <typename CapacityKey>
deba@1967:     struct HeapSelector<ConstMap<CapacityKey, Const<int, 1> > > {
deba@1967:       template <typename Key, typename Value, typename Ref>
deba@1967:       struct Selector {
deba@1967:         typedef LinearHeap<Key, Ref, false > Heap;
deba@1967:       };
deba@1967:     };
deba@1967: 
deba@1967:   }
deba@1967: 
deba@1967:   /// \brief Default traits class of MaxCardinalitySearch class.
deba@1967:   ///
deba@1967:   /// Default traits class of MaxCardinalitySearch class.
deba@1967:   /// \param Graph Graph type.
deba@1967:   /// \param CapacityMap Type of length map.
deba@1967:   template <typename _Graph, typename _CapacityMap>
deba@1967:   struct MaxCardinalitySearchDefaultTraits {
deba@1967:     /// The graph type the algorithm runs on. 
deba@1967:     typedef _Graph Graph;
deba@1967: 
deba@1967:     /// \brief The type of the map that stores the edge capacities.
deba@1967:     ///
deba@1967:     /// The type of the map that stores the edge capacities.
deba@1967:     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
deba@1967:     typedef _CapacityMap CapacityMap;
deba@1967: 
deba@1967:     /// \brief The type of the capacity of the edges.
deba@1967:     typedef typename CapacityMap::Value Value;
deba@1967: 
deba@1967:     /// \brief The cross reference type used by heap.
deba@1967:     ///
deba@1967:     /// The cross reference type used by heap.
deba@1967:     /// Usually it is \c Graph::NodeMap<int>.
deba@1967:     typedef typename Graph::template NodeMap<int> HeapCrossRef;
deba@1967: 
deba@1967:     /// \brief Instantiates a HeapCrossRef.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref HeapCrossRef. 
deba@1967:     /// \param graph is the graph, to which we would like to define the 
deba@1967:     /// HeapCrossRef.
deba@1967:     static HeapCrossRef *createHeapCrossRef(const Graph &graph) {
deba@1967:       return new HeapCrossRef(graph);
deba@1967:     }
deba@1967:     
deba@1967:     /// \brief The heap type used by MaxCardinalitySearch algorithm.
deba@1967:     ///
deba@1967:     /// The heap type used by MaxCardinalitySearch algorithm. It should
deba@1967:     /// maximalize the priorities. The default heap type is
deba@1967:     /// the \ref BinHeap, but it is specialized when the
deba@1967:     /// CapacityMap is ConstMap<Graph::Node, Const<int, 1> >
deba@1967:     /// to LinearHeap.
deba@1967:     ///
deba@1967:     /// \sa MaxCardinalitySearch
deba@1975:     typedef typename _min_cut_bits
deba@1967:     ::HeapSelector<CapacityMap>
deba@1967:     ::template Selector<typename Graph::Node, Value, HeapCrossRef>
deba@1967:     ::Heap Heap;
deba@1967: 
deba@1967:     /// \brief Instantiates a Heap.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref Heap. 
deba@1967:     /// \param crossref The cross reference of the heap.
deba@1967:     static Heap *createHeap(HeapCrossRef& crossref) {
deba@1967:       return new Heap(crossref);
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief The type of the map that stores whether a nodes is processed.
deba@1967:     ///
deba@1967:     /// The type of the map that stores whether a nodes is processed.
deba@1967:     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
deba@1967:     /// By default it is a NullMap.
deba@1967:     typedef NullMap<typename Graph::Node, bool> ProcessedMap;
deba@1967: 
deba@1967:     /// \brief Instantiates a ProcessedMap.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref ProcessedMap. 
deba@1967:     /// \param g is the graph, to which
deba@1967:     /// we would like to define the \ref ProcessedMap
deba@1967: #ifdef DOXYGEN
deba@1967:     static ProcessedMap *createProcessedMap(const Graph &graph)
deba@1967: #else
deba@1967:     static ProcessedMap *createProcessedMap(const Graph &)
deba@1967: #endif
deba@1967:     {
deba@1967:       return new ProcessedMap();
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief The type of the map that stores the cardinalties of the nodes.
deba@1967:     /// 
deba@1967:     /// The type of the map that stores the cardinalities of the nodes.
deba@1967:     /// It must meet the \ref concept::WriteMap "WriteMap" concept.
deba@1967:     typedef typename Graph::template NodeMap<Value> CardinalityMap;
deba@1967: 
deba@1967:     /// \brief Instantiates a CardinalityMap.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref CardinalityMap. 
deba@1967:     /// \param graph is the graph, to which we would like to define the \ref 
deba@1967:     /// CardinalityMap
deba@1967:     static CardinalityMap *createCardinalityMap(const Graph &graph) {
deba@1967:       return new CardinalityMap(graph);
deba@1967:     }
deba@1967: 
deba@1967:   };
deba@1967:   
deba@1967:   /// \ingroup topology
deba@1967:   ///
deba@1967:   /// \brief Maximum Cardinality Search algorithm class.
deba@1967:   ///
deba@1967:   /// This class provides an efficient implementation of Maximum Cardinality 
deba@1967:   /// Search algorithm. The maximum cardinality search chooses first time any 
alpar@1973:   /// node of the graph. Then every time it chooses the node which is connected
deba@1967:   /// to the processed nodes at most in the sum of capacities on the out 
deba@1967:   /// edges. If there is a cut in the graph the algorithm should choose
alpar@1973:   /// again any unprocessed node of the graph. Each node cardinality is
deba@1967:   /// the sum of capacities on the out edges to the nodes which are processed
deba@1967:   /// before the given node.
deba@1967:   ///
deba@1967:   /// The edge capacities are passed to the algorithm using a
deba@1967:   /// \ref concept::ReadMap "ReadMap", so it is easy to change it to any 
deba@1967:   /// kind of capacity.
deba@1967:   ///
deba@1967:   /// The type of the capacity is determined by the \ref 
deba@1967:   /// concept::ReadMap::Value "Value" of the capacity map.
deba@1967:   ///
deba@1967:   /// It is also possible to change the underlying priority heap.
deba@1967:   ///
deba@1967:   ///
deba@1967:   /// \param _Graph The graph type the algorithm runs on. The default value
deba@1967:   /// is \ref ListGraph. The value of Graph is not used directly by
deba@1967:   /// the search algorithm, it is only passed to 
deba@1967:   /// \ref MaxCardinalitySearchDefaultTraits.
deba@1967:   /// \param _CapacityMap This read-only EdgeMap determines the capacities of 
deba@1967:   /// the edges. It is read once for each edge, so the map may involve in
deba@1967:   /// relatively time consuming process to compute the edge capacity if
deba@1967:   /// it is necessary. The default map type is \ref
deba@1967:   /// concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
deba@1967:   /// of CapacityMap is not used directly by search algorithm, it is only 
deba@1967:   /// passed to \ref MaxCardinalitySearchDefaultTraits.  
deba@1967:   /// \param _Traits Traits class to set various data types used by the 
deba@1967:   /// algorithm.  The default traits class is 
deba@1967:   /// \ref MaxCardinalitySearchDefaultTraits 
deba@1967:   /// "MaxCardinalitySearchDefaultTraits<_Graph, _CapacityMap>".  
deba@1967:   /// See \ref MaxCardinalitySearchDefaultTraits 
deba@1967:   /// for the documentation of a MaxCardinalitySearch traits class.
deba@1967:   ///
deba@1967:   /// \author Balazs Dezso
deba@1967: 
deba@1967: #ifdef DOXYGEN
deba@1967:   template <typename _Graph, typename _CapacityMap, typename _Traits>
deba@1967: #else
deba@1967:   template <typename _Graph = ListUGraph,
deba@1967: 	    typename _CapacityMap = typename _Graph::template EdgeMap<int>,
deba@1967: 	    typename _Traits = 
deba@1967:             MaxCardinalitySearchDefaultTraits<_Graph, _CapacityMap> >
deba@1967: #endif
deba@1967:   class MaxCardinalitySearch {
deba@1967:   public:
deba@1967:     /// \brief \ref Exception for uninitialized parameters.
