athos@1247: /* -*- C++ -*-
athos@1247:  *
alpar@1956:  * This file is a part of LEMON, a generic C++ optimization library
alpar@1956:  *
alpar@1956:  * Copyright (C) 2003-2006
alpar@1956:  * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
alpar@1359:  * (Egervary Research Group on Combinatorial Optimization, EGRES).
athos@1247:  *
athos@1247:  * Permission to use, modify and distribute this software is granted
athos@1247:  * provided that this copyright notice appears in all copies. For
athos@1247:  * precise terms see the accompanying LICENSE file.
athos@1247:  *
athos@1247:  * This software is provided "AS IS" with no warranty of any kind,
athos@1247:  * express or implied, and with no claim as to its suitability for any
athos@1247:  * purpose.
athos@1247:  *
athos@1247:  */
athos@1247: 
athos@1246: #ifndef LEMON_LP_BASE_H
athos@1246: #define LEMON_LP_BASE_H
athos@1246: 
alpar@1253: #include<vector>
alpar@1272: #include<map>
alpar@1256: #include<limits>
alpar@1397: #include<cmath>
alpar@1253: 
deba@1993: #include<lemon/bits/utility.h>
alpar@1253: #include<lemon/error.h>
deba@1993: #include<lemon/bits/invalid.h>
alpar@1253: 
athos@1246: ///\file
athos@1246: ///\brief The interface of the LP solver interface.
alpar@1328: ///\ingroup gen_opt_group
athos@1246: namespace lemon {
alpar@1253:   
alpar@1253:   ///Internal data structure to convert floating id's to fix one's
alpar@1253:     
alpar@1279:   ///\todo This might be implemented to be also usable in other places.
alpar@1253:   class _FixId 
alpar@1253:   {
marci@1787:   protected:
alpar@1253:     std::vector<int> index;
alpar@1253:     std::vector<int> cross;
alpar@1253:     int first_free;
alpar@1253:   public:
alpar@1253:     _FixId() : first_free(-1) {};
alpar@1253:     ///Convert a floating id to a fix one
alpar@1253: 
alpar@1253:     ///\param n is a floating id
alpar@1253:     ///\return the corresponding fix id
alpar@1484:     int fixId(int n) const {return cross[n];}
alpar@1253:     ///Convert a fix id to a floating one
alpar@1253: 
alpar@1253:     ///\param n is a fix id
alpar@1253:     ///\return the corresponding floating id
alpar@1484:     int floatingId(int n) const { return index[n];}
alpar@1253:     ///Add a new floating id.
alpar@1253: 
alpar@1253:     ///\param n is a floating id
alpar@1253:     ///\return the fix id of the new value
alpar@1253:     ///\todo Multiple additions should also be handled.
alpar@1253:     int insert(int n)
alpar@1253:     {
alpar@1253:       if(n>=int(cross.size())) {
alpar@1253: 	cross.resize(n+1);
alpar@1253: 	if(first_free==-1) {
alpar@1253: 	  cross[n]=index.size();
alpar@1253: 	  index.push_back(n);
alpar@1253: 	}
alpar@1253: 	else {
alpar@1253: 	  cross[n]=first_free;
alpar@1253: 	  int next=index[first_free];
alpar@1253: 	  index[first_free]=n;
alpar@1253: 	  first_free=next;
alpar@1253: 	}
alpar@1256: 	return cross[n];
alpar@1253:       }
alpar@1273:       ///\todo Create an own exception type.
alpar@1253:       else throw LogicError(); //floatingId-s must form a continuous range;
alpar@1253:     }
alpar@1253:     ///Remove a fix id.
alpar@1253: 
alpar@1253:     ///\param n is a fix id
alpar@1253:     ///
alpar@1253:     void erase(int n) 
alpar@1253:     {
alpar@1253:       int fl=index[n];
alpar@1253:       index[n]=first_free;
alpar@1253:       first_free=n;
alpar@1253:       for(int i=fl+1;i<int(cross.size());++i) {
alpar@1253: 	cross[i-1]=cross[i];
alpar@1253: 	index[cross[i]]--;
alpar@1253:       }
alpar@1253:       cross.pop_back();
alpar@1253:     }
alpar@1253:     ///An upper bound on the largest fix id.
alpar@1253: 
alpar@1253:     ///\todo Do we need this?
alpar@1253:     ///
alpar@1253:     std::size_t maxFixId() { return cross.size()-1; }
alpar@1253:   
alpar@1253:   };
alpar@1253:     
alpar@1253:   ///Common base class for LP solvers
alpar@1328:   
alpar@1328:   ///\todo Much more docs
alpar@1328:   ///\ingroup gen_opt_group
athos@1246:   class LpSolverBase {
alpar@1323: 
athos@1247:   public:
athos@1247: 
athos@1458:     ///Possible outcomes of an LP solving procedure
alpar@1303:     enum SolveExitStatus {
athos@1458:       ///This means that the problem has been successfully solved: either
athos@1458:       ///an optimal solution has been found or infeasibility/unboundedness
athos@1458:       ///has been proved.
alpar@1293:       SOLVED = 0,
athos@1458:       ///Any other case (including the case when some user specified limit has been exceeded)
alpar@1293:       UNSOLVED = 1
athos@1291:     };
athos@1291:       
athos@1460:       ///\e
alpar@1303:     enum SolutionStatus {
alpar@1295:       ///Feasible solution has'n been found (but may exist).
alpar@1295: 
alpar@1295:       ///\todo NOTFOUND might be a better name.
alpar@1295:       ///
alpar@1293:       UNDEFINED = 0,
alpar@1295:       ///The problem has no feasible solution
alpar@1293:       INFEASIBLE = 1,
alpar@1295:       ///Feasible solution found
alpar@1293:       FEASIBLE = 2,
alpar@1295:       ///Optimal solution exists and found
alpar@1295:       OPTIMAL = 3,
alpar@1295:       ///The cost function is unbounded
alpar@1295: 
alpar@1295:       ///\todo Give a feasible solution and an infinite ray (and the
alpar@1295:       ///corresponding bases)
alpar@1295:       INFINITE = 4
alpar@1263:     };
athos@1460: 
athos@1542:     ///\e The type of the investigated LP problem
athos@1542:     enum ProblemTypes {
athos@1542:       ///Primal-dual feasible
athos@1542:       PRIMAL_DUAL_FEASIBLE = 0,
athos@1542:       ///Primal feasible dual infeasible
athos@1542:       PRIMAL_FEASIBLE_DUAL_INFEASIBLE = 1,
athos@1542:       ///Primal infeasible dual feasible
athos@1542:       PRIMAL_INFEASIBLE_DUAL_FEASIBLE = 2,
athos@1542:       ///Primal-dual infeasible
athos@1542:       PRIMAL_DUAL_INFEASIBLE = 3,
athos@1542:       ///Could not determine so far
athos@1542:       UNKNOWN = 4
athos@1542:     };
athos@1508: 
alpar@1256:     ///The floating point type used by the solver
athos@1247:     typedef double Value;
alpar@1256:     ///The infinity constant
athos@1247:     static const Value INF;
alpar@1264:     ///The not a number constant
alpar@1264:     static const Value NaN;
deba@2026: 
deba@2026:     static inline bool isNaN(const Value& v) { return v!=v; }
alpar@1253:     
alpar@1256:     ///Refer to a column of the LP.
alpar@1256: 
alpar@1256:     ///This type is used to refer to a column of the LP.
alpar@1256:     ///
alpar@1256:     ///Its value remains valid and correct even after the addition or erase of
alpar@1273:     ///other columns.
alpar@1256:     ///
alpar@1256:     ///\todo Document what can one do with a Col (INVALID, comparing,
alpar@1256:     ///it is similar to Node/Edge)
alpar@1256:     class Col {
alpar@1256:     protected:
alpar@1256:       int id;
alpar@1256:       friend class LpSolverBase;
athos@2144:       friend class MipSolverBase;
alpar@1256:     public:
alpar@1259:       typedef Value ExprValue;
alpar@1256:       typedef True LpSolverCol;
alpar@1256:       Col() {}
alpar@1256:       Col(const Invalid&) : id(-1) {}
alpar@1900:       bool operator< (Col c) const  {return id< c.id;}
alpar@1900:       bool operator> (Col c) const  {return id> c.id;}
alpar@1256:       bool operator==(Col c) const  {return id==c.id;}
alpar@1900:       bool operator!=(Col c) const  {return id!=c.id;}
alpar@1256:     };
alpar@1256: 
alpar@1256:     ///Refer to a row of the LP.
