alpar@906: /* -*- C++ -*- ladanyi@1435: * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library alpar@906: * alpar@1164: * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport alpar@1359: * (Egervary Research Group on Combinatorial Optimization, EGRES). alpar@906: * alpar@906: * Permission to use, modify and distribute this software is granted alpar@906: * provided that this copyright notice appears in all copies. For alpar@906: * precise terms see the accompanying LICENSE file. alpar@906: * alpar@906: * This software is provided "AS IS" with no warranty of any kind, alpar@906: * express or implied, and with no claim as to its suitability for any alpar@906: * purpose. alpar@906: * alpar@906: */ alpar@906: alpar@1401: #ifndef LEMON_GRAPH_ADAPTOR_H alpar@1401: #define LEMON_GRAPH_ADAPTOR_H marci@556: alpar@1401: ///\ingroup graph_adaptors marci@556: ///\file alpar@1401: ///\brief Several graph adaptors. marci@556: /// alpar@1401: ///This file contains several useful graph adaptor functions. marci@556: /// marci@556: ///\author Marton Makai marci@556: alpar@921: #include alpar@921: #include deba@1472: #include deba@1472: #include deba@1472: #include deba@1307: #include deba@1472: #include deba@1472: #include marci@1383: #include alpar@774: #include marci@556: alpar@921: namespace lemon { marci@556: alpar@1401: // Graph adaptors marci@556: marci@1172: /*! alpar@1401: \addtogroup graph_adaptors marci@1004: @{ marci@1172: */ marci@556: marci@1172: /*! alpar@1401: Base type for the Graph Adaptors marci@1242: alpar@1401: \warning Graph adaptors are in even more experimental state than the other marci@1004: parts of the lib. Use them at you own risk. marci@1242: alpar@1401: This is the base type for most of LEMON graph adaptors. alpar@1401: This class implements a trivial graph adaptor i.e. it only wraps the marci@1004: functions and types of the graph. The purpose of this class is to alpar@1401: make easier implementing graph adaptors. E.g. if an adaptor is marci@1004: considered which differs from the wrapped graph only in some of its alpar@1401: functions or types, then it can be derived from GraphAdaptor, and only the marci@1004: differences should be implemented. marci@1004: marci@1004: \author Marton Makai marci@1004: */ marci@970: template alpar@1401: class GraphAdaptorBase { marci@970: public: marci@970: typedef _Graph Graph; marci@970: /// \todo Is it needed? marci@970: typedef Graph BaseGraph; marci@970: typedef Graph ParentGraph; marci@970: marci@556: protected: marci@556: Graph* graph; alpar@1401: GraphAdaptorBase() : graph(0) { } marci@556: void setGraph(Graph& _graph) { graph=&_graph; } marci@556: marci@556: public: alpar@1401: GraphAdaptorBase(Graph& _graph) : graph(&_graph) { } marci@556: alpar@774: typedef typename Graph::Node Node; alpar@774: typedef typename Graph::Edge Edge; marci@556: marci@970: void first(Node& i) const { graph->first(i); } marci@970: void first(Edge& i) const { graph->first(i); } marci@970: void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); } marci@970: void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); } marci@556: marci@970: void next(Node& i) const { graph->next(i); } marci@970: void next(Edge& i) const { graph->next(i); } marci@970: void nextIn(Edge& i) const { graph->nextIn(i); } marci@970: void nextOut(Edge& i) const { graph->nextOut(i); } marci@970: alpar@986: Node source(const Edge& e) const { return graph->source(e); } alpar@986: Node target(const Edge& e) const { return graph->target(e); } marci@556: marci@556: int nodeNum() const { return graph->nodeNum(); } marci@556: int edgeNum() const { return graph->edgeNum(); } marci@556: marci@556: Node addNode() const { return Node(graph->addNode()); } alpar@986: Edge addEdge(const Node& source, const Node& target) const { alpar@986: return Edge(graph->addEdge(source, target)); } marci@556: marci@556: void erase(const Node& i) const { graph->erase(i); } marci@556: void erase(const Edge& i) const { graph->erase(i); } marci@556: marci@556: void clear() const { graph->clear(); } marci@556: marci@739: int id(const Node& v) const { return graph->id(v); } marci@739: int id(const Edge& e) const { return graph->id(e); } marci@650: deba@1627: Edge oppositeNode(const Edge& e) const { deba@1627: return Edge(graph->opposite(e)); deba@1627: } marci@650: marci@970: template marci@970: class NodeMap : public _Graph::template NodeMap<_Value> { marci@970: public: marci@970: typedef typename _Graph::template NodeMap<_Value> Parent; alpar@1401: NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } alpar@1401: NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) marci@970: : Parent(*gw.graph, value) { } marci@970: }; marci@556: marci@970: template marci@970: class EdgeMap : public _Graph::template EdgeMap<_Value> { marci@970: public: marci@970: typedef typename _Graph::template EdgeMap<_Value> Parent; alpar@1401: EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } alpar@1401: EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) marci@970: : Parent(*gw.graph, value) { } marci@970: }; deba@877: marci@556: }; marci@556: marci@970: template alpar@1401: class GraphAdaptor : alpar@1401: public IterableGraphExtender > { marci@970: public: marci@970: typedef _Graph Graph; alpar@1401: typedef IterableGraphExtender > Parent; marci@970: protected: alpar@1401: GraphAdaptor() : Parent() { } marci@569: marci@970: public: alpar@1401: GraphAdaptor(Graph& _graph) { setGraph(_graph); } marci@970: }; marci@569: marci@997: template alpar@1401: class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> { marci@997: public: marci@997: typedef _Graph Graph; alpar@1401: typedef GraphAdaptorBase<_Graph> Parent; marci@997: protected: alpar@1401: RevGraphAdaptorBase() : Parent() { } marci@997: public: marci@997: typedef typename Parent::Node Node; marci@997: typedef typename Parent::Edge Edge; marci@997: marci@1383: // using Parent::first; marci@997: void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); } marci@997: void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); } marci@997: marci@1383: // using Parent::next; marci@997: void nextIn(Edge& i) const { Parent::nextOut(i); } marci@997: void nextOut(Edge& i) const { Parent::nextIn(i); } marci@997: marci@997: Node source(const Edge& e) const { return Parent::target(e); } marci@997: Node target(const Edge& e) const { return Parent::source(e); } marci@997: }; marci@997: marci@997: alpar@1401: /// A graph adaptor which reverses the orientation of the edges. marci@556: alpar@1401: ///\warning Graph adaptors are in even more experimental state than the other alpar@879: ///parts of the lib. Use them at you own risk. alpar@879: /// marci@923: /// Let \f$G=(V, A)\f$ be a directed graph and marci@923: /// suppose that a graph instange \c g of type marci@923: /// \c ListGraph implements \f$G\f$. marci@923: /// \code marci@923: /// ListGraph g; marci@923: /// \endcode marci@923: /// For each directed edge marci@923: /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by marci@923: /// reversing its orientation. alpar@1401: /// Then RevGraphAdaptor implements the graph structure with node-set marci@923: /// \f$V\f$ and edge-set marci@923: /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be marci@923: /// reversing the orientation of its edges. The following code shows how marci@923: /// such an instance can be constructed. marci@923: /// \code alpar@1401: /// RevGraphAdaptor gw(g); marci@923: /// \endcode marci@556: ///\author Marton Makai marci@997: template alpar@1401: class RevGraphAdaptor : alpar@1401: public IterableGraphExtender > { marci@650: public: marci@997: typedef _Graph Graph; marci@997: typedef IterableGraphExtender< alpar@1401: RevGraphAdaptorBase<_Graph> > Parent; marci@556: protected: alpar@1401: RevGraphAdaptor() { } marci@556: public: alpar@1401: RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); } marci@997: }; marci@556: marci@992: marci@992: template alpar@1401: class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> { marci@992: public: marci@992: typedef _Graph Graph; alpar@1401: typedef GraphAdaptorBase<_Graph> Parent; marci@992: protected: marci@992: NodeFilterMap* node_filter_map; marci@992: EdgeFilterMap* edge_filter_map; alpar@1401: SubGraphAdaptorBase() : Parent(), marci@992: node_filter_map(0), edge_filter_map(0) { } marci@775: marci@992: void setNodeFilterMap(NodeFilterMap& _node_filter_map) { marci@992: node_filter_map=&_node_filter_map; marci@992: } marci@992: void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { marci@992: edge_filter_map=&_edge_filter_map; marci@992: } marci@992: marci@992: public: alpar@1401: // SubGraphAdaptorBase(Graph& _graph, marci@992: // NodeFilterMap& _node_filter_map, marci@992: // EdgeFilterMap& _edge_filter_map) : marci@992: // Parent(&_graph), marci@992: // node_filter_map(&node_filter_map), marci@992: // edge_filter_map(&edge_filter_map) { } marci@992: marci@992: typedef typename Parent::Node Node; marci@992: typedef typename Parent::Edge Edge; marci@992: marci@992: void first(Node& i) const { marci@992: Parent::first(i); marci@992: while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); marci@992: } marci@992: void first(Edge& i) const { marci@992: Parent::first(i); marci@992: while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); marci@992: } marci@992: void firstIn(Edge& i, const Node& n) const { marci@992: Parent::firstIn(i, n); marci@992: while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); marci@992: } marci@992: void firstOut(Edge& i, const Node& n) const { marci@992: Parent::firstOut(i, n); marci@992: while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); marci@992: } marci@992: marci@992: void next(Node& i) const { marci@992: Parent::next(i); marci@992: while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); marci@992: } marci@992: void next(Edge& i) const { marci@992: Parent::next(i); marci@992: while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); marci@992: } marci@992: void nextIn(Edge& i) const { marci@992: Parent::nextIn(i); marci@992: while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); marci@992: } marci@992: void nextOut(Edge& i) const { marci@992: Parent::nextOut(i); marci@992: while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); marci@992: } marci@992: marci@992: /// This function hides \c n in the graph, i.e. the iteration marci@992: /// jumps over it. This is done by simply setting the value of \c n marci@992: /// to be false in the corresponding node-map. marci@992: void hide(const Node& n) const { node_filter_map->set(n, false); } marci@992: marci@992: /// This function hides \c e in the graph, i.e. the iteration marci@992: /// jumps over it. This is done by simply setting the value of \c e marci@992: /// to be false in the corresponding edge-map. marci@992: void hide(const Edge& e) const { edge_filter_map->set(e, false); } marci@992: marci@992: /// The value of \c n is set to be true in the node-map which stores marci@992: /// hide information. If \c n was hidden previuosly, then it is shown marci@992: /// again marci@992: void unHide(const Node& n) const { node_filter_map->set(n, true); } marci@992: marci@992: /// The value of \c e is set to be true in the edge-map which stores marci@992: /// hide information. If \c e was hidden previuosly, then it is shown marci@992: /// again marci@992: void unHide(const Edge& e) const { edge_filter_map->set(e, true); } marci@992: marci@992: /// Returns true if \c n is hidden. marci@992: bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } marci@992: marci@992: /// Returns true if \c n is hidden. marci@992: bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } marci@992: marci@992: /// \warning This is a linear time operation and works only if s marci@992: /// \c Graph::NodeIt is defined. marci@992: /// \todo assign tags. marci@992: int nodeNum() const { marci@992: int i=0; marci@992: Node n; marci@992: for (first(n); n!=INVALID; next(n)) ++i; marci@992: return i; marci@992: } marci@992: marci@992: /// \warning This is a linear time operation and works only if marci@992: /// \c Graph::EdgeIt is defined. marci@992: /// \todo assign tags. marci@992: int edgeNum() const { marci@992: int i=0; marci@992: Edge e; marci@992: for (first(e); e!=INVALID; next(e)) ++i; marci@992: return i; marci@992: } marci@992: marci@992: marci@992: }; marci@775: alpar@1401: /*! \brief A graph adaptor for hiding nodes and edges from a graph. marci@1242: alpar@1401: \warning Graph adaptors are in even more experimental state than the other marci@930: parts of the lib. Use them at you own risk. marci@930: alpar@1401: SubGraphAdaptor shows the graph with filtered node-set and marci@930: edge-set. marci@1242: Let \f$G=(V, A)\f$ be a directed graph marci@1242: and suppose that the graph instance \c g of type ListGraph implements marci@1242: \f$G\f$. marci@1242: Let moreover \f$b_V\f$ and marci@1242: \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. alpar@1401: SubGraphAdaptor<...