deba@1967:     ///
deba@1967:     /// This error represents problems in the initialization
deba@1967:     /// of the parameters of the algorithms.
deba@1967:     class UninitializedParameter : public lemon::UninitializedParameter {
deba@1967:     public:
deba@1967:       virtual const char* exceptionName() const {
deba@1967: 	return "lemon::MaxCardinalitySearch::UninitializedParameter";
deba@1967:       }
deba@1967:     };
deba@1967: 
deba@1967:     typedef _Traits Traits;
deba@1967:     ///The type of the underlying graph.
deba@1967:     typedef typename Traits::Graph Graph;
deba@1967:     
deba@1967:     ///The type of the capacity of the edges.
deba@1967:     typedef typename Traits::CapacityMap::Value Value;
deba@1967:     ///The type of the map that stores the edge capacities.
deba@1967:     typedef typename Traits::CapacityMap CapacityMap;
deba@1967:     ///The type of the map indicating if a node is processed.
deba@1967:     typedef typename Traits::ProcessedMap ProcessedMap;
deba@1967:     ///The type of the map that stores the cardinalities of the nodes.
deba@1967:     typedef typename Traits::CardinalityMap CardinalityMap;
deba@1967:     ///The cross reference type used for the current heap.
deba@1967:     typedef typename Traits::HeapCrossRef HeapCrossRef;
deba@1967:     ///The heap type used by the algorithm. It maximize the priorities.
deba@1967:     typedef typename Traits::Heap Heap;
deba@1967:   private:
deba@1967:     /// Pointer to the underlying graph.
deba@1967:     const Graph *_graph;
deba@1967:     /// Pointer to the capacity map
deba@1967:     const CapacityMap *_capacity;
deba@1967:     ///Pointer to the map of cardinality.
deba@1967:     CardinalityMap *_cardinality;
deba@1967:     ///Indicates if \ref _cardinality is locally allocated (\c true) or not.
deba@1967:     bool local_cardinality;
deba@1967:     ///Pointer to the map of processed status of the nodes.
deba@1967:     ProcessedMap *_processed;
deba@1967:     ///Indicates if \ref _processed is locally allocated (\c true) or not.
deba@1967:     bool local_processed;
deba@1967:     ///Pointer to the heap cross references.
deba@1967:     HeapCrossRef *_heap_cross_ref;
deba@1967:     ///Indicates if \ref _heap_cross_ref is locally allocated (\c true) or not.
deba@1967:     bool local_heap_cross_ref;
deba@1967:     ///Pointer to the heap.
deba@1967:     Heap *_heap;
deba@1967:     ///Indicates if \ref _heap is locally allocated (\c true) or not.
deba@1967:     bool local_heap;
deba@1967: 
deba@1967:   public :
deba@1967: 
deba@1967:     typedef MaxCardinalitySearch Create;
deba@1967:  
deba@1967:     ///\name Named template parameters
deba@1967: 
deba@1967:     ///@{
deba@1967: 
deba@1967:     template <class T>
deba@1967:     struct DefCardinalityMapTraits : public Traits {
deba@1967:       typedef T CardinalityMap;
deba@1967:       static CardinalityMap *createCardinalityMap(const Graph &) 
deba@1967:       {
deba@1967: 	throw UninitializedParameter();
deba@1967:       }
deba@1967:     };
deba@1967:     /// \brief \ref named-templ-param "Named parameter" for setting 
deba@1967:     /// CardinalityMap type
deba@1967:     ///
deba@1967:     /// \ref named-templ-param "Named parameter" for setting CardinalityMap 
deba@1967:     /// type
deba@1967:     template <class T>
deba@1967:     struct DefCardinalityMap 
deba@1967:       : public MaxCardinalitySearch<Graph, CapacityMap, 
deba@1967:                                     DefCardinalityMapTraits<T> > { 
deba@1967:       typedef MaxCardinalitySearch<Graph, CapacityMap, 
deba@1967:                                    DefCardinalityMapTraits<T> > Create;
deba@1967:     };
deba@1967:     
deba@1967:     template <class T>
deba@1967:     struct DefProcessedMapTraits : public Traits {
deba@1967:       typedef T ProcessedMap;
deba@1967:       static ProcessedMap *createProcessedMap(const Graph &) {
deba@1967: 	throw UninitializedParameter();
deba@1967:       }
deba@1967:     };
deba@1967:     /// \brief \ref named-templ-param "Named parameter" for setting 
deba@1967:     /// ProcessedMap type
deba@1967:     ///
deba@1967:     /// \ref named-templ-param "Named parameter" for setting ProcessedMap type
deba@1967:     ///
deba@1967:     template <class T>
deba@1967:     struct DefProcessedMap 
deba@1967:       : public MaxCardinalitySearch<Graph, CapacityMap, 
deba@1967:                                     DefProcessedMapTraits<T> > { 
deba@1967:       typedef MaxCardinalitySearch<Graph, CapacityMap, 
deba@1967:                                    DefProcessedMapTraits<T> > Create;
deba@1967:     };
deba@1967:     
deba@1967:     template <class H, class CR>
deba@1967:     struct DefHeapTraits : public Traits {
deba@1967:       typedef CR HeapCrossRef;
deba@1967:       typedef H Heap;
deba@1967:       static HeapCrossRef *createHeapCrossRef(const Graph &) {
deba@1967: 	throw UninitializedParameter();
deba@1967:       }
deba@1967:       static Heap *createHeap(HeapCrossRef &) {
deba@1967: 	throw UninitializedParameter();
deba@1967:       }
deba@1967:     };
deba@1967:     /// \brief \ref named-templ-param "Named parameter" for setting heap 
deba@1967:     /// and cross reference type
deba@1967:     ///
deba@1967:     /// \ref named-templ-param "Named parameter" for setting heap and cross 
deba@1967:     /// reference type
deba@1967:     template <class H, class CR = typename Graph::template NodeMap<int> >
deba@1967:     struct DefHeap
deba@1967:       : public MaxCardinalitySearch<Graph, CapacityMap, 
deba@1967:                                     DefHeapTraits<H, CR> > { 
deba@1967:       typedef MaxCardinalitySearch< Graph, CapacityMap, 
deba@1967:                                     DefHeapTraits<H, CR> > Create;
deba@1967:     };
deba@1967: 
deba@1967:     template <class H, class CR>
deba@1967:     struct DefStandardHeapTraits : public Traits {
deba@1967:       typedef CR HeapCrossRef;
deba@1967:       typedef H Heap;
deba@1967:       static HeapCrossRef *createHeapCrossRef(const Graph &graph) {
deba@1967: 	return new HeapCrossRef(graph);
deba@1967:       }
deba@1967:       static Heap *createHeap(HeapCrossRef &crossref) {
deba@1967: 	return new Heap(crossref);
deba@1967:       }
deba@1967:     };
deba@1967: 
deba@1967:     /// \brief \ref named-templ-param "Named parameter" for setting heap and 
deba@1967:     /// cross reference type with automatic allocation
deba@1967:     ///
deba@1967:     /// \ref named-templ-param "Named parameter" for setting heap and cross 
deba@1967:     /// reference type. It can allocate the heap and the cross reference 
deba@1967:     /// object if the cross reference's constructor waits for the graph as 
deba@1967:     /// parameter and the heap's constructor waits for the cross reference.