alpar@1256: 
alpar@1256:     ///This type is used to refer to a row of the LP.
alpar@1256:     ///
alpar@1256:     ///Its value remains valid and correct even after the addition or erase of
alpar@1273:     ///other rows.
alpar@1256:     ///
alpar@1256:     ///\todo Document what can one do with a Row (INVALID, comparing,
alpar@1256:     ///it is similar to Node/Edge)
alpar@1256:     class Row {
alpar@1256:     protected:
alpar@1256:       int id;
alpar@1256:       friend class LpSolverBase;
alpar@1256:     public:
alpar@1259:       typedef Value ExprValue;
alpar@1256:       typedef True LpSolverRow;
alpar@1256:       Row() {}
alpar@1256:       Row(const Invalid&) : id(-1) {}
alpar@1439: 
alpar@1900:       bool operator< (Row c) const  {return id< c.id;}
alpar@1900:       bool operator> (Row c) const  {return id> c.id;}
alpar@1256:       bool operator==(Row c) const  {return id==c.id;}
alpar@1900:       bool operator!=(Row c) const  {return id!=c.id;} 
alpar@1256:    };
alpar@1259:     
alpar@1279:     ///Linear expression of variables and a constant component
alpar@1279:     
alpar@1279:     ///This data structure strores a linear expression of the variables
alpar@1279:     ///(\ref Col "Col"s) and also has a constant component.
alpar@1279:     ///
alpar@1279:     ///There are several ways to access and modify the contents of this
alpar@1279:     ///container.
alpar@1279:     ///- Its it fully compatible with \c std::map<Col,double>, so for expamle
alpar@1364:     ///if \c e is an Expr and \c v and \c w are of type \ref Col, then you can
alpar@1279:     ///read and modify the coefficients like
alpar@1279:     ///these.
alpar@1279:     ///\code
alpar@1279:     ///e[v]=5;
alpar@1279:     ///e[v]+=12;
alpar@1279:     ///e.erase(v);
alpar@1279:     ///\endcode
alpar@1279:     ///or you can also iterate through its elements.
alpar@1279:     ///\code
alpar@1279:     ///double s=0;
alpar@1279:     ///for(LpSolverBase::Expr::iterator i=e.begin();i!=e.end();++i)
alpar@1279:     ///  s+=i->second;
alpar@1279:     ///\endcode
alpar@1279:     ///(This code computes the sum of all coefficients).
alpar@1279:     ///- Numbers (<tt>double</tt>'s)
alpar@1279:     ///and variables (\ref Col "Col"s) directly convert to an
alpar@1908:     ///\ref Expr and the usual linear operations are defined, so  
alpar@1279:     ///\code
alpar@1279:     ///v+w
alpar@1279:     ///2*v-3.12*(v-w/2)+2
alpar@1279:     ///v*2.1+(3*v+(v*12+w+6)*3)/2
alpar@1279:     ///\endcode
alpar@1328:     ///are valid \ref Expr "Expr"essions.
alpar@1328:     ///The usual assignment operations are also defined.
alpar@1279:     ///\code
alpar@1279:     ///e=v+w;
alpar@1279:     ///e+=2*v-3.12*(v-w/2)+2;
alpar@1279:     ///e*=3.4;
alpar@1279:     ///e/=5;
alpar@1279:     ///\endcode
alpar@1279:     ///- The constant member can be set and read by \ref constComp()
alpar@1279:     ///\code
alpar@1279:     ///e.constComp()=12;
alpar@1279:     ///double c=e.constComp();
alpar@1279:     ///\endcode
alpar@1279:     ///
alpar@1328:     ///\note \ref clear() not only sets all coefficients to 0 but also
alpar@1279:     ///clears the constant components.
alpar@1328:     ///
alpar@1328:     ///\sa Constr
alpar@1328:     ///
alpar@1273:     class Expr : public std::map<Col,Value>
alpar@1272:     {
alpar@1272:     public:
alpar@1273:       typedef LpSolverBase::Col Key; 
alpar@1273:       typedef LpSolverBase::Value Value;
alpar@1272:       
alpar@1272:     protected:
alpar@1273:       typedef std::map<Col,Value> Base;
alpar@1272:       
alpar@1273:       Value const_comp;
alpar@1272:   public:
alpar@1272:       typedef True IsLinExpression;
alpar@1272:       ///\e
alpar@1272:       Expr() : Base(), const_comp(0) { }
alpar@1272:       ///\e
alpar@1273:       Expr(const Key &v) : const_comp(0) {
alpar@1272: 	Base::insert(std::make_pair(v, 1));
alpar@1272:       }
alpar@1272:       ///\e
alpar@1273:       Expr(const Value &v) : const_comp(v) {}
alpar@1272:       ///\e
alpar@1273:       void set(const Key &v,const Value &c) {
alpar@1272: 	Base::insert(std::make_pair(v, c));
alpar@1272:       }
alpar@1272:       ///\e
alpar@1273:       Value &constComp() { return const_comp; }
alpar@1272:       ///\e
alpar@1273:       const Value &constComp() const { return const_comp; }
alpar@1272:       
alpar@1272:       ///Removes the components with zero coefficient.
alpar@1272:       void simplify() {
alpar@1272: 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
alpar@1272: 	  Base::iterator j=i;
alpar@1272: 	  ++j;
alpar@1272: 	  if ((*i).second==0) Base::erase(i);
deba@2085: 	  i=j;
alpar@1272: 	}
alpar@1272:       }
alpar@1273: 
alpar@1771:       ///Removes the coefficients closer to zero than \c tolerance.
alpar@1771:       void simplify(double &tolerance) {
alpar@1771: 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
alpar@1771: 	  Base::iterator j=i;
alpar@1771: 	  ++j;
alpar@1771: 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
deba@2085: 	  i=j;
alpar@1771: 	}
alpar@1771:       }
alpar@1771: 
alpar@1273:       ///Sets all coefficients and the constant component to 0.
alpar@1273:       void clear() {
alpar@1273: 	Base::clear();
alpar@1273: 	const_comp=0;
alpar@1273:       }
alpar@1273: 
alpar@1272:       ///\e
alpar@1272:       Expr &operator+=(const Expr &e) {
alpar@1272: 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
alpar@1272: 	  (*this)[j->first]+=j->second;
alpar@1272: 	const_comp+=e.const_comp;
alpar@1272: 	return *this;
alpar@1272:       }
alpar@1272:       ///\e
alpar@1272:       Expr &operator-=(const Expr &e) {
alpar@1272: 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
alpar@1272: 	  (*this)[j->first]-=j->second;
alpar@1272: 	const_comp-=e.const_comp;
alpar@1272: 	return *this;
alpar@1272:       }
alpar@1272:       ///\e
alpar@1273:       Expr &operator*=(const Value &c) {
alpar@1272: 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
alpar@1272: 	  j->second*=c;
alpar@1272: 	const_comp*=c;
alpar@1272: 	return *this;
alpar@1272:       }
alpar@1272:       ///\e
alpar@1273:       Expr &operator/=(const Value &c) {
alpar@1272: 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
alpar@1272: 	  j->second/=c;
alpar@1272: 	const_comp/=c;
alpar@1272: 	return *this;
alpar@1272:       }
alpar@1272:     };
alpar@1272:     
alpar@1264:     ///Linear constraint
alpar@1328: 
alpar@1364:     ///This data stucture represents a linear constraint in the LP.
alpar@1364:     ///Basically it is a linear expression with a lower or an upper bound
alpar@1364:     ///(or both). These parts of the constraint can be obtained by the member
alpar@1364:     ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
alpar@1364:     ///respectively.
alpar@1364:     ///There are two ways to construct a constraint.
alpar@1364:     ///- You can set the linear expression and the bounds directly
alpar@1364:     ///  by the functions above.