>::NodeIt iterates marci@1242: on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and alpar@1401: SubGraphAdaptor<...>::EdgeIt iterates marci@1242: on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, alpar@1401: SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates marci@1242: only on edges leaving and entering a specific node which have true value. marci@1242: marci@1242: We have to note that this does not mean that an marci@930: induced subgraph is obtained, the node-iterator cares only the filter marci@930: on the node-set, and the edge-iterators care only the filter on the marci@1242: edge-set. marci@930: \code marci@1242: typedef ListGraph Graph; marci@930: Graph g; marci@930: typedef Graph::Node Node; marci@930: typedef Graph::Edge Edge; marci@930: Node u=g.addNode(); //node of id 0 marci@930: Node v=g.addNode(); //node of id 1 marci@930: Node e=g.addEdge(u, v); //edge of id 0 marci@930: Node f=g.addEdge(v, u); //edge of id 1 marci@930: Graph::NodeMap nm(g, true); marci@930: nm.set(u, false); marci@930: Graph::EdgeMap em(g, true); marci@930: em.set(e, false); alpar@1401: typedef SubGraphAdaptor, Graph::EdgeMap > SubGW; marci@930: SubGW gw(g, nm, em); marci@930: for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl; marci@930: std::cout << ":-)" << std::endl; marci@930: for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl; marci@930: \endcode marci@930: The output of the above code is the following. marci@930: \code marci@930: 1 marci@930: :-) marci@930: 1 marci@930: \endcode marci@930: Note that \c n is of type \c SubGW::NodeIt, but it can be converted to marci@930: \c Graph::Node that is why \c g.id(n) can be applied. marci@930: alpar@1401: For other examples see also the documentation of NodeSubGraphAdaptor and alpar@1401: EdgeSubGraphAdaptor. marci@930: marci@930: \author Marton Makai marci@930: */ marci@992: template alpar@1401: class SubGraphAdaptor : marci@992: public IterableGraphExtender< alpar@1401: SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > { marci@650: public: marci@992: typedef _Graph Graph; marci@992: typedef IterableGraphExtender< alpar@1401: SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; marci@556: protected: alpar@1401: SubGraphAdaptor() { } marci@992: public: alpar@1401: SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, marci@992: EdgeFilterMap& _edge_filter_map) { marci@992: setGraph(_graph); marci@992: setNodeFilterMap(_node_filter_map); marci@992: setEdgeFilterMap(_edge_filter_map); marci@992: } marci@992: }; marci@556: marci@556: marci@569: alpar@1401: /*! \brief An adaptor for hiding nodes from a graph. marci@933: alpar@1401: \warning Graph adaptors are in even more experimental state than the other marci@933: parts of the lib. Use them at you own risk. marci@933: alpar@1401: An adaptor for hiding nodes from a graph. alpar@1401: This adaptor specializes SubGraphAdaptor in the way that only the node-set marci@933: can be filtered. Note that this does not mean of considering induced marci@933: subgraph, the edge-iterators consider the original edge-set. marci@933: \author Marton Makai marci@933: */ marci@933: template alpar@1401: class NodeSubGraphAdaptor : alpar@1401: public SubGraphAdaptor > { marci@933: public: alpar@1401: typedef SubGraphAdaptor > Parent; marci@933: protected: marci@933: ConstMap const_true_map; marci@933: public: alpar@1401: NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : marci@933: Parent(), const_true_map(true) { marci@933: Parent::setGraph(_graph); marci@933: Parent::setNodeFilterMap(_node_filter_map); marci@933: Parent::setEdgeFilterMap(const_true_map); marci@933: } marci@933: }; marci@933: marci@933: alpar@1401: /*! \brief An adaptor for hiding edges from a graph. marci@932: alpar@1401: \warning Graph adaptors are in even more experimental state than the other marci@932: parts of the lib. Use them at you own risk. marci@932: alpar@1401: An adaptor for hiding edges from a graph. alpar@1401: This adaptor