deba@1967:     template <class H, class CR = typename Graph::template NodeMap<int> >
deba@1967:     struct DefStandardHeap
deba@1967:       : public MaxCardinalitySearch<Graph, CapacityMap, 
deba@1967:                                     DefStandardHeapTraits<H, CR> > { 
deba@1967:       typedef MaxCardinalitySearch<Graph, CapacityMap, 
deba@1967:                                    DefStandardHeapTraits<H, CR> > 
deba@1967:       Create;
deba@1967:     };
deba@1967:     
deba@1967:     ///@}
deba@1967: 
deba@1967: 
deba@1967:   protected:
deba@1967: 
deba@1967:     MaxCardinalitySearch() {}
deba@1967: 
deba@1967:   public:      
deba@1967:     
deba@1967:     /// \brief Constructor.
deba@1967:     ///
deba@1967:     ///\param _graph the graph the algorithm will run on.
deba@1967:     ///\param _capacity the capacity map used by the algorithm.
deba@1967:     MaxCardinalitySearch(const Graph& graph, const CapacityMap& capacity) :
deba@1967:       _graph(&graph), _capacity(&capacity),
deba@1967:       _cardinality(0), local_cardinality(false),
deba@1967:       _processed(0), local_processed(false),
deba@1967:       _heap_cross_ref(0), local_heap_cross_ref(false),
deba@1967:       _heap(0), local_heap(false)
deba@1967:     { }
deba@1967:     
deba@1967:     /// \brief Destructor.
deba@1967:     ~MaxCardinalitySearch() {
deba@1967:       if(local_cardinality) delete _cardinality;
deba@1967:       if(local_processed) delete _processed;
deba@1967:       if(local_heap_cross_ref) delete _heap_cross_ref;
deba@1967:       if(local_heap) delete _heap;
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Sets the capacity map.
deba@1967:     ///
deba@1967:     /// Sets the capacity map.
deba@1967:     /// \return <tt> (*this) </tt>
deba@1967:     MaxCardinalitySearch &capacityMap(const CapacityMap &m) {
deba@1967:       _capacity = &m;
deba@1967:       return *this;
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Sets the map storing the cardinalities calculated by the 
deba@1967:     /// algorithm.
deba@1967:     ///
deba@1967:     /// Sets the map storing the cardinalities calculated by the algorithm.
deba@1967:     /// If you don't use this function before calling \ref run(),
deba@1967:     /// it will allocate one. The destuctor deallocates this
deba@1967:     /// automatically allocated map, of course.
deba@1967:     /// \return <tt> (*this) </tt>
deba@1967:     MaxCardinalitySearch &cardinalityMap(CardinalityMap &m) {
deba@1967:       if(local_cardinality) {
deba@1967: 	delete _cardinality;
deba@1967: 	local_cardinality=false;
deba@1967:       }
deba@1967:       _cardinality = &m;
deba@1967:       return *this;
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Sets the map storing the processed nodes.
deba@1967:     ///
deba@1967:     /// Sets the map storing the processed nodes.
deba@1967:     /// If you don't use this function before calling \ref run(),
deba@1967:     /// it will allocate one. The destuctor deallocates this
deba@1967:     /// automatically allocated map, of course.
deba@1967:     /// \return <tt> (*this) </tt>
deba@1967:     MaxCardinalitySearch &processedMap(ProcessedMap &m) 
deba@1967:     {
deba@1967:       if(local_processed) {
deba@1967: 	delete _processed;
deba@1967: 	local_processed=false;
deba@1967:       }
deba@1967:       _processed = &m;
deba@1967:       return *this;
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Sets the heap and the cross reference used by algorithm.
deba@1967:     ///
deba@1967:     /// Sets the heap and the cross reference used by algorithm.
deba@1967:     /// If you don't use this function before calling \ref run(),
deba@1967:     /// it will allocate one. The destuctor deallocates this
deba@1967:     /// automatically allocated map, of course.
deba@1967:     /// \return <tt> (*this) </tt>
deba@1967:     MaxCardinalitySearch &heap(Heap& heap, HeapCrossRef &crossRef) {
deba@1967:       if(local_heap_cross_ref) {
deba@1967: 	delete _heap_cross_ref;
deba@1967: 	local_heap_cross_ref = false;
deba@1967:       }
deba@1967:       _heap_cross_ref = &crossRef;
deba@1967:       if(local_heap) {
deba@1967: 	delete _heap;
deba@1967: 	local_heap = false;
deba@1967:       }
deba@1967:       _heap = &heap;
deba@1967:       return *this;
deba@1967:     }
deba@1967: 
deba@1967:   private:
deba@1967: 
deba@1967:     typedef typename Graph::Node Node;
deba@1967:     typedef typename Graph::NodeIt NodeIt;
deba@1967:     typedef typename Graph::Edge Edge;
deba@1967:     typedef typename Graph::InEdgeIt InEdgeIt;
deba@1967: 
deba@1967:     void create_maps() {
deba@1967:       if(!_cardinality) {
deba@1967: 	local_cardinality = true;
deba@1967: 	_cardinality = Traits::createCardinalityMap(*_graph);
deba@1967:       }
deba@1967:       if(!_processed) {
deba@1967: 	local_processed = true;
deba@1967: 	_processed = Traits::createProcessedMap(*_graph);
deba@1967:       }
deba@1967:       if (!_heap_cross_ref) {
deba@1967: 	local_heap_cross_ref = true;
deba@1967: 	_heap_cross_ref = Traits::createHeapCrossRef(*_graph);
deba@1967:       }
deba@1967:       if (!_heap) {
deba@1967: 	local_heap = true;
deba@1967: 	_heap = Traits::createHeap(*_heap_cross_ref);
deba@1967:       }
deba@1967:     }
deba@1967:     
deba@1967:     void finalizeNodeData(Node node, Value capacity) {
deba@1967:       _processed->set(node, true);
deba@1967:       _cardinality->set(node, capacity);
deba@1967:     }
deba@1967: 
deba@1967:   public:
deba@1967:     /// \name Execution control
deba@1967:     /// The simplest way to execute the algorithm is to use
deba@1967:     /// one of the member functions called \c run(...).
deba@1967:     /// \n
deba@1967:     /// If you need more control on the execution,
deba@1967:     /// first you must call \ref init(), then you can add several source nodes
deba@1967:     /// with \ref addSource().
deba@1967:     /// Finally \ref start() will perform the actual path
deba@1967:     /// computation.
deba@1967: 
deba@1967:     ///@{
deba@1967: 
deba@1967:     /// \brief Initializes the internal data structures.
deba@1967:     ///
deba@1967:     /// Initializes the internal data structures.
deba@1967:     void init() {
deba@1967:       create_maps();
deba@1967:       _heap->clear();
deba@1967:       for (NodeIt it(*_graph) ; it != INVALID ; ++it) {
deba@1967: 	_processed->set(it, false);
deba@1967: 	_heap_cross_ref->set(it, Heap::PRE_HEAP);
deba@1967:       }
deba@1967:     }
deba@1967:     
deba@1967:     /// \brief Adds a new source node.
deba@1967:     /// 
deba@1967:     /// Adds a new source node to the priority heap.
deba@1967:     ///
deba@1967:     /// It checks if the node has not yet been added to the heap.
deba@1967:     void addSource(Node source, Value capacity = 0) {
deba@1967:       if(_heap->state(source) == Heap::PRE_HEAP) {
deba@1967: 	_heap->push(source, capacity);
deba@1967:       } 
deba@1967:     }
deba@1967:     
deba@1967:     /// \brief Processes the next node in the priority heap
deba@1967:     ///
deba@1967:     /// Processes the next node in the priority heap.
deba@1967:     ///
deba@1967:     /// \return The processed node.
deba@1967:     ///
deba@1967:     /// \warning The priority heap must not be empty!