alpar@1364:     ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
alpar@1364:     ///  are defined between expressions, or even between constraints whenever
alpar@1364:     ///  it makes sense. Therefore if \c e and \c f are linear expressions and
alpar@1364:     ///  \c s and \c t are numbers, then the followings are valid expressions
alpar@1364:     ///  and thus they can be used directly e.g. in \ref addRow() whenever
alpar@1364:     ///  it makes sense.
alpar@1908:     ///\code
alpar@1364:     ///  e<=s
alpar@1364:     ///  e<=f
alpar@1908:     ///  e==f
alpar@1364:     ///  s<=e<=t
alpar@1364:     ///  e>=t
alpar@1908:     ///\endcode
alpar@1364:     ///\warning The validity of a constraint is checked only at run time, so
alpar@1364:     ///e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will compile, but will throw a
alpar@1364:     ///\ref LogicError exception.
alpar@1272:     class Constr
alpar@1272:     {
alpar@1272:     public:
alpar@1272:       typedef LpSolverBase::Expr Expr;
alpar@1273:       typedef Expr::Key Key;
alpar@1273:       typedef Expr::Value Value;
alpar@1272:       
alpar@1364: //       static const Value INF;
alpar@1364: //       static const Value NaN;
alpar@1364: 
alpar@1273:     protected:
alpar@1273:       Expr _expr;
alpar@1273:       Value _lb,_ub;
alpar@1273:     public:
alpar@1273:       ///\e
alpar@1273:       Constr() : _expr(), _lb(NaN), _ub(NaN) {}
alpar@1273:       ///\e
alpar@1273:       Constr(Value lb,const Expr &e,Value ub) :
alpar@1273: 	_expr(e), _lb(lb), _ub(ub) {}
alpar@1273:       ///\e
alpar@1273:       Constr(const Expr &e,Value ub) : 
alpar@1273: 	_expr(e), _lb(NaN), _ub(ub) {}
alpar@1273:       ///\e
alpar@1273:       Constr(Value lb,const Expr &e) :
alpar@1273: 	_expr(e), _lb(lb), _ub(NaN) {}
alpar@1273:       ///\e
alpar@1272:       Constr(const Expr &e) : 
alpar@1273: 	_expr(e), _lb(NaN), _ub(NaN) {}
alpar@1273:       ///\e
alpar@1273:       void clear() 
alpar@1273:       {
alpar@1273: 	_expr.clear();
alpar@1273: 	_lb=_ub=NaN;
alpar@1273:       }
alpar@1364: 
alpar@1364:       ///Reference to the linear expression 
alpar@1273:       Expr &expr() { return _expr; }
alpar@1364:       ///Cont reference to the linear expression 
alpar@1273:       const Expr &expr() const { return _expr; }
alpar@1364:       ///Reference to the lower bound.
alpar@1364: 
alpar@1364:       ///\return
alpar@1536:       ///- \ref INF "INF": the constraint is lower unbounded.
alpar@1536:       ///- \ref NaN "NaN": lower bound has not been set.
alpar@1364:       ///- finite number: the lower bound
alpar@1273:       Value &lowerBound() { return _lb; }
alpar@1364:       ///The const version of \ref lowerBound()
alpar@1273:       const Value &lowerBound() const { return _lb; }
alpar@1364:       ///Reference to the upper bound.
alpar@1364: 
alpar@1364:       ///\return
alpar@1536:       ///- \ref INF "INF": the constraint is upper unbounded.
alpar@1536:       ///- \ref NaN "NaN": upper bound has not been set.
alpar@1364:       ///- finite number: the upper bound
alpar@1273:       Value &upperBound() { return _ub; }
alpar@1364:       ///The const version of \ref upperBound()
alpar@1273:       const Value &upperBound() const { return _ub; }
alpar@1364:       ///Is the constraint lower bounded?
alpar@1295:       bool lowerBounded() const { 
alpar@1295: 	using namespace std;
alpar@1397: 	return finite(_lb);
alpar@1295:       }
alpar@1364:       ///Is the constraint upper bounded?
alpar@1295:       bool upperBounded() const {
alpar@1295: 	using namespace std;
alpar@1397: 	return finite(_ub);
alpar@1295:       }
alpar@1272:     };
alpar@1272:     
alpar@1445:     ///Linear expression of rows
alpar@1445:     
alpar@1445:     ///This data structure represents a column of the matrix,
alpar@1445:     ///thas is it strores a linear expression of the dual variables
alpar@1445:     ///(\ref Row "Row"s).
alpar@1445:     ///
alpar@1445:     ///There are several ways to access and modify the contents of this
alpar@1445:     ///container.
alpar@1445:     ///- Its it fully compatible with \c std::map<Row,double>, so for expamle
alpar@1445:     ///if \c e is an DualExpr and \c v
alpar@1445:     ///and \c w are of type \ref Row, then you can
alpar@1445:     ///read and modify the coefficients like
alpar@1445:     ///these.
alpar@1445:     ///\code
alpar@1445:     ///e[v]=5;
alpar@1445:     ///e[v]+=12;
alpar@1445:     ///e.erase(v);
alpar@1445:     ///\endcode
alpar@1445:     ///or you can also iterate through its elements.
alpar@1445:     ///\code
alpar@1445:     ///double s=0;
alpar@1445:     ///for(LpSolverBase::DualExpr::iterator i=e.begin();i!=e.end();++i)
alpar@1445:     ///  s+=i->second;
alpar@1445:     ///\endcode
alpar@1445:     ///(This code computes the sum of all coefficients).
alpar@1445:     ///- Numbers (<tt>double</tt>'s)
alpar@1445:     ///and variables (\ref Row "Row"s) directly convert to an
alpar@1908:     ///\ref DualExpr and the usual linear operations are defined, so
alpar@1445:     ///\code
alpar@1445:     ///v+w
alpar@1445:     ///2*v-3.12*(v-w/2)
alpar@1445:     ///v*2.1+(3*v+(v*12+w)*3)/2
alpar@1445:     ///\endcode
alpar@1445:     ///are valid \ref DualExpr "DualExpr"essions.
alpar@1445:     ///The usual assignment operations are also defined.
alpar@1445:     ///\code
alpar@1445:     ///e=v+w;
alpar@1445:     ///e+=2*v-3.12*(v-w/2);
alpar@1445:     ///e*=3.4;
alpar@1445:     ///e/=5;
alpar@1445:     ///\endcode
alpar@1445:     ///
alpar@1445:     ///\sa Expr
alpar@1445:     ///
alpar@1445:     class DualExpr : public std::map<Row,Value>
alpar@1445:     {
alpar@1445:     public:
alpar@1445:       typedef LpSolverBase::Row Key; 
alpar@1445:       typedef LpSolverBase::Value Value;
alpar@1445:       
alpar@1445:     protected:
alpar@1445:       typedef std::map<Row,Value> Base;
alpar@1445:       
alpar@1445:     public:
alpar@1445:       typedef True IsLinExpression;
alpar@1445:       ///\e
alpar@1445:       DualExpr() : Base() { }
alpar@1445:       ///\e
alpar@1445:       DualExpr(const Key &v) {
alpar@1445: 	Base::insert(std::make_pair(v, 1));
alpar@1445:       }
alpar@1445:       ///\e
alpar@1445:       void set(const Key &v,const Value &c) {
alpar@1445: 	Base::insert(std::make_pair(v, c));
alpar@1445:       }
alpar@1445:       
alpar@1445:       ///Removes the components with zero coefficient.
alpar@1445:       void simplify() {
alpar@1445: 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
alpar@1445: 	  Base::iterator j=i;
alpar@1445: 	  ++j;
alpar@1445: 	  if ((*i).second==0) Base::erase(i);
deba@2085: 	  i=j;
alpar@1445: 	}
alpar@1445:       }
alpar@1445: 
alpar@1771:       ///Removes the coefficients closer to zero than \c tolerance.
alpar@1771:       void simplify(double &tolerance) {
alpar@1771: 	for (Base::iterator i=Base::begin(); i!=Base::end();) {
alpar@1771: 	  Base::iterator j=i;
alpar@1771: 	  ++j;
alpar@1771: 	  if (std::fabs((*i).second)<tolerance) Base::erase(i);
deba@2085: 	  i=j;
alpar@1771: 	}
alpar@1771:       }
alpar@1771: 
alpar@1771: 
alpar@1445:       ///Sets all coefficients to 0.