specializes SubGraphAdaptor in the way that only the edge-set alpar@1401: can be filtered. The usefulness of this adaptor is demonstrated in the marci@933: problem of searching a maximum number of edge-disjoint shortest paths marci@933: between marci@933: two nodes \c s and \c t. Shortest here means being shortest w.r.t. marci@933: non-negative edge-lengths. Note that marci@933: the comprehension of the presented solution marci@1252: need's some elementary knowledge from combinatorial optimization. marci@933: marci@933: If a single shortest path is to be marci@1252: searched between \c s and \c t, then this can be done easily by marci@1252: applying the Dijkstra algorithm. What happens, if a maximum number of marci@933: edge-disjoint shortest paths is to be computed. It can be proved that an marci@933: edge can be in a shortest path if and only if it is tight with respect to marci@933: the potential function computed by Dijkstra. Moreover, any path containing marci@933: only such edges is a shortest one. Thus we have to compute a maximum number marci@933: of edge-disjoint paths between \c s and \c t in the graph which has edge-set marci@933: all the tight edges. The computation will be demonstrated on the following alpar@1536: graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. marci@1425: The full source code is available in \ref sub_graph_adaptor_demo.cc. marci@1425: If you are interested in more demo programs, you can use marci@1425: \ref dim_to_dot.cc to generate .dot files from dimacs files. athos@1576: The .dot file of the following figure was generated by marci@1425: the demo program \ref dim_to_dot.cc. marci@1425: marci@933: \dot marci@933: digraph lemon_dot_example { marci@933: node [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; marci@933: n0 [ label="0 (s)" ]; marci@933: n1 [ label="1" ]; marci@933: n2 [ label="2" ]; marci@933: n3 [ label="3" ]; marci@933: n4 [ label="4" ]; marci@933: n5 [ label="5" ]; marci@933: n6 [ label="6 (t)" ]; marci@933: edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; marci@933: n5 -> n6 [ label="9, length:4" ]; marci@933: n4 -> n6 [ label="8, length:2" ]; marci@933: n3 -> n5 [ label="7, length:1" ]; marci@933: n2 -> n5 [ label="6, length:3" ]; marci@933: n2 -> n6 [ label="5, length:5" ]; marci@933: n2 -> n4 [ label="4, length:2" ]; marci@933: n1 -> n4 [ label="3, length:3" ]; marci@933: n0 -> n3 [ label="2, length:1" ]; marci@933: n0 -> n2 [ label="1, length:2" ]; marci@933: n0 -> n1 [ label="0, length:3" ]; marci@933: } marci@933: \enddot marci@933: marci@933: \code marci@933: Graph g; marci@933: Node s, t; marci@933: LengthMap length(g); marci@933: marci@933: readDimacs(std::cin, g, length, s, t); marci@933: alpar@986: cout << "edges with lengths (of form id, source--length->target): " << endl; marci@933: for(EdgeIt e(g); e!=INVALID; ++e) alpar@986: cout << g.id(e) << ", " << g.id(g.source(e)) << "--" alpar@986: << length[e] << "->" << g.id(g.target(e)) << endl; marci@933: marci@933: cout << "s: " << g.id(s) << " t: " << g.id(t) << endl; marci@933: \endcode marci@933: Next, the potential function is computed with Dijkstra. marci@933: \code marci@933: typedef Dijkstra Dijkstra; marci@933: Dijkstra dijkstra(g, length); marci@933: dijkstra.run(s); marci@933: \endcode marci@933: Next, we consrtruct a map which filters the edge-set to the tight edges. marci@933: \code marci@933: typedef TightEdgeFilterMap marci@933: TightEdgeFilter; marci@933: TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length); marci@933: alpar@1401: typedef EdgeSubGraphAdaptor SubGW; marci@933: SubGW gw(g, tight_edge_filter); marci@933: \endcode marci@933: Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed marci@933: with a max flow algorithm Preflow. marci@933: \code marci@933: ConstMap const_1_map(1); marci@933: Graph::EdgeMap flow(g, 0); marci@933: marci@933: Preflow, Graph::EdgeMap > marci@933: preflow(gw, s, t, const_1_map, flow); marci@933: preflow.run(); marci@933: \endcode marci@933: Last, the output is: marci@933: \code marci@933: cout << "maximum number of edge-disjoint shortest path: " marci@933: << preflow.flowValue() << endl; marci@933: cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " marci@933: << endl; marci@933: for(EdgeIt e(g); e!