deba@1967:     Node processNextNode() {
deba@1967:       Node node = _heap->top(); 
deba@1967:       finalizeNodeData(node, _heap->prio());
deba@1967:       _heap->pop();
deba@1967:       
deba@1967:       for (InEdgeIt it(*_graph, node); it != INVALID; ++it) {
deba@1967: 	Node source = _graph->source(it); 
deba@1967: 	switch (_heap->state(source)) {
deba@1967: 	case Heap::PRE_HEAP:
deba@1967: 	  _heap->push(source, (*_capacity)[it]); 
deba@1967: 	  break;
deba@1967: 	case Heap::IN_HEAP:
deba@1967: 	  _heap->decrease(source, (*_heap)[source] + (*_capacity)[it]); 
deba@1967: 	  break;
deba@1967: 	case Heap::POST_HEAP:
deba@1967: 	  break;
deba@1967: 	}
deba@1967:       }
deba@1967:       return node;
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Next node to be processed.
deba@1967:     ///
deba@1967:     /// Next node to be processed.
deba@1967:     ///
deba@1967:     /// \return The next node to be processed or INVALID if the 
deba@1967:     /// priority heap is empty.
deba@1967:     Node nextNode() { 
deba@1967:       return _heap->empty() ? _heap->top() : INVALID;
deba@1967:     }
deba@1967:  
deba@1967:     /// \brief Returns \c false if there are nodes
deba@1967:     /// to be processed in the priority heap
deba@1967:     ///
deba@1967:     /// Returns \c false if there are nodes
deba@1967:     /// to be processed in the priority heap
deba@1967:     bool emptyQueue() { return _heap->empty(); }
deba@1967:     /// \brief Returns the number of the nodes to be processed 
deba@1967:     /// in the priority heap
deba@1967:     ///
deba@1967:     /// Returns the number of the nodes to be processed in the priority heap
deba@1967:     int queueSize() { return _heap->size(); }
deba@1967:     
deba@1967:     /// \brief Executes the algorithm.
deba@1967:     ///
deba@1967:     /// Executes the algorithm.
deba@1967:     ///
deba@1967:     ///\pre init() must be called and at least one node should be added
deba@1967:     /// with addSource() before using this function.
deba@1967:     ///
deba@1967:     /// This method runs the Maximum Cardinality Search algorithm from the 
deba@1967:     /// source node(s).
deba@1967:     void start() {
deba@1967:       while ( !_heap->empty() ) processNextNode();
deba@1967:     }
deba@1967:     
deba@1967:     /// \brief Executes the algorithm until \c dest is reached.
deba@1967:     ///
deba@1967:     /// Executes the algorithm until \c dest is reached.
deba@1967:     ///
deba@1967:     /// \pre init() must be called and at least one node should be added
deba@1967:     /// with addSource() before using this function.
deba@1967:     ///
deba@1967:     /// This method runs the %MaxCardinalitySearch algorithm from the source 
deba@1967:     /// nodes.
deba@1967:     void start(Node dest) {
deba@1967:       while ( !_heap->empty() && _heap->top()!=dest ) processNextNode();
deba@1967:       if ( !_heap->empty() ) finalizeNodeData(_heap->top(), _heap->prio());
deba@1967:     }
deba@1967:     
deba@1967:     /// \brief Executes the algorithm until a condition is met.
deba@1967:     ///
deba@1967:     /// Executes the algorithm until a condition is met.
deba@1967:     ///
deba@1967:     /// \pre init() must be called and at least one node should be added
deba@1967:     /// with addSource() before using this function.
deba@1967:     ///
deba@1967:     /// \param nm must be a bool (or convertible) node map. The algorithm
deba@1967:     /// will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
deba@1967:     template <typename NodeBoolMap>
deba@1967:     void start(const NodeBoolMap &nm) {
deba@1967:       while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode();
deba@1967:       if ( !_heap->empty() ) finalizeNodeData(_heap->top(),_heap->prio());
deba@1967:     }
deba@1967:     
deba@1967:     /// \brief Runs the maximal cardinality search algorithm from node \c s.
deba@1967:     ///
deba@1967:     /// This method runs the %MaxCardinalitySearch algorithm from a root 
deba@1967:     /// node \c s.
deba@1967:     ///
deba@1967:     ///\note d.run(s) is just a shortcut of the following code.
deba@1967:     ///\code
deba@1967:     ///  d.init();
deba@1967:     ///  d.addSource(s);
deba@1967:     ///  d.start();
deba@1967:     ///\endcode
deba@1967:     void run(Node s) {
deba@1967:       init();
deba@1967:       addSource(s);
deba@1967:       start();
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Runs the maximal cardinality search algorithm for the 
deba@1967:     /// whole graph.
deba@1967:     ///
deba@1967:     /// This method runs the %MaxCardinalitySearch algorithm from all 
deba@1967:     /// unprocessed node of the graph.
deba@1967:     ///
deba@1967:     ///\note d.run(s) is just a shortcut of the following code.
deba@1967:     ///\code
deba@1967:     ///  d.init();
deba@1967:     ///  for (NodeIt it(graph); it != INVALID; ++it) {
deba@1967:     ///    if (!d.reached(it)) {
deba@1967:     ///      d.addSource(s);
deba@1967:     ///      d.start();
deba@1967:     ///    }
deba@1967:     ///  }
deba@1967:     ///\endcode
deba@1967:     void run() {
deba@1967:       init();
deba@1967:       for (NodeIt it(*_graph); it != INVALID; ++it) {
deba@1967:         if (!reached(it)) {
deba@1967:           addSource(it);
deba@1967:           start();
deba@1967:         }
deba@1967:       }
deba@1967:     }
deba@1967:     
deba@1967:     ///@}
deba@1967: 
deba@1967:     /// \name Query Functions
deba@1967:     /// The result of the maximum cardinality search algorithm can be 
deba@1967:     /// obtained using these functions.
deba@1967:     /// \n
deba@1967:     /// Before the use of these functions, either run() or start() must be 
deba@1967:     /// called.
deba@1967:     
deba@1967:     ///@{
deba@1967: 
deba@1967:     /// \brief The cardinality of a node.
deba@1967:     ///
deba@1967:     /// Returns the cardinality of a node.
deba@1967:     /// \pre \ref run() must be called before using this function.
deba@1967:     /// \warning If node \c v in unreachable from the root the return value
deba@1967:     /// of this funcion is undefined.
deba@1967:     Value cardinality(Node node) const { return (*_cardinality)[node]; }
deba@1967: 
deba@1967:     /// \brief Returns a reference to the NodeMap of cardinalities.
deba@1967:     ///
deba@1967:     /// Returns a reference to the NodeMap of cardinalities. \pre \ref run() 
deba@1967:     /// must be called before using this function.
deba@1967:     const CardinalityMap &cardinalityMap() const { return *_cardinality;}
deba@1967:  
deba@1967:     /// \brief Checks if a node is reachable from the root.
deba@1967:     ///
deba@1967:     /// Returns \c true if \c v is reachable from the root.
deba@1967:     /// \warning The source nodes are inditated as unreached.
deba@1967:     /// \pre \ref run() must be called before using this function.
deba@1967:     bool reached(Node v) { return (*_heap_cross_ref)[v] != Heap::PRE_HEAP; }
deba@1967: 
deba@1967:     /// \brief Checks if a node is processed.
deba@1967:     ///
deba@1967:     /// Returns \c true if \c v is processed, i.e. the shortest
deba@1967:     /// path to \c v has already found.
deba@1967:     /// \pre \ref run() must be called before using this function.
deba@1967:     bool processed(Node v) { return (*_heap_cross_ref)[v] == Heap::POST_HEAP; }
deba@1967:     
deba@1967:     ///@}
deba@1967:   };
deba@1967: 
deba@1975:   /// \brief Default traits class of MinCut class.
deba@1967:   ///
deba@1975:   /// Default traits class of MinCut class.
deba@1967:   /// \param Graph Graph type.
deba@1967:   /// \param CapacityMap Type of length map.
deba@1967:   template <typename _Graph, typename _CapacityMap>
deba@1975:   struct MinCutDefaultTraits {
deba@1967:     /// \brief The type of the capacity of the edges.
deba@1967:     typedef typename _CapacityMap::Value Value;
deba@1967: 
deba@1967:     /// The graph type the algorithm runs on. 