alpar@1445:       void clear() {
alpar@1445: 	Base::clear();
alpar@1445:       }
alpar@1445: 
alpar@1445:       ///\e
alpar@1445:       DualExpr &operator+=(const DualExpr &e) {
alpar@1445: 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
alpar@1445: 	  (*this)[j->first]+=j->second;
alpar@1445: 	return *this;
alpar@1445:       }
alpar@1445:       ///\e
alpar@1445:       DualExpr &operator-=(const DualExpr &e) {
alpar@1445: 	for (Base::const_iterator j=e.begin(); j!=e.end(); ++j)
alpar@1445: 	  (*this)[j->first]-=j->second;
alpar@1445: 	return *this;
alpar@1445:       }
alpar@1445:       ///\e
alpar@1445:       DualExpr &operator*=(const Value &c) {
alpar@1445: 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
alpar@1445: 	  j->second*=c;
alpar@1445: 	return *this;
alpar@1445:       }
alpar@1445:       ///\e
alpar@1445:       DualExpr &operator/=(const Value &c) {
alpar@1445: 	for (Base::iterator j=Base::begin(); j!=Base::end(); ++j)
alpar@1445: 	  j->second/=c;
alpar@1445: 	return *this;
alpar@1445:       }
alpar@1445:     };
alpar@1445:     
alpar@1253: 
alpar@1253:   protected:
alpar@1253:     _FixId rows;
alpar@1253:     _FixId cols;
athos@1246: 
alpar@1323:     //Abstract virtual functions
alpar@1364:     virtual LpSolverBase &_newLp() = 0;
athos@1436:     virtual LpSolverBase &_copyLp(){
athos@1436:       ///\todo This should be implemented here, too,  when we have problem retrieving routines. It can be overriden.
athos@1436: 
athos@1436:       //Starting:
athos@1436:       LpSolverBase & newlp(_newLp());
athos@1436:       return newlp;
athos@1436:       //return *(LpSolverBase*)0;
athos@1436:     };
alpar@1364: 
athos@1246:     virtual int _addCol() = 0;
athos@1246:     virtual int _addRow() = 0;
athos@1542:     virtual void _eraseCol(int col) = 0;
athos@1542:     virtual void _eraseRow(int row) = 0;
alpar@1895:     virtual void _getColName(int col,       std::string & name) = 0;
alpar@1895:     virtual void _setColName(int col, const std::string & name) = 0;
athos@1246:     virtual void _setRowCoeffs(int i, 
athos@1251: 			       int length,
athos@1247:                                int  const * indices, 
athos@1247:                                Value  const * values ) = 0;
athos@1246:     virtual void _setColCoeffs(int i, 
athos@1251: 			       int length,
athos@1247:                                int  const * indices, 
athos@1247:                                Value  const * values ) = 0;
athos@1431:     virtual void _setCoeff(int row, int col, Value value) = 0;
alpar@1294:     virtual void _setColLowerBound(int i, Value value) = 0;
alpar@1294:     virtual void _setColUpperBound(int i, Value value) = 0;
athos@1405: //     virtual void _setRowLowerBound(int i, Value value) = 0;
athos@1405: //     virtual void _setRowUpperBound(int i, Value value) = 0;
athos@1379:     virtual void _setRowBounds(int i, Value lower, Value upper) = 0;
alpar@1294:     virtual void _setObjCoeff(int i, Value obj_coef) = 0;
athos@1377:     virtual void _clearObj()=0;
athos@1377: //     virtual void _setObj(int length,
athos@1377: //                          int  const * indices, 
athos@1377: //                          Value  const * values ) = 0;
alpar@1303:     virtual SolveExitStatus _solve() = 0;
alpar@1294:     virtual Value _getPrimal(int i) = 0;
marci@1787:     virtual Value _getDual(int i) = 0;
alpar@1312:     virtual Value _getPrimalValue() = 0;
marci@1840:     virtual bool _isBasicCol(int i) = 0;
alpar@1312:     virtual SolutionStatus _getPrimalStatus() = 0;
athos@1460:     virtual SolutionStatus _getDualStatus() = 0;
athos@1460:     ///\todo This could be implemented here, too, using _getPrimalStatus() and
athos@1460:     ///_getDualStatus()
athos@1460:     virtual ProblemTypes _getProblemType() = 0;
athos@1460: 
alpar@1312:     virtual void _setMax() = 0;
alpar@1312:     virtual void _setMin() = 0;
alpar@1312:     
alpar@1323:     //Own protected stuff
alpar@1323:     
alpar@1323:     //Constant component of the objective function
alpar@1323:     Value obj_const_comp;
alpar@1323:     
athos@1377: 
athos@1377: 
alpar@1323:     
alpar@1253:   public:
alpar@1253: 
alpar@1323:     ///\e
alpar@1323:     LpSolverBase() : obj_const_comp(0) {}
alpar@1253: 
alpar@1253:     ///\e
alpar@1253:     virtual ~LpSolverBase() {}
alpar@1253: 
alpar@1364:     ///Creates a new LP problem
alpar@1364:     LpSolverBase &newLp() {return _newLp();}
alpar@1381:     ///Makes a copy of the LP problem
alpar@1364:     LpSolverBase &copyLp() {return _copyLp();}
alpar@1364:     
alpar@1612:     ///\name Build up and modify the LP
alpar@1263: 
alpar@1263:     ///@{
alpar@1263: 
alpar@1253:     ///Add a new empty column (i.e a new variable) to the LP
alpar@1253:     Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;}
alpar@1263: 
alpar@1294:     ///\brief Adds several new columns
alpar@1294:     ///(i.e a variables) at once
alpar@1256:     ///
alpar@1273:     ///This magic function takes a container as its argument
alpar@1256:     ///and fills its elements
alpar@1256:     ///with new columns (i.e. variables)
alpar@1273:     ///\param t can be
alpar@1273:     ///- a standard STL compatible iterable container with
alpar@1273:     ///\ref Col as its \c values_type
alpar@1273:     ///like
alpar@1273:     ///\code
alpar@1273:     ///std::vector<LpSolverBase::Col>
alpar@1273:     ///std::list<LpSolverBase::Col>
alpar@1273:     ///\endcode
alpar@1273:     ///- a standard STL compatible iterable container with
alpar@1273:     ///\ref Col as its \c mapped_type
alpar@1273:     ///like
alpar@1273:     ///\code
alpar@1364:     ///std::map<AnyType,LpSolverBase::Col>
alpar@1273:     ///\endcode
alpar@1273:     ///- an iterable lemon \ref concept::WriteMap "write map" like 
alpar@1273:     ///\code
alpar@1273:     ///ListGraph::NodeMap<LpSolverBase::Col>
alpar@1273:     ///ListGraph::EdgeMap<LpSolverBase::Col>
alpar@1273:     ///\endcode
alpar@1256:     ///\return The number of the created column.
alpar@1256: #ifdef DOXYGEN
alpar@1256:     template<class T>
alpar@1256:     int addColSet(T &t) { return 0;} 
alpar@1256: #else
alpar@1256:     template<class T>
alpar@1256:     typename enable_if<typename T::value_type::LpSolverCol,int>::type
alpar@1256:     addColSet(T &t,dummy<0> = 0) {
alpar@1256:       int s=0;
alpar@1256:       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
alpar@1256:       return s;
alpar@1256:     }
alpar@1256:     template<class T>
alpar@1256:     typename enable_if<typename T::value_type::second_type::LpSolverCol,
alpar@1256: 		       int>::type
alpar@1256:     addColSet(T &t,dummy<1> = 1) { 
alpar@1256:       int s=0;
alpar@1256:       for(typename T::iterator i=t.begin();i!=t.end();++i) {
alpar@1256: 	i->second=addCol();
alpar@1256: 	s++;
alpar@1256:       }
alpar@1256:       return s;
alpar@1256:     }
alpar@1272:     template<class T>
deba@1810:     typename enable_if<typename T::MapIt::Value::LpSolverCol,
alpar@1272: 		       int>::type
alpar@1272:     addColSet(T &t,dummy<2> = 2) { 
alpar@1272:       int s=0;
deba@1810:       for(typename T::MapIt i(t); i!=INVALID; ++i)
alpar@1272: 	{
deba@1810: 	  i.set(addCol());
alpar@1272: 	  s++;
alpar@1272: 	}
alpar@1272:       return s;
alpar@1272:     }
alpar@1256: #endif
alpar@1263: 
alpar@1445:     ///Set a column (i.e a dual constraint) of the LP
alpar@1258: 
alpar@1445:     ///\param c is the column to be modified
alpar@1445:     ///\param e is a dual linear expression (see \ref DualExpr)
alpar@1445:     ///a better one.