=INVALID; ++e) marci@933: if (flow[e]) alpar@986: cout << " " << g.id(g.source(e)) << "--" alpar@986: << length[e] << "->" << g.id(g.target(e)) << endl; marci@933: \endcode marci@933: The program has the following (expected :-)) output: marci@933: \code alpar@986: edges with lengths (of form id, source--length->target): marci@933: 9, 5--4->6 marci@933: 8, 4--2->6 marci@933: 7, 3--1->5 marci@933: 6, 2--3->5 marci@933: 5, 2--5->6 marci@933: 4, 2--2->4 marci@933: 3, 1--3->4 marci@933: 2, 0--1->3 marci@933: 1, 0--2->2 marci@933: 0, 0--3->1 marci@933: s: 0 t: 6 marci@933: maximum number of edge-disjoint shortest path: 2 marci@933: edges of the maximum number of edge-disjoint shortest s-t paths: marci@933: 9, 5--4->6 marci@933: 8, 4--2->6 marci@933: 7, 3--1->5 marci@933: 4, 2--2->4 marci@933: 2, 0--1->3 marci@933: 1, 0--2->2 marci@933: \endcode marci@933: marci@932: \author Marton Makai marci@932: */ marci@932: template alpar@1401: class EdgeSubGraphAdaptor : alpar@1401: public SubGraphAdaptor, marci@932: EdgeFilterMap> { marci@932: public: alpar@1401: typedef SubGraphAdaptor, marci@932: EdgeFilterMap> Parent; marci@932: protected: marci@932: ConstMap const_true_map; marci@932: public: alpar@1401: EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : marci@932: Parent(), const_true_map(true) { marci@932: Parent::setGraph(_graph); marci@932: Parent::setNodeFilterMap(const_true_map); marci@932: Parent::setEdgeFilterMap(_edge_filter_map); marci@932: } marci@932: }; marci@932: marci@1383: template alpar@1401: class UndirGraphAdaptorBase : alpar@1401: public UndirGraphExtender > { marci@1383: public: marci@1383: typedef _Graph Graph; alpar@1401: typedef UndirGraphExtender > Parent; marci@1383: protected: alpar@1401: UndirGraphAdaptorBase() : Parent() { } marci@1383: public: marci@1383: typedef typename Parent::UndirEdge UndirEdge; marci@1383: typedef typename Parent::Edge Edge; marci@1383: marci@1383: /// \bug Why cant an edge say that it is forward or not??? marci@1383: /// By this, a pointer to the graph have to be stored marci@1383: /// The implementation marci@1383: template marci@1383: class EdgeMap { marci@1383: protected: alpar@1401: const UndirGraphAdaptorBase<_Graph>* g; marci@1383: template friend class EdgeMap; marci@1383: typename _Graph::template EdgeMap forward_map, backward_map; marci@1383: public: marci@1383: typedef T Value; marci@1383: typedef Edge Key; marci@1383: alpar@1401: EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), marci@1383: forward_map(*(g->graph)), backward_map(*(g->graph)) { } marci@569: alpar@1401: EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), marci@1383: forward_map(*(g->graph), a), backward_map(*(g->graph), a) { } marci@1383: marci@1383: void set(Edge e, T a) { deba@1627: if (g->direction(e)) marci@1383: forward_map.set(e, a); marci@1383: else marci@1383: backward_map.set(e, a); marci@1383: } marci@556: marci@1383: T operator[](Edge e) const { deba@1627: if (g->direction(e)) marci@1383: return forward_map[e]; marci@1383: else marci@1383: return backward_map[e]; marci@556: } marci@556: }; marci@1383: marci@1383: template marci@1383: class UndirEdgeMap { marci@1383: template friend class UndirEdgeMap; marci@1383: typename _Graph::template EdgeMap map; marci@1383: public: marci@1383: typedef T Value; marci@1383: typedef UndirEdge Key; marci@1383: alpar@1401: UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : marci@1383: map(*(g.graph)) { } marci@556: alpar@1401: UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : marci@1383: map(*(g.graph), a) { } marci@1383: marci@1383: void set(UndirEdge e, T a) { marci@1383: map.set(e, a); marci@1383: } marci@556: marci@1383: T operator[](UndirEdge e) const { marci@1383: return map[e]; marci@1383: } marci@1383: }; marci@1383: marci@1383: }; marci@1383: alpar@1401: /// \brief An undirected graph is made from a directed graph by an adaptor marci@1383: /// marci@1383: /// Undocumented, untested!!! marci@1383: /// If somebody knows nice demo application, let's polulate it. marci@1383: /// marci@1383: /// \author Marton Makai marci@1383: template alpar@1401: class UndirGraphAdaptor : marci@1383: public IterableUndirGraphExtender< alpar@1401: UndirGraphAdaptorBase<_Graph> > { marci@1383: public: marci@1383: typedef _Graph Graph; marci@1383: typedef IterableUndirGraphExtender< alpar@1401: UndirGraphAdaptorBase<_Graph> > Parent; marci@1383: protected: alpar@1401: UndirGraphAdaptor() { } marci@1383: public: alpar@1401: UndirGraphAdaptor(_Graph& _graph) { marci@1383: setGraph(_graph); marci@556: } marci@556: }; marci@556: marci@992: marci@992: template alpar@1401: class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> { marci@992: public: marci@992: typedef _Graph Graph; alpar@1401: typedef GraphAdaptorBase<_Graph> Parent; marci@992: protected: marci@992: ForwardFilterMap* forward_filter; marci@992: BackwardFilterMap* backward_filter; alpar@1401: SubBidirGraphAdaptorBase() : Parent(), marci@992: forward_filter(0), backward_filter(0) { } marci@992: marci@992: void setForwardFilterMap(ForwardFilterMap& _forward_filter) { marci@992: forward_filter=&_forward_filter; marci@992: } marci@992: void setBackwardFilterMap(BackwardFilterMap& _backward_filter) { marci@992: backward_filter=&_backward_filter; marci@992: } marci@992: marci@992: public: alpar@1401: // SubGraphAdaptorBase(Graph& _graph, marci@992: // NodeFilterMap& _node_filter_map, marci@992: // EdgeFilterMap& _edge_filter_map) : marci@992: // Parent(&_graph), marci@992: // node_filter_map(&node_filter_map), marci@992: // edge_filter_map(&edge_filter_map) { } marci@992: marci@992: typedef typename Parent::Node Node; marci@992: typedef typename _Graph::Edge GraphEdge; marci@992: template class EdgeMap; alpar@1401: /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from marci@992: /// _Graph::Edge. It contains an extra bool flag which is true marci@992: /// if and only if the marci@992: /// edge is the backward version of the original edge. marci@992: class Edge : public _Graph::Edge { alpar@1401: friend class SubBidirGraphAdaptorBase< marci@992: Graph, ForwardFilterMap, BackwardFilterMap>; marci@992: template friend class EdgeMap; marci@992: protected: marci@992: bool backward; //true, iff backward marci@992: public: marci@992: Edge() { } marci@992: /// \todo =false is needed, or causes problems? marci@992: /// If \c _backward is false, then we get an edge corresponding to the marci@992: /// original one, otherwise its oppositely directed pair is obtained. marci@992: Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : marci@992: _Graph::Edge(e), backward(_backward) { } marci@992: Edge(Invalid i) : _Graph::Edge(i), backward(true) { } marci@992: bool operator==(const Edge& v) const { marci@992: return (this->backward==v.backward && marci@992: static_cast(*this)== marci@992: static_cast(v)); marci@992: } marci@992: bool operator!=(const Edge& v) const { marci@992: return (this->backward!=v.backward || marci@992: static_cast(*this)!= marci@992: static_cast(v)); marci@992: } marci@992: }; marci@992: marci@992: void first(Node& i) const { marci@992: Parent::first(i); marci@992: } marci@992: marci@992: void first(Edge& i) const { marci@992: Parent::first(i); marci@992: i.backward=false; marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*forward_filter)[i]) Parent::next(i); marci@992: if (*static_cast(&i)==INVALID) { marci@992: Parent::first(i); marci@992: i.backward=true; marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::next(i); marci@992: } marci@992: } marci@992: marci@992: void firstIn(Edge& i, const Node& n) const { marci@992: Parent::firstIn(i, n); marci@992: i.backward=false; marci@992: while (*static_cast(&i)!=INVALID && marci@1269: !(*forward_filter)[i]) Parent::nextIn(i); marci@992: if (*static_cast(&i)==INVALID) { marci@992: Parent::firstOut(i, n); marci@992: i.backward=true; marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::nextOut(i); marci@992: } marci@992: } marci@992: marci@992: void firstOut(Edge& i, const Node& n) const { marci@992: Parent::firstOut(i, n); marci@992: i.backward=false; marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*forward_filter)[i]) Parent::nextOut(i); marci@992: if (*static_cast(&i)==INVALID) { marci@992: Parent::firstIn(i, n); marci@992: i.backward=true; marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::nextIn(i); marci@992: } marci@992: } marci@992: marci@992: void next(Node& i) const { marci@992: Parent::next(i); marci@992: } marci@992: marci@992: void next(Edge& i) const { marci@992: if (!