deba@1967:     typedef _Graph Graph;
deba@1967: 
deba@1975:     /// The AuxGraph type which is an EraseableGraph
deba@1975:     typedef ListUGraph AuxGraph;
deba@1967: 
deba@1975:     /// \brief Instantiates a AuxGraph.
deba@1967:     ///
deba@1975:     /// This function instantiates a \ref AuxGraph. 
deba@1975:     static AuxGraph *createAuxGraph() {
deba@1975:       return new AuxGraph();
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief The type of the map that stores the edge capacities.
deba@1967:     ///
deba@1967:     /// The type of the map that stores the edge capacities.
deba@1967:     /// It must meet the \ref concept::ReadMap "ReadMap" concept.
deba@1967:     typedef _CapacityMap CapacityMap;
deba@1967: 
deba@1967:     /// \brief Instantiates a CapacityMap.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref CapacityMap.
deba@1967: #ifdef DOXYGEN
deba@1967:     static CapacityMap *createCapacityMap(const Graph& graph) 
deba@1967: #else
deba@1967:     static CapacityMap *createCapacityMap(const Graph&)
deba@1967: #endif
deba@1967:     {
deba@1967:       throw UninitializedParameter();
deba@1967:     }
deba@1967: 
deba@1975:     /// \brief The AuxCapacityMap type
deba@1967:     ///
deba@1975:     /// The type of the map that stores the auxing edge capacities.
deba@1975:     typedef AuxGraph::UEdgeMap<Value> AuxCapacityMap;
deba@1967: 
deba@1975:     /// \brief Instantiates a AuxCapacityMap.
deba@1967:     ///
deba@1975:     /// This function instantiates a \ref AuxCapacityMap. 
deba@1975:     static AuxCapacityMap *createAuxCapacityMap(const AuxGraph& graph) {
deba@1975:       return new AuxCapacityMap(graph);
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief The cross reference type used by heap.
deba@1967:     ///
deba@1967:     /// The cross reference type used by heap.
deba@1967:     /// Usually it is \c Graph::NodeMap<int>.
deba@1975:     typedef AuxGraph::NodeMap<int> HeapCrossRef;
deba@1967: 
deba@1967:     /// \brief Instantiates a HeapCrossRef.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref HeapCrossRef. 
deba@1967:     /// \param graph is the graph, to which we would like to define the 
deba@1967:     /// HeapCrossRef.
deba@1975:     static HeapCrossRef *createHeapCrossRef(const AuxGraph &graph) {
deba@1967:       return new HeapCrossRef(graph);
deba@1967:     }
deba@1967:     
deba@1975:     /// \brief The heap type used by MinCut algorithm.
deba@1967:     ///
deba@1975:     /// The heap type used by MinCut algorithm. It should
deba@1967:     /// maximalize the priorities and the heap's key type is
deba@1975:     /// the aux graph's node.
deba@1967:     ///
deba@1967:     /// \sa BinHeap
deba@1975:     /// \sa MinCut
deba@1975:     typedef typename _min_cut_bits
deba@1967:     ::HeapSelector<CapacityMap>
deba@1975:     ::template Selector<typename AuxGraph::Node, Value, HeapCrossRef>
deba@1967:     ::Heap Heap;
deba@1967:     
deba@1967:     /// \brief Instantiates a Heap.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref Heap. 
deba@1967:     /// \param crossref The cross reference of the heap.
deba@1967:     static Heap *createHeap(HeapCrossRef& crossref) {
deba@1967:       return new Heap(crossref);
deba@1967:     }
deba@1967: 
deba@1975:     /// \brief Map from the AuxGraph's node type to the Graph's node type.
deba@1967:     ///
deba@1975:     /// Map from the AuxGraph's node type to the Graph's node type.
deba@1975:     typedef typename AuxGraph
deba@1967:     ::template NodeMap<typename Graph::Node> NodeRefMap;
deba@1967: 
deba@1967:     /// \brief Instantiates a NodeRefMap.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref NodeRefMap. 
deba@1975:     static NodeRefMap *createNodeRefMap(const AuxGraph& graph) {
deba@1967:       return new NodeRefMap(graph);
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Map from the Graph's node type to the Graph's node type.
deba@1967:     ///
deba@1967:     /// Map from the Graph's node type to the Graph's node type.
deba@1967:     typedef typename Graph
deba@1967:     ::template NodeMap<typename Graph::Node> ListRefMap;
deba@1967: 
deba@1967:     /// \brief Instantiates a ListRefMap.
deba@1967:     ///
deba@1967:     /// This function instantiates a \ref ListRefMap. 
deba@1967:     static ListRefMap *createListRefMap(const Graph& graph) {
deba@1967:       return new ListRefMap(graph);
deba@1967:     }
deba@1967:     
deba@1967: 
deba@1967:   };
deba@1967: 
deba@1975:   namespace _min_cut_bits {
deba@1967:     template <typename _Key>
deba@1967:     class LastTwoMap {
deba@1967:     public:
deba@1967:       typedef _Key Key;
deba@1967:       typedef bool Value;
deba@1967: 
deba@1967:       LastTwoMap(int _num) : num(_num) {}
deba@1967:       void set(const Key& key, bool val) {
deba@1967:         if (!val) return;
deba@1967:         --num;
deba@1967:         if (num > 1) return;
deba@1967:         keys[num] = key;
deba@1967:       }
deba@1967:       
deba@1967:       Key operator[](int index) const { return keys[index]; }
deba@1967:     private:
deba@1967:       Key keys[2];
deba@1967:       int num;
deba@1967:     };
deba@1967:   }
deba@1967: 
deba@1967:   /// \ingroup topology
deba@1967:   ///
deba@1975:   /// \brief Calculates the min cut in an undirected graph.
deba@1967:   ///
deba@1975:   /// Calculates the min cut in an undirected graph. 
deba@1967:   /// The algorithm separates the graph's nodes to two partitions with the 
deba@1975:   /// min sum of edge capacities between the two partitions. The
deba@1975:   /// algorithm can be used to test the netaux reliability specifically
deba@1975:   /// to test how many links have to be destroyed in the netaux to split it 
deba@1975:   /// at least two distinict subnetaux.
deba@1967:   ///
deba@1967:   /// The complexity of the algorithm is O(n*e*log(n)) but with Fibonacci 
deba@1967:   /// heap it can be decreased to O(n*e+n^2*log(n)). When the neutral capacity 
deba@1967:   /// map is used then it uses LinearHeap which results O(n*e) time complexity.
deba@1967: #ifdef DOXYGEN
deba@1967:   template <typename _Graph, typename _CapacityMap, typename _Traits>
deba@1967: #else
deba@1967:   template <typename _Graph = ListUGraph, 
deba@1967: 	    typename _CapacityMap = typename _Graph::template UEdgeMap<int>, 
deba@1975: 	    typename _Traits = MinCutDefaultTraits<_Graph, _CapacityMap> >
deba@1967: #endif
deba@1975:   class MinCut {
deba@1967:   public:
deba@1967:     /// \brief \ref Exception for uninitialized parameters.
deba@1967:     ///
deba@1967:     /// This error represents problems in the initialization
deba@1967:     /// of the parameters of the algorithms.
deba@1967:     class UninitializedParameter : public lemon::UninitializedParameter {
deba@1967:     public:
deba@1967:       virtual const char* exceptionName() const {
deba@1975: 	return "lemon::MinCut::UninitializedParameter";
deba@1967:       }
deba@1967:     };
deba@1967: 
deba@1967: 
deba@1967:   private:
deba@1967: 
deba@1967:     typedef _Traits Traits;
deba@1967:     /// The type of the underlying graph.
deba@1967:     typedef typename Traits::Graph Graph;
deba@1967:     
deba@1967:     /// The type of the capacity of the edges.