alpar@1899:     void col(Col c,const DualExpr &e) {
alpar@1445:       std::vector<int> indices;
alpar@1445:       std::vector<Value> values;
alpar@1445:       indices.push_back(0);
alpar@1445:       values.push_back(0);
alpar@1445:       for(DualExpr::const_iterator i=e.begin(); i!=e.end(); ++i)
alpar@1899: 	if((*i).second!=0) {
marci@1787: 	  indices.push_back(rows.floatingId((*i).first.id));
alpar@1445: 	  values.push_back((*i).second);
alpar@1445: 	}
alpar@1445:       _setColCoeffs(cols.floatingId(c.id),indices.size()-1,
alpar@1445: 		    &indices[0],&values[0]);
alpar@1445:     }
alpar@1445: 
alpar@1445:     ///Add a new column to the LP
alpar@1445: 
alpar@1445:     ///\param e is a dual linear expression (see \ref DualExpr)
alpar@1445:     ///\param obj is the corresponding component of the objective
alpar@1445:     ///function. It is 0 by default.
alpar@1445:     ///\return The created column.
alpar@1493:     Col addCol(const DualExpr &e, Value obj=0) {
alpar@1445:       Col c=addCol();
alpar@1899:       col(c,e);
alpar@1493:       objCoeff(c,obj);
alpar@1445:       return c;
alpar@1445:     }
alpar@1445: 
alpar@1445:     ///Add a new empty row (i.e a new constraint) to the LP
alpar@1445: 
alpar@1445:     ///This function adds a new empty row (i.e a new constraint) to the LP.
alpar@1258:     ///\return The created row
alpar@1253:     Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;}
alpar@1253: 
athos@1542:     ///\brief Add several new rows
athos@1542:     ///(i.e a constraints) at once
alpar@1445:     ///
alpar@1445:     ///This magic function takes a container as its argument
alpar@1445:     ///and fills its elements
alpar@1445:     ///with new row (i.e. variables)
alpar@1445:     ///\param t can be
alpar@1445:     ///- a standard STL compatible iterable container with
alpar@1445:     ///\ref Row as its \c values_type
alpar@1445:     ///like
alpar@1445:     ///\code
alpar@1445:     ///std::vector<LpSolverBase::Row>
alpar@1445:     ///std::list<LpSolverBase::Row>
alpar@1445:     ///\endcode
alpar@1445:     ///- a standard STL compatible iterable container with
alpar@1445:     ///\ref Row as its \c mapped_type
alpar@1445:     ///like
alpar@1445:     ///\code
alpar@1445:     ///std::map<AnyType,LpSolverBase::Row>
alpar@1445:     ///\endcode
alpar@1445:     ///- an iterable lemon \ref concept::WriteMap "write map" like 
alpar@1445:     ///\code
alpar@1445:     ///ListGraph::NodeMap<LpSolverBase::Row>
alpar@1445:     ///ListGraph::EdgeMap<LpSolverBase::Row>
alpar@1445:     ///\endcode
alpar@1445:     ///\return The number of rows created.
alpar@1445: #ifdef DOXYGEN
alpar@1445:     template<class T>
alpar@1445:     int addRowSet(T &t) { return 0;} 
alpar@1445: #else
alpar@1445:     template<class T>
alpar@1445:     typename enable_if<typename T::value_type::LpSolverRow,int>::type
alpar@1445:     addRowSet(T &t,dummy<0> = 0) {
alpar@1445:       int s=0;
alpar@1445:       for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
alpar@1445:       return s;
alpar@1445:     }
alpar@1445:     template<class T>
alpar@1445:     typename enable_if<typename T::value_type::second_type::LpSolverRow,
alpar@1445: 		       int>::type
alpar@1445:     addRowSet(T &t,dummy<1> = 1) { 
alpar@1445:       int s=0;
alpar@1445:       for(typename T::iterator i=t.begin();i!=t.end();++i) {
alpar@1445: 	i->second=addRow();
alpar@1445: 	s++;
alpar@1445:       }
alpar@1445:       return s;
alpar@1445:     }
alpar@1445:     template<class T>
deba@1810:     typename enable_if<typename T::MapIt::Value::LpSolverRow,
alpar@1445: 		       int>::type
alpar@1445:     addRowSet(T &t,dummy<2> = 2) { 
alpar@1445:       int s=0;
deba@1810:       for(typename T::MapIt i(t); i!=INVALID; ++i)
alpar@1445: 	{
deba@1810: 	  i.set(addRow());
alpar@1445: 	  s++;
alpar@1445: 	}
alpar@1445:       return s;
alpar@1445:     }
alpar@1445: #endif
alpar@1445: 
alpar@1445:     ///Set a row (i.e a constraint) of the LP
alpar@1253: 
alpar@1258:     ///\param r is the row to be modified
alpar@1259:     ///\param l is lower bound (-\ref INF means no bound)
alpar@1258:     ///\param e is a linear expression (see \ref Expr)
alpar@1259:     ///\param u is the upper bound (\ref INF means no bound)
alpar@1253:     ///\bug This is a temportary function. The interface will change to
alpar@1253:     ///a better one.
alpar@1328:     ///\todo Option to control whether a constraint with a single variable is
alpar@1328:     ///added or not.
alpar@1895:     void row(Row r, Value l,const Expr &e, Value u) {
alpar@1253:       std::vector<int> indices;
alpar@1253:       std::vector<Value> values;
alpar@1253:       indices.push_back(0);
alpar@1253:       values.push_back(0);
alpar@1258:       for(Expr::const_iterator i=e.begin(); i!=e.end(); ++i)
alpar@1256: 	if((*i).second!=0) { ///\bug EPSILON would be necessary here!!!
alpar@1256: 	  indices.push_back(cols.floatingId((*i).first.id));
alpar@1256: 	  values.push_back((*i).second);
alpar@1256: 	}
alpar@1253:       _setRowCoeffs(rows.floatingId(r.id),indices.size()-1,
alpar@1253: 		    &indices[0],&values[0]);
athos@1405: //       _setRowLowerBound(rows.floatingId(r.id),l-e.constComp());
athos@1405: //       _setRowUpperBound(rows.floatingId(r.id),u-e.constComp());
athos@1405:        _setRowBounds(rows.floatingId(r.id),l-e.constComp(),u-e.constComp());
alpar@1258:     }
alpar@1258: 
alpar@1445:     ///Set a row (i.e a constraint) of the LP
alpar@1264: 
alpar@1264:     ///\param r is the row to be modified
alpar@1264:     ///\param c is a linear expression (see \ref Constr)
alpar@1895:     void row(Row r, const Constr &c) {
alpar@1895:       row(r,
alpar@1275: 	     c.lowerBounded()?c.lowerBound():-INF,
alpar@1273: 	     c.expr(),
alpar@1275: 	     c.upperBounded()?c.upperBound():INF);
alpar@1264:     }
alpar@1264: 
alpar@1445:     ///Add a new row (i.e a new constraint) to the LP
alpar@1258: 
alpar@1259:     ///\param l is the lower bound (-\ref INF means no bound)
alpar@1258:     ///\param e is a linear expression (see \ref Expr)
alpar@1259:     ///\param u is the upper bound (\ref INF means no bound)
alpar@1258:     ///\return The created row.
alpar@1258:     ///\bug This is a temportary function. The interface will change to
alpar@1258:     ///a better one.
alpar@1258:     Row addRow(Value l,const Expr &e, Value u) {
alpar@1258:       Row r=addRow();
alpar@1895:       row(r,l,e,u);
alpar@1253:       return r;
alpar@1253:     }
alpar@1253: 
alpar@1445:     ///Add a new row (i.e a new constraint) to the LP
alpar@1264: 
alpar@1264:     ///\param c is a linear expression (see \ref Constr)
alpar@1264:     ///\return The created row.
alpar@1264:     Row addRow(const Constr &c) {
alpar@1264:       Row r=addRow();
alpar@1895:       row(r,c);
alpar@1264:       return r;
alpar@1264:     }
athos@1542:     ///Erase a coloumn (i.e a variable) from the LP
athos@1542: 
athos@1542:     ///\param c is the coloumn to be deleted
athos@1542:     ///\todo Please check this
athos@1542:     void eraseCol(Col c) {
athos@1542:       _eraseCol(cols.floatingId(c.id));
athos@1542:       cols.erase(c.id);
athos@1542:     }
athos@1542:     ///Erase a  row (i.e a constraint) from the LP
athos@1542: 
athos@1542:     ///\param r is the row to be deleted
athos@1542:     ///\todo Please check this
athos@1542:     void eraseRow(Row r) {
athos@1542:       _eraseRow(rows.floatingId(r.id));
athos@1542:       rows.erase(r.id);
athos@1542:     }
alpar@1264: 
alpar@1895:     /// Get the name of a column
alpar@1895:     
alpar@1895:     ///\param c is the coresponding coloumn 
alpar@1895:     ///\return The name of the colunm
alpar@1895:     std::string ColName(Col c){
alpar@1895:       std::string name;
alpar@1895:       _getColName(cols.floatingId(c.id), name);
alpar@1895:       return name;
alpar@1895:     }
alpar@1895:     
alpar@1895:     /// Set the name of a column
alpar@1895:     
alpar@1895:     ///\param c is the coresponding coloumn 
alpar@1895:     ///\param name The name to be given
alpar@1895:     void ColName(Col c, const std::string & name){
alpar@1895:       _setColName(cols.floatingId(c.id), name);
alpar@1895:     }
alpar@1895:     
alpar@1895:     /// Set an element of the coefficient matrix of the LP
athos@1436: 
athos@1436:     ///\param r is the row of the element to be modified
athos@1436:     ///\param c is the coloumn of the element to be modified
athos@1436:     ///\param val is the new value of the coefficient
alpar@1895: 
alpar@1895:     void Coeff(Row r, Col c, Value val){
athos@1436:       _setCoeff(rows.floatingId(r.id),cols.floatingId(c.id), val);
athos@1436:     }
athos@1436: 
alpar@1253:     /// Set the lower bound of a column (i.e a variable)
alpar@1253: 
alpar@1895:     /// The lower bound of a variable (column) has to be given by an 
alpar@1253:     /// extended number of type Value, i.e. a finite number of type 
alpar@1259:     /// Value or -\ref INF.
alpar@1293:     void colLowerBound(Col c, Value value) {
alpar@1253:       _setColLowerBound(cols.floatingId(c.id),value);
alpar@1253:     }
alpar@1895:     
alpar@1895:     ///\brief Set the lower bound of  several columns
alpar@1895:     ///(i.e a variables) at once
alpar@1895:     ///
alpar@1895:     ///This magic function takes a container as its argument
alpar@1895:     ///and applies the function on all of its elements.
alpar@1895:     /// The lower bound of a variable (column) has to be given by an 
alpar@1895:     /// extended number of type Value, i.e. a finite number of type 
alpar@1895:     /// Value or -\ref INF.
alpar@1895: #ifdef DOXYGEN
alpar@1895:     template<class T>
alpar@1895:     void colLowerBound(T &t, Value value) { return 0;} 
alpar@1895: #else
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::value_type::LpSolverCol,void>::type
alpar@1895:     colLowerBound(T &t, Value value,dummy<0> = 0) {
alpar@1895:       for(typename T::iterator i=t.begin();i!=t.end();++i) {
alpar@1895: 	colLowerBound(*i, value);
alpar@1895:       }
alpar@1895:     }
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::value_type::second_type::LpSolverCol,
alpar@1895: 		       void>::type
alpar@1895:     colLowerBound(T &t, Value value,dummy<1> = 1) { 
alpar@1895:       for(typename T::iterator i=t.begin();i!=t.end();++i) {
alpar@1895: 	colLowerBound(i->second, value);
alpar@1895:       }
alpar@1895:     }
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::MapIt::Value::LpSolverCol,
alpar@1895: 		       void>::type
alpar@1895:     colLowerBound(T &t, Value value,dummy<2> = 2) { 
alpar@1895:       for(typename T::MapIt i(t); i!=INVALID; ++i){
alpar@1895: 	colLowerBound(*i, value);
alpar@1895:       }
alpar@1895:     }
alpar@1895: #endif
alpar@1895:     
alpar@1253:     /// Set the upper bound of a column (i.e a variable)
alpar@1253: 
alpar@1293:     /// The upper bound of a variable (column) has to be given by an 
alpar@1253:     /// extended number of type Value, i.e. a finite number of type 
alpar@1259:     /// Value or \ref INF.
alpar@1293:     void colUpperBound(Col c, Value value) {
alpar@1253:       _setColUpperBound(cols.floatingId(c.id),value);
alpar@1253:     };
alpar@1895: 
alpar@1895:     ///\brief Set the lower bound of  several columns
alpar@1895:     ///(i.e a variables) at once
alpar@1895:     ///
alpar@1895:     ///This magic function takes a container as its argument
alpar@1895:     ///and applies the function on all of its elements.
alpar@1895:     /// The upper bound of a variable (column) has to be given by an 
alpar@1895:     /// extended number of type Value, i.e. a finite number of type 
alpar@1895:     /// Value or \ref INF.
alpar@1895: #ifdef DOXYGEN
alpar@1895:     template<class T>
alpar@1895:     void colUpperBound(T &t, Value value) { return 0;} 
alpar@1895: #else
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::value_type::LpSolverCol,void>::type
alpar@1895:     colUpperBound(T &t, Value value,dummy<0> = 0) {
alpar@1895:       for(typename T::iterator i=t.begin();i!=t.end();++i) {
alpar@1895: 	colUpperBound(*i, value);
alpar@1895:       }
alpar@1895:     }
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::value_type::second_type::LpSolverCol,
alpar@1895: 		       void>::type
alpar@1895:     colUpperBound(T &t, Value value,dummy<1> = 1) { 
alpar@1895:       for(typename T::iterator i=t.begin();i!=t.end();++i) {
alpar@1895: 	colUpperBound(i->second, value);
alpar@1895:       }
alpar@1895:     }
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::MapIt::Value::LpSolverCol,
alpar@1895: 		       void>::type
alpar@1895:     colUpperBound(T &t, Value value,dummy<2> = 2) { 
alpar@1895:       for(typename T::MapIt i(t); i!=INVALID; ++i){
alpar@1895: 	colUpperBound(*i, value);
alpar@1895:       }
alpar@1895:     }
alpar@1895: #endif
alpar@1895: 
alpar@1293:     /// Set the lower and the upper bounds of a column (i.e a variable)
alpar@1293: 
alpar@1293:     /// The lower and the upper bounds of
alpar@1293:     /// a variable (column) have to be given by an 
alpar@1293:     /// extended number of type Value, i.e. a finite number of type 
alpar@1293:     /// Value, -\ref INF or \ref INF.
alpar@1293:     void colBounds(Col c, Value lower, Value upper) {
alpar@1293:       _setColLowerBound(cols.floatingId(c.id),lower);
alpar@1293:       _setColUpperBound(cols.floatingId(c.id),upper);
alpar@1293:     }
alpar@1293:     
alpar@1895:     ///\brief Set the lower and the upper bound of several columns
alpar@1895:     ///(i.e a variables) at once
alpar@1895:     ///
alpar@1895:     ///This magic function takes a container as its argument
alpar@1895:     ///and applies the function on all of its elements.
alpar@1895:     /// The lower and the upper bounds of
alpar@1895:     /// a variable (column) have to be given by an 
alpar@1895:     /// extended number of type Value, i.e. a finite number of type 
alpar@1895:     /// Value, -\ref INF or \ref INF.