deba@1967:     typedef typename Traits::CapacityMap::Value Value;
deba@1967:     /// The type of the map that stores the edge capacities.
deba@1967:     typedef typename Traits::CapacityMap CapacityMap;
deba@1975:     /// The type of the aux graph
deba@1975:     typedef typename Traits::AuxGraph AuxGraph;
deba@1975:     /// The type of the aux capacity map
deba@1975:     typedef typename Traits::AuxCapacityMap AuxCapacityMap;
deba@1967:     /// The cross reference type used for the current heap.
deba@1967:     typedef typename Traits::HeapCrossRef HeapCrossRef;
deba@1967:     /// The heap type used by the max cardinality algorithm.
deba@1967:     typedef typename Traits::Heap Heap;
deba@1975:     /// The node refrefernces between the original and aux graph type.
deba@1967:     typedef typename Traits::NodeRefMap NodeRefMap;
deba@1967:     /// The list node refrefernces in the original graph type.
deba@1967:     typedef typename Traits::ListRefMap ListRefMap;
deba@1967: 
deba@1967:   public:
deba@1967: 
deba@1967:     ///\name Named template parameters
deba@1967: 
deba@1967:     ///@{
deba@1967: 
deba@1967:     struct DefNeutralCapacityTraits : public Traits {
deba@1967:       typedef ConstMap<typename Graph::UEdge, Const<int, 1> > CapacityMap;
deba@1967:       static CapacityMap *createCapacityMap(const Graph&) {
deba@1967: 	return new CapacityMap();
deba@1967:       }
deba@1967:     };
deba@1967:     /// \brief \ref named-templ-param "Named parameter" for setting  
deba@1967:     /// the capacity type to constMap<UEdge, int, 1>()
deba@1967:     ///
deba@1967:     /// \ref named-templ-param "Named parameter" for setting 
deba@1967:     /// the capacity type to constMap<UEdge, int, 1>()
deba@1967:     struct DefNeutralCapacity
deba@1975:       : public MinCut<Graph, CapacityMap, DefNeutralCapacityTraits> { 
deba@1975:       typedef MinCut<Graph, CapacityMap, DefNeutralCapacityTraits> Create;
deba@1967:     };
deba@1967: 
deba@1967: 
deba@1967:     template <class H, class CR>
deba@1967:     struct DefHeapTraits : public Traits {
deba@1967:       typedef CR HeapCrossRef;
deba@1967:       typedef H Heap;
deba@1975:       static HeapCrossRef *createHeapCrossRef(const AuxGraph &) {
deba@1967: 	throw UninitializedParameter();
deba@1967:       }
deba@1967:       static Heap *createHeap(HeapCrossRef &) {
deba@1967: 	throw UninitializedParameter();
deba@1967:       }
deba@1967:     };
deba@1967:     /// \brief \ref named-templ-param "Named parameter" for setting heap 
deba@1967:     /// and cross reference type
deba@1967:     ///
deba@1967:     /// \ref named-templ-param "Named parameter" for setting heap and cross 
deba@1967:     /// reference type
deba@1967:     template <class H, class CR = typename Graph::template NodeMap<int> >
deba@1967:     struct DefHeap
deba@1975:       : public MinCut<Graph, CapacityMap, DefHeapTraits<H, CR> > { 
deba@1975:       typedef MinCut< Graph, CapacityMap, DefHeapTraits<H, CR> > Create;
deba@1967:     };
deba@1967: 
deba@1967:     template <class H, class CR>
deba@1967:     struct DefStandardHeapTraits : public Traits {
deba@1967:       typedef CR HeapCrossRef;
deba@1967:       typedef H Heap;
deba@1975:       static HeapCrossRef *createHeapCrossRef(const AuxGraph &graph) {
deba@1967: 	return new HeapCrossRef(graph);
deba@1967:       }
deba@1967:       static Heap *createHeap(HeapCrossRef &crossref) {
deba@1967: 	return new Heap(crossref);
deba@1967:       }
deba@1967:     };
deba@1967: 
deba@1967:     /// \brief \ref named-templ-param "Named parameter" for setting heap and 
deba@1967:     /// cross reference type with automatic allocation
deba@1967:     ///
deba@1967:     /// \ref named-templ-param "Named parameter" for setting heap and cross 
deba@1967:     /// reference type. It can allocate the heap and the cross reference 
deba@1967:     /// object if the cross reference's constructor waits for the graph as 
deba@1967:     /// parameter and the heap's constructor waits for the cross reference.
deba@1967:     template <class H, class CR = typename Graph::template NodeMap<int> >
deba@1967:     struct DefStandardHeap
deba@1975:       : public MinCut<Graph, CapacityMap, DefStandardHeapTraits<H, CR> > { 
deba@1975:       typedef MinCut<Graph, CapacityMap, DefStandardHeapTraits<H, CR> > 
deba@1967:       Create;
deba@1967:     };
deba@1967: 
deba@1967:     ///@}
deba@1967: 
deba@1967: 
deba@1967:   private:
deba@1967:     /// Pointer to the underlying graph.
deba@1967:     const Graph *_graph;
deba@1967:     /// Pointer to the capacity map
deba@1967:     const CapacityMap *_capacity;
deba@1967:     /// \brief Indicates if \ref _capacity is locally allocated 
deba@1967:     /// (\c true) or not.
deba@1967:     bool local_capacity;
deba@1967: 
deba@1975:     /// Pointer to the aux graph.
deba@1975:     AuxGraph *_aux_graph;
deba@1975:     /// \brief Indicates if \ref _aux_graph is locally allocated 
deba@1967:     /// (\c true) or not.
deba@1975:     bool local_aux_graph;
deba@1975:     /// Pointer to the aux capacity map
deba@1975:     AuxCapacityMap *_aux_capacity;
deba@1975:     /// \brief Indicates if \ref _aux_capacity is locally allocated 
deba@1967:     /// (\c true) or not.
deba@1975:     bool local_aux_capacity;
deba@1967:     /// Pointer to the heap cross references.
deba@1967:     HeapCrossRef *_heap_cross_ref;
deba@1967:     /// \brief Indicates if \ref _heap_cross_ref is locally allocated 
deba@1967:     /// (\c true) or not.
deba@1967:     bool local_heap_cross_ref;
deba@1967:     /// Pointer to the heap.
deba@1967:     Heap *_heap;
deba@1967:     /// Indicates if \ref _heap is locally allocated (\c true) or not.
deba@1967:     bool local_heap;
deba@1967: 
deba@1975:     /// The min cut value.
deba@1975:     Value _min_cut;
deba@1975:     /// The number of the nodes of the aux graph.
deba@1967:     int _node_num;
deba@1967:     /// The first and last node of the min cut in the next list;
deba@1967:     typename Graph::Node _first_node, _last_node;
deba@1967: 
deba@1967:     /// \brief The first and last element in the list associated
deba@1975:     /// to the aux graph node.
deba@1967:     NodeRefMap *_first, *_last;
deba@1967:     /// \brief The next node in the node lists.