alpar@1895: #ifdef DOXYGEN
alpar@1895:     template<class T>
alpar@1895:     void colBounds(T &t, Value lower, Value upper) { return 0;} 
alpar@1895: #else
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::value_type::LpSolverCol,void>::type
alpar@1895:     colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
alpar@1895:       for(typename T::iterator i=t.begin();i!=t.end();++i) {
alpar@1895: 	colBounds(*i, lower, upper);
alpar@1895:       }
alpar@1895:     }
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::value_type::second_type::LpSolverCol,
alpar@1895: 		       void>::type
alpar@1895:     colBounds(T &t, Value lower, Value upper,dummy<1> = 1) { 
alpar@1895:       for(typename T::iterator i=t.begin();i!=t.end();++i) {
alpar@1895: 	colBounds(i->second, lower, upper);
alpar@1895:       }
alpar@1895:     }
alpar@1895:     template<class T>
alpar@1895:     typename enable_if<typename T::MapIt::Value::LpSolverCol,
alpar@1895: 		       void>::type
alpar@1895:     colBounds(T &t, Value lower, Value upper,dummy<2> = 2) { 
alpar@1895:       for(typename T::MapIt i(t); i!=INVALID; ++i){
alpar@1895: 	colBounds(*i, lower, upper);
alpar@1895:       }
alpar@1895:     }
alpar@1895: #endif
alpar@1895:     
athos@1405: //     /// Set the lower bound of a row (i.e a constraint)
alpar@1253: 
athos@1405: //     /// The lower bound of a linear expression (row) has to be given by an 
athos@1405: //     /// extended number of type Value, i.e. a finite number of type 
athos@1405: //     /// Value or -\ref INF.
athos@1405: //     void rowLowerBound(Row r, Value value) {
athos@1405: //       _setRowLowerBound(rows.floatingId(r.id),value);
athos@1405: //     };
athos@1405: //     /// Set the upper bound of a row (i.e a constraint)
alpar@1253: 
athos@1405: //     /// The upper bound of a linear expression (row) has to be given by an 
athos@1405: //     /// extended number of type Value, i.e. a finite number of type 
athos@1405: //     /// Value or \ref INF.
athos@1405: //     void rowUpperBound(Row r, Value value) {
athos@1405: //       _setRowUpperBound(rows.floatingId(r.id),value);
athos@1405: //     };
athos@1405: 
athos@1405:     /// Set the lower and the upper bounds of a row (i.e a constraint)
alpar@1293: 
alpar@1293:     /// The lower and the upper bounds of
alpar@1293:     /// a constraint (row) have to be given by an 
alpar@1293:     /// extended number of type Value, i.e. a finite number of type 
alpar@1293:     /// Value, -\ref INF or \ref INF.
alpar@1293:     void rowBounds(Row c, Value lower, Value upper) {
athos@1379:       _setRowBounds(rows.floatingId(c.id),lower, upper);
athos@1379:       // _setRowUpperBound(rows.floatingId(c.id),upper);
alpar@1293:     }
alpar@1293:     
alpar@1253:     ///Set an element of the objective function
alpar@1293:     void objCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); };
alpar@1253:     ///Set the objective function
alpar@1253:     
alpar@1253:     ///\param e is a linear expression of type \ref Expr.
alpar@1895:     ///\bug Is should be called obj()
alpar@1253:     void setObj(Expr e) {
athos@1377:       _clearObj();
alpar@1253:       for (Expr::iterator i=e.begin(); i!=e.end(); ++i)
alpar@1293: 	objCoeff((*i).first,(*i).second);
alpar@1323:       obj_const_comp=e.constComp();
alpar@1253:     }
alpar@1263: 
alpar@1312:     ///Maximize
alpar@1312:     void max() { _setMax(); }
alpar@1312:     ///Minimize
alpar@1312:     void min() { _setMin(); }
alpar@1312: 
alpar@1312:     
alpar@1263:     ///@}
alpar@1263: 
alpar@1263: 
alpar@1294:     ///\name Solve the LP
alpar@1263: 
alpar@1263:     ///@{
alpar@1263: 
athos@1458:     ///\e Solve the LP problem at hand
athos@1458:     ///
deba@2026:     ///\return The result of the optimization procedure. Possible 
deba@2026:     ///values and their meanings can be found in the documentation of 
deba@2026:     ///\ref SolveExitStatus.
athos@1458:     ///
athos@1458:     ///\todo Which method is used to solve the problem
alpar@1303:     SolveExitStatus solve() { return _solve(); }
alpar@1263:     
alpar@1263:     ///@}
alpar@1263:     
alpar@1294:     ///\name Obtain the solution
alpar@1263: 
alpar@1263:     ///@{
alpar@1263: 
athos@1460:     /// The status of the primal problem (the original LP problem)
alpar@1312:     SolutionStatus primalStatus() {
alpar@1312:       return _getPrimalStatus();
alpar@1294:     }
alpar@1294: 
athos@1460:     /// The status of the dual (of the original LP) problem 
athos@1460:     SolutionStatus dualStatus() {
athos@1460:       return _getDualStatus();
athos@1460:     }
athos@1460: 
athos@1460:     ///The type of the original LP problem
athos@1462:     ProblemTypes problemType() {
athos@1460:       return _getProblemType();
athos@1460:     }
athos@1460: 
alpar@1294:     ///\e
alpar@1293:     Value primal(Col c) { return _getPrimal(cols.floatingId(c.id)); }
alpar@1263: 
alpar@1312:     ///\e
marci@1787:     Value dual(Row r) { return _getDual(rows.floatingId(r.id)); }
marci@1787: 
marci@1787:     ///\e
marci@1840:     bool isBasicCol(Col c) { return _isBasicCol(cols.floatingId(c.id)); }
marci@1840: 
marci@1840:     ///\e
alpar@1312: 
alpar@1312:     ///\return
alpar@1312:     ///- \ref INF or -\ref INF means either infeasibility or unboundedness
alpar@1312:     /// of the primal problem, depending on whether we minimize or maximize.
alpar@1364:     ///- \ref NaN if no primal solution is found.
alpar@1312:     ///- The (finite) objective value if an optimal solution is found.
alpar@1323:     Value primalValue() { return _getPrimalValue()+obj_const_comp;}
alpar@1263:     ///@}
alpar@1253:     
athos@1248:   };  
athos@1246: 
athos@2144: 
athos@2148:   ///Common base class for MIP solvers
athos@2144:   ///\todo Much more docs
athos@2144:   ///\ingroup gen_opt_group
athos@2144:   class MipSolverBase : virtual public LpSolverBase{
athos@2144:   public:
athos@2144: 
athos@2148:     ///Possible variable (coloumn) types (e.g. real, integer, binary etc.)
athos@2148:     enum ColTypes {
athos@2148:       ///Continuous variable
athos@2148:       REAL = 0,
athos@2148:       ///Integer variable
athos@2148:       INTEGER = 1
athos@2148:       ///\todo No support for other types yet.
athos@2148:     };
athos@2148: 
athos@2148:     ///Sets the type of the given coloumn to the given type
athos@2144:     ///
athos@2148:     ///Sets the type of the given coloumn to the given type.
athos@2148:     void colType(Col c, ColTypes col_type) {
athos@2148:       _colType(cols.floatingId(c.id),col_type);
athos@2144:     }
athos@2144: 
athos@2144:     ///Gives back the type of the column.
athos@2144:     ///
athos@2144:     ///Gives back the type of the column.
athos@2148:     ColTypes colType(Col c){
athos@2148:       return _colType(cols.floatingId(c.id));
athos@2148:     }
athos@2148: 
athos@2148:     ///Sets the type of the given Col to integer or remove that property.
athos@2148:     ///
athos@2148:     ///Sets the type of the given Col to integer or remove that property.
athos@2148:     void integer(Col c, bool enable) {
athos@2148:       if (enable)
athos@2148: 	colType(c,INTEGER);
athos@2148:       else
athos@2148: 	colType(c,REAL);
athos@2148:     }
athos@2148: 
athos@2148:     ///Gives back whether the type of the column is integer or not.
athos@2148:     ///
athos@2148:     ///Gives back the type of the column.
athos@2144:     ///\return true if the column has integer type and false if not.
athos@2144:     bool integer(Col c){
athos@2148:       return (colType(c)==INTEGER);
athos@2144:     }
athos@2144: 
athos@2144:   protected:
athos@2144: 
athos@2148:     virtual ColTypes _colType(int col) = 0;
athos@2148:     virtual void _colType(int col, ColTypes col_type) = 0;
athos@2148: 
athos@2144:   };
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Expr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Expr operator+(const LpSolverBase::Expr &a,
alpar@1272: 				      const LpSolverBase::Expr &b) 
alpar@1272:   {
alpar@1272:     LpSolverBase::Expr tmp(a);
alpar@1766:     tmp+=b;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Expr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Expr operator-(const LpSolverBase::Expr &a,
alpar@1272: 				      const LpSolverBase::Expr &b) 
alpar@1272:   {
alpar@1272:     LpSolverBase::Expr tmp(a);
alpar@1766:     tmp-=b;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Expr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Expr operator*(const LpSolverBase::Expr &a,
alpar@1273: 				      const LpSolverBase::Value &b) 
alpar@1272:   {
alpar@1272:     LpSolverBase::Expr tmp(a);
alpar@1766:     tmp*=b;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272:   
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Expr
alpar@1272:   ///
alpar@1273:   inline LpSolverBase::Expr operator*(const LpSolverBase::Value &a,
alpar@1272: 				      const LpSolverBase::Expr &b) 
alpar@1272:   {
alpar@1272:     LpSolverBase::Expr tmp(b);
alpar@1766:     tmp*=a;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Expr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Expr operator/(const LpSolverBase::Expr &a,
alpar@1273: 				      const LpSolverBase::Value &b) 
alpar@1272:   {
alpar@1272:     LpSolverBase::Expr tmp(a);
alpar@1766:     tmp/=b;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272:   
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
alpar@1272: 					 const LpSolverBase::Expr &f) 
alpar@1272:   {
alpar@1272:     return LpSolverBase::Constr(-LpSolverBase::INF,e-f,0);
alpar@1272:   }
alpar@1272: 
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1273:   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &e,
alpar@1272: 					 const LpSolverBase::Expr &f) 
alpar@1272:   {
alpar@1272:     return LpSolverBase::Constr(e,f);
alpar@1272:   }
alpar@1272: 
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Constr operator<=(const LpSolverBase::Expr &e,
alpar@1273: 					 const LpSolverBase::Value &f) 
alpar@1272:   {
alpar@1272:     return LpSolverBase::Constr(e,f);
alpar@1272:   }
alpar@1272: 
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
alpar@1272: 					 const LpSolverBase::Expr &f) 
alpar@1272:   {
alpar@1272:     return LpSolverBase::Constr(-LpSolverBase::INF,f-e,0);
alpar@1272:   }
alpar@1272: 
alpar@1272: 
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1273:   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &e,
alpar@1272: 					 const LpSolverBase::Expr &f) 
alpar@1272:   {
alpar@1272:     return LpSolverBase::Constr(f,e);
alpar@1272:   }
alpar@1272: 
alpar@1272: 
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Constr operator>=(const LpSolverBase::Expr &e,
alpar@1273: 					 const LpSolverBase::Value &f) 
alpar@1272:   {
alpar@1272:     return LpSolverBase::Constr(f,e);
alpar@1272:   }
alpar@1272: 
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Constr operator==(const LpSolverBase::Expr &e,
alpar@1272: 					 const LpSolverBase::Expr &f) 
alpar@1272:   {
alpar@1272:     return LpSolverBase::Constr(0,e-f,0);
alpar@1272:   }
alpar@1272: 
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1273:   inline LpSolverBase::Constr operator<=(const LpSolverBase::Value &n,
alpar@1272: 					 const LpSolverBase::Constr&c) 
alpar@1272:   {
alpar@1272:     LpSolverBase::Constr tmp(c);
alpar@1273:     ///\todo Create an own exception type.
deba@2026:     if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
alpar@1273:     else tmp.lowerBound()=n;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Constr operator<=(const LpSolverBase::Constr& c,
alpar@1273: 					 const LpSolverBase::Value &n)
alpar@1272:   {
alpar@1272:     LpSolverBase::Constr tmp(c);
alpar@1273:     ///\todo Create an own exception type.
deba@2026:     if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
alpar@1273:     else tmp.upperBound()=n;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272: 
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1273:   inline LpSolverBase::Constr operator>=(const LpSolverBase::Value &n,
alpar@1272: 					 const LpSolverBase::Constr&c) 
alpar@1272:   {
alpar@1272:     LpSolverBase::Constr tmp(c);
alpar@1273:     ///\todo Create an own exception type.
deba@2026:     if(!LpSolverBase::isNaN(tmp.upperBound())) throw LogicError();
alpar@1273:     else tmp.upperBound()=n;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272:   ///\e
alpar@1272:   
alpar@1272:   ///\relates LpSolverBase::Constr
alpar@1272:   ///
alpar@1272:   inline LpSolverBase::Constr operator>=(const LpSolverBase::Constr& c,
alpar@1273: 					 const LpSolverBase::Value &n)
alpar@1272:   {
alpar@1272:     LpSolverBase::Constr tmp(c);
alpar@1273:     ///\todo Create an own exception type.
deba@2026:     if(!LpSolverBase::isNaN(tmp.lowerBound())) throw LogicError();
alpar@1273:     else tmp.lowerBound()=n;
alpar@1272:     return tmp;
alpar@1272:   }
alpar@1272: 
alpar@1445:   ///\e
alpar@1445:   
alpar@1445:   ///\relates LpSolverBase::DualExpr
alpar@1445:   ///
alpar@1445:   inline LpSolverBase::DualExpr operator+(const LpSolverBase::DualExpr &a,
alpar@1445: 				      const LpSolverBase::DualExpr &b) 
alpar@1445:   {
alpar@1445:     LpSolverBase::DualExpr tmp(a);
alpar@1766:     tmp+=b;
alpar@1445:     return tmp;
alpar@1445:   }
alpar@1445:   ///\e
alpar@1445:   
alpar@1445:   ///\relates LpSolverBase::DualExpr
alpar@1445:   ///
alpar@1445:   inline LpSolverBase::DualExpr operator-(const LpSolverBase::DualExpr &a,
alpar@1445: 				      const LpSolverBase::DualExpr &b) 
alpar@1445:   {
alpar@1445:     LpSolverBase::DualExpr tmp(a);
alpar@1766:     tmp-=b;
alpar@1445:     return tmp;
alpar@1445:   }
alpar@1445:   ///\e
alpar@1445:   
alpar@1445:   ///\relates LpSolverBase::DualExpr
alpar@1445:   ///
alpar@1445:   inline LpSolverBase::DualExpr operator*(const LpSolverBase::DualExpr &a,
alpar@1445: 				      const LpSolverBase::Value &b) 
alpar@1445:   {
alpar@1445:     LpSolverBase::DualExpr tmp(a);
alpar@1766:     tmp*=b;
alpar@1445:     return tmp;
alpar@1445:   }
alpar@1445:   
alpar@1445:   ///\e
alpar@1445:   
alpar@1445:   ///\relates LpSolverBase::DualExpr
alpar@1445:   ///
alpar@1445:   inline LpSolverBase::DualExpr operator*(const LpSolverBase::Value &a,
alpar@1445: 				      const LpSolverBase::DualExpr &b) 
alpar@1445:   {
alpar@1445:     LpSolverBase::DualExpr tmp(b);
alpar@1766:     tmp*=a;
alpar@1445:     return tmp;
alpar@1445:   }
alpar@1445:   ///\e
alpar@1445:   
alpar@1445:   ///\relates LpSolverBase::DualExpr
alpar@1445:   ///
alpar@1445:   inline LpSolverBase::DualExpr operator/(const LpSolverBase::DualExpr &a,
alpar@1445: 				      const LpSolverBase::Value &b) 
alpar@1445:   {
alpar@1445:     LpSolverBase::DualExpr tmp(a);
alpar@1766:     tmp/=b;
alpar@1445:     return tmp;
alpar@1445:   }
alpar@1445:   
alpar@1272: 
athos@1246: } //namespace lemon
athos@1246: 
athos@1246: #endif //LEMON_LP_BASE_H