deba@1967:     ListRefMap *_next;
deba@1967:     
deba@1967:     void create_structures() {
deba@1967:       if (!_capacity) {
deba@1967:         local_capacity = true;
deba@1967:         _capacity = Traits::createCapacityMap(*_graph);
deba@1967:       }
deba@1975:       if(!_aux_graph) {
deba@1975: 	local_aux_graph = true;
deba@1975: 	_aux_graph = Traits::createAuxGraph();
deba@1967:       }
deba@1975:       if(!_aux_capacity) {
deba@1975: 	local_aux_capacity = true;
deba@1975: 	_aux_capacity = Traits::createAuxCapacityMap(*_aux_graph);
deba@1967:       }
deba@1967: 
deba@1975:       _first = Traits::createNodeRefMap(*_aux_graph);
deba@1975:       _last = Traits::createNodeRefMap(*_aux_graph);
deba@1967: 
deba@1967:       _next = Traits::createListRefMap(*_graph);
deba@1967: 
deba@1975:       typename Graph::template NodeMap<typename AuxGraph::Node> ref(*_graph);
deba@1967: 
deba@1967:       for (typename Graph::NodeIt it(*_graph); it != INVALID; ++it) {
deba@1967:         _next->set(it, INVALID);
deba@1975:         typename AuxGraph::Node node = _aux_graph->addNode();
deba@1967:         _first->set(node, it);
deba@1967:         _last->set(node, it);
deba@1967:         ref.set(it, node);
deba@1967:       }
deba@1967: 
deba@1967:       for (typename Graph::UEdgeIt it(*_graph); it != INVALID; ++it) {
deba@1967:         if (_graph->source(it) == _graph->target(it)) continue;
deba@1975:         typename AuxGraph::UEdge uedge = 
deba@1975:           _aux_graph->addEdge(ref[_graph->source(it)], 
deba@1967:                                ref[_graph->target(it)]);
deba@1975:         _aux_capacity->set(uedge, (*_capacity)[it]);
deba@1967:         
deba@1967:       }
deba@1967: 
deba@1967:       if (!_heap_cross_ref) {
deba@1967: 	local_heap_cross_ref = true;
deba@1975: 	_heap_cross_ref = Traits::createHeapCrossRef(*_aux_graph);
deba@1967:       }
deba@1967:       if (!_heap) {
deba@1967: 	local_heap = true;
deba@1967: 	_heap = Traits::createHeap(*_heap_cross_ref);
deba@1967:       }
deba@1967:     }
deba@1967: 
deba@1967:   public :
deba@1967: 
deba@1975:     typedef MinCut Create;
deba@1967: 
deba@1967: 
deba@1967:     /// \brief Constructor.
deba@1967:     ///
deba@1967:     ///\param graph the graph the algorithm will run on.
deba@1967:     ///\param capacity the capacity map used by the algorithm.
deba@1975:     MinCut(const Graph& graph, const CapacityMap& capacity) 
deba@1967:       : _graph(&graph), 
deba@1967:         _capacity(&capacity), local_capacity(false),
deba@1975:         _aux_graph(0), local_aux_graph(false),
deba@1975:         _aux_capacity(0), local_aux_capacity(false),
deba@1967:         _heap_cross_ref(0), local_heap_cross_ref(false),
deba@1967:         _heap(0), local_heap(false),
deba@1967:         _first(0), _last(0), _next(0) {}
deba@1967: 
deba@1967:     /// \brief Constructor.
deba@1967:     ///
deba@1967:     /// This constructor can be used only when the Traits class
deba@1967:     /// defines how can we instantiate a local capacity map.
deba@1967:     /// If the DefNeutralCapacity used the algorithm automatically
deba@1967:     /// construct the capacity map.
deba@1967:     ///
deba@1967:     ///\param graph the graph the algorithm will run on.
deba@1975:     MinCut(const Graph& graph) 
deba@1967:       : _graph(&graph), 
deba@1967:         _capacity(0), local_capacity(false),
deba@1975:         _aux_graph(0), local_aux_graph(false),
deba@1975:         _aux_capacity(0), local_aux_capacity(false),
deba@1967:         _heap_cross_ref(0), local_heap_cross_ref(false),
deba@1967:         _heap(0), local_heap(false),
deba@1967:         _first(0), _last(0), _next(0) {}
deba@1967: 
deba@1967:     /// \brief Destructor.
deba@1967:     ///
deba@1967:     /// Destructor.
deba@1975:     ~MinCut() {
deba@1967:       if (local_heap) delete _heap;
deba@1967:       if (local_heap_cross_ref) delete _heap_cross_ref;
deba@1967:       if (_first) delete _first;
deba@1967:       if (_last) delete _last;
deba@1967:       if (_next) delete _next;
deba@1975:       if (local_aux_capacity) delete _aux_capacity;
deba@1975:       if (local_aux_graph) delete _aux_graph;
deba@1967:       if (local_capacity) delete _capacity;
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Sets the heap and the cross reference used by algorithm.
deba@1967:     ///
deba@1967:     /// Sets the heap and the cross reference used by algorithm.
deba@1967:     /// If you don't use this function before calling \ref run(),
deba@1967:     /// it will allocate one. The destuctor deallocates this
deba@1967:     /// automatically allocated heap and cross reference, of course.
deba@1967:     /// \return <tt> (*this) </tt>
deba@1975:     MinCut &heap(Heap& heap, HeapCrossRef &crossRef)
deba@1967:     {
deba@1967:       if (local_heap_cross_ref) {
deba@1967: 	delete _heap_cross_ref;
deba@1967: 	local_heap_cross_ref=false;
deba@1967:       }
deba@1967:       _heap_cross_ref = &crossRef;
deba@1967:       if (local_heap) {
deba@1967: 	delete _heap;
deba@1967: 	local_heap=false;
deba@1967:       }
deba@1967:       _heap = &heap;
deba@1967:       return *this;
deba@1967:     }
deba@1967: 
deba@1975:     /// \brief Sets the aux graph.
deba@1967:     ///
deba@1975:     /// Sets the aux graph used by algorithm.
deba@1967:     /// If you don't use this function before calling \ref run(),
deba@1967:     /// it will allocate one. The destuctor deallocates this
deba@1967:     /// automatically allocated graph, of course.
deba@1967:     /// \return <tt> (*this) </tt>
deba@1975:     MinCut &auxGraph(AuxGraph& aux_graph)
deba@1967:     {
deba@1975:       if(local_aux_graph) {
deba@1975: 	delete _aux_graph;
deba@1975: 	local_aux_graph=false;
deba@1967:       }
deba@1975:       _aux_graph = &aux_graph;
deba@1967:       return *this;
deba@1967:     }
deba@1967: 
deba@1975:     /// \brief Sets the aux capacity map.
deba@1967:     ///
deba@1975:     /// Sets the aux capacity map used by algorithm.
deba@1967:     /// If you don't use this function before calling \ref run(),
deba@1967:     /// it will allocate one. The destuctor deallocates this
deba@1967:     /// automatically allocated graph, of course.
deba@1967:     /// \return <tt> (*this) </tt>
deba@1975:     MinCut &auxCapacityMap(AuxCapacityMap& aux_capacity_map)
deba@1967:     {
deba@1975:       if(local_aux_capacity) {
deba@1975: 	delete _aux_capacity;
deba@1975: 	local_aux_capacity=false;
deba@1967:       }
deba@1975:       _aux_capacity = &aux_capacity_map;
deba@1967:       return *this;
deba@1967:     }
deba@1967: 
deba@1967:     /// \name Execution control
deba@1967:     /// The simplest way to execute the algorithm is to use
deba@1967:     /// one of the member functions called \c run().
deba@1967:     /// \n
deba@1967:     /// If you need more control on the execution,
deba@1967:     /// first you must call \ref init() and then call the start()
deba@1967:     /// or proper times the processNextPhase() member functions.
deba@1967: 
deba@1967:     ///@{
deba@1967: 
deba@1967:     /// \brief Initializes the internal data structures.
deba@1967:     ///
deba@1967:     /// Initializes the internal data structures.
deba@1967:     void init() {
deba@1967:       create_structures();
deba@1967:       _first_node = _last_node = INVALID;
deba@1967:       _node_num = countNodes(*_graph);
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Processes the next phase
deba@1967:     ///
deba@1967:     /// Processes the next phase in the algorithm. The function
deba@1967:     /// should be called countNodes(graph) - 1 times to get
deba@1975:     /// surely the min cut in the graph. The  
deba@1967:     ///
deba@1967:     ///\return %True when the algorithm finished.
deba@1967:     bool processNextPhase() {
deba@1967:       if (_node_num <= 1) return true;
deba@1975:       using namespace _min_cut_bits;
deba@1967: 
deba@1975:       typedef typename AuxGraph::Node Node;
deba@1975:       typedef typename AuxGraph::NodeIt NodeIt;
deba@1975:       typedef typename AuxGraph::UEdge UEdge;
deba@1975:       typedef typename AuxGraph::IncEdgeIt IncEdgeIt;
deba@1967:       
deba@1975:       typedef typename MaxCardinalitySearch<AuxGraph, AuxCapacityMap>::
deba@1967:       template DefHeap<Heap, HeapCrossRef>::
deba@1967:       template DefCardinalityMap<NullMap<Node, Value> >::
deba@1967:       template DefProcessedMap<LastTwoMap<Node> >::
deba@1967:       Create MaxCardinalitySearch;
deba@1967:       
deba@1975:       MaxCardinalitySearch mcs(*_aux_graph, *_aux_capacity);
deba@1975:       for (NodeIt it(*_aux_graph); it != INVALID; ++it) {
deba@1967:         _heap_cross_ref->set(it, Heap::PRE_HEAP);
deba@1967:       }
deba@1967:       mcs.heap(*_heap, *_heap_cross_ref);
deba@1967: 
deba@1967:       LastTwoMap<Node> last_two_nodes(_node_num);
deba@1967:       mcs.processedMap(last_two_nodes);
deba@1967: 
deba@1967:       NullMap<Node, Value> cardinality;
deba@1967:       mcs.cardinalityMap(cardinality);
deba@1967: 
deba@1967:       mcs.run();
deba@1967: 
deba@1975:       Node new_node = _aux_graph->addNode();
deba@1967: 
deba@1975:       typename AuxGraph::template NodeMap<UEdge> edges(*_aux_graph, INVALID);
deba@1967:       
deba@1967:       Node first_node = last_two_nodes[0];
deba@1967:       Node second_node = last_two_nodes[1];
deba@1967:       
deba@1967:       _next->set((*_last)[first_node], (*_first)[second_node]);
deba@1967:       _first->set(new_node, (*_first)[first_node]);
deba@1967:       _last->set(new_node, (*_last)[second_node]);
deba@1967: 
deba@1967:       Value current_cut = 0;      
deba@1975:       for (IncEdgeIt it(*_aux_graph, first_node); it != INVALID; ++it) {
deba@1975:         Node node = _aux_graph->runningNode(it);
deba@1975:         current_cut += (*_aux_capacity)[it];
deba@1967:         if (node == second_node) continue;
deba@1967:         if (edges[node] == INVALID) {
deba@1975:           edges[node] = _aux_graph->addEdge(new_node, node);
deba@1975:           (*_aux_capacity)[edges[node]] = (*_aux_capacity)[it];
deba@1967:         } else {
deba@1975:           (*_aux_capacity)[edges[node]] += (*_aux_capacity)[it];          
deba@1967:         }
deba@1967:       }
deba@1967: 
deba@1975:       if (_first_node == INVALID || current_cut < _min_cut) {
deba@1967:         _first_node = (*_first)[first_node];
deba@1967:         _last_node = (*_last)[first_node];
deba@1975:         _min_cut = current_cut;
deba@1967:       }
deba@1967: 
deba@1975:       _aux_graph->erase(first_node);
deba@1967: 
deba@1975:       for (IncEdgeIt it(*_aux_graph, second_node); it != INVALID; ++it) {
deba@1975:         Node node = _aux_graph->runningNode(it);
deba@1967:         if (edges[node] == INVALID) {
deba@1975:           edges[node] = _aux_graph->addEdge(new_node, node);
deba@1975:           (*_aux_capacity)[edges[node]] = (*_aux_capacity)[it];
deba@1967:         } else {
deba@1975:           (*_aux_capacity)[edges[node]] += (*_aux_capacity)[it];          
deba@1967:         }
deba@1967:       }
deba@1975:       _aux_graph->erase(second_node);
deba@1967: 
deba@1967:       --_node_num;
deba@1967:       return _node_num == 1;
deba@1967:     }
deba@1967: 
deba@1967:     /// \brief Executes the algorithm.
deba@1967:     ///
deba@1967:     /// Executes the algorithm.
deba@1967:     ///
deba@1967:     /// \pre init() must be called
deba@1967:     void start() {
deba@1967:       while (!processNextPhase());
deba@1967:     }
deba@1967: 
deba@1967: 
deba@1975:     /// \brief Runs %MinCut algorithm.
deba@1967:     ///
deba@1975:     /// This method runs the %Min cut algorithm
deba@1967:     ///
deba@1967:     /// \note mc.run(s) is just a shortcut of the following code.
deba@1967:     ///\code
deba@1967:     ///  mc.init();
deba@1967:     ///  mc.start();
deba@1967:     ///\endcode
deba@1967:     void run() {
deba@1967:       init();
deba@1967:       start();
deba@1967:     }
deba@1967: 
deba@1967:     ///@}
deba@1967: 
deba@1967:     /// \name Query Functions
deba@1975:     /// The result of the %MinCut algorithm can be obtained using these
deba@1967:     /// functions.\n
deba@1967:     /// Before the use of these functions,
deba@1967:     /// either run() or start() must be called.
deba@1967:     
deba@1967:     ///@{
deba@1967: 
deba@1975:     /// \brief Returns the min cut value.
deba@1967:     ///
deba@1975:     /// Returns the min cut value if the algorithm finished.
deba@1967:     /// After the first processNextPhase() it is a value of a
deba@1967:     /// valid cut in the graph.
deba@1967:     Value minCut() const {
deba@1975:       return _min_cut;
deba@1967:     }
deba@1967: 
deba@1975:     /// \brief Returns a min cut in a NodeMap.
deba@1967:     ///
deba@1967:     /// It sets the nodes of one of the two partitions to true in
deba@1967:     /// the given BoolNodeMap. The map contains a valid cut if the
alpar@1973:     /// map have been set false previously. 
deba@1967:     template <typename NodeMap>
deba@1967:     Value quickMinCut(NodeMap& nodeMap) const { 
deba@1967:       for (typename Graph::Node it = _first_node; 
deba@1967:            it != _last_node; it = (*_next)[it]) {
deba@1967:              nodeMap.set(it, true);
deba@1967:            }
deba@1967:       nodeMap.set(_last_node, true);
deba@1967:       return minCut();
deba@1967:     }
deba@1967: 
deba@1975:     /// \brief Returns a min cut in a NodeMap.
deba@1967:     ///
deba@1967:     /// It sets the nodes of one of the two partitions to true and
deba@1967:     /// the other partition to false. The function first set all of the
deba@1967:     /// nodes to false and after it call the quickMinCut() member.
deba@1967:     template <typename NodeMap>
deba@1967:     Value minCut(NodeMap& nodeMap) const { 
deba@1967:       for (typename Graph::NodeIt it(*_graph); it != INVALID; ++it) {
deba@1967:         nodeMap.set(it, false);      
deba@1967:       }
deba@1967:       quickMinCut(nodeMap);
deba@1967:       return minCut();
deba@1967:     }
deba@1967: 
deba@1975:     /// \brief Returns a min cut in an EdgeMap.
deba@1967:     ///
deba@1975:     /// If an undirected edge is in a min cut then it will be
alpar@1973:     /// set to true and the others will be set to false in the given map.
deba@1967:     template <typename EdgeMap>
deba@1967:     Value cutEdges(EdgeMap& edgeMap) const {
deba@1967:       typename Graph::template NodeMap<bool> cut(*_graph, false);
deba@1967:       quickMinCut(cut);
deba@1967:       for (typename Graph::EdgeIt it(*_graph); it != INVALID; ++it) {
deba@1967:         edgeMap.set(it, cut[_graph->source(it)] ^ cut[_graph->target(it)]);
deba@1967:       }
deba@1967:       return minCut();
deba@1967:     }
deba@1967: 
deba@1967:     ///@}
deba@1967: 
deba@1967:   };
deba@1967: }
deba@1967: 
deba@1967: #endif