(i.backward)) { marci@992: Parent::next(i); marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*forward_filter)[i]) Parent::next(i); marci@992: if (*static_cast(&i)==INVALID) { marci@992: Parent::first(i); marci@992: i.backward=true; marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::next(i); marci@992: } marci@992: } else { marci@992: Parent::next(i); marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::next(i); marci@992: } marci@992: } marci@992: marci@992: void nextIn(Edge& i) const { marci@992: if (!(i.backward)) { marci@992: Node n=Parent::target(i); marci@992: Parent::nextIn(i); marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*forward_filter)[i]) Parent::nextIn(i); marci@992: if (*static_cast(&i)==INVALID) { marci@992: Parent::firstOut(i, n); marci@992: i.backward=true; marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::nextOut(i); marci@992: } marci@992: } else { marci@992: Parent::nextOut(i); marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::nextOut(i); marci@992: } marci@992: } marci@992: marci@992: void nextOut(Edge& i) const { marci@992: if (!(i.backward)) { marci@992: Node n=Parent::source(i); marci@992: Parent::nextOut(i); marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*forward_filter)[i]) Parent::nextOut(i); marci@992: if (*static_cast(&i)==INVALID) { marci@992: Parent::firstIn(i, n); marci@992: i.backward=true; marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::nextIn(i); marci@992: } marci@992: } else { marci@992: Parent::nextIn(i); marci@992: while (*static_cast(&i)!=INVALID && marci@992: !(*backward_filter)[i]) Parent::nextIn(i); marci@992: } marci@992: } marci@992: marci@992: Node source(Edge e) const { marci@992: return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); } marci@992: Node target(Edge e) const { marci@992: return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); } marci@992: marci@992: /// Gives back the opposite edge. marci@992: Edge opposite(const Edge& e) const { marci@992: Edge f=e; marci@992: f.backward=!f.backward; marci@992: return f; marci@992: } marci@992: marci@992: /// \warning This is a linear time operation and works only if marci@992: /// \c Graph::EdgeIt is defined. marci@992: /// \todo hmm marci@992: int edgeNum() const { marci@992: int i=0; marci@992: Edge e; marci@992: for (first(e); e!=INVALID; next(e)) ++i; marci@992: return i; marci@992: } marci@992: marci@992: bool forward(const Edge& e) const { return !e.backward; } marci@992: bool backward(const Edge& e) const { return e.backward; } marci@992: marci@992: template alpar@1401: /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two marci@992: /// _Graph::EdgeMap one for the forward edges and marci@992: /// one for the backward edges. marci@992: class EdgeMap { marci@992: template friend class EdgeMap; marci@992: typename _Graph::template EdgeMap forward_map, backward_map; marci@992: public: marci@992: typedef T Value; marci@992: typedef Edge Key; marci@992: alpar@1401: EdgeMap(const SubBidirGraphAdaptorBase<_Graph, marci@992: ForwardFilterMap, BackwardFilterMap>& g) : marci@992: forward_map(*(g.graph)), backward_map(*(g.graph)) { } marci@992: alpar@1401: EdgeMap(const SubBidirGraphAdaptorBase<_Graph, marci@992: ForwardFilterMap, BackwardFilterMap>& g, T a) : marci@992: forward_map(*(g.graph), a), backward_map(*(g.graph), a) { } marci@992: marci@992: void set(Edge e, T a) { marci@992: if (!e.backward) marci@992: forward_map.set(e, a); marci@992: else marci@992: backward_map.set(e, a); marci@992: } marci@992: marci@992: // typename _Graph::template EdgeMap::ConstReference marci@992: // operator[](Edge e) const { marci@992: // if (!e.backward) marci@992: // return forward_map[e]; marci@992: // else marci@992: // return backward_map[e]; marci@992: // } marci@992: marci@992: // typename _Graph::template EdgeMap::Reference marci@1016: T operator[](Edge e) const { marci@992: if (!e.backward) marci@992: return forward_map[e]; marci@992: else marci@992: return backward_map[e]; marci@992: } marci@992: marci@992: void update() { marci@992: forward_map.update(); marci@992: backward_map.update(); marci@992: } marci@992: }; marci@992: marci@992: }; marci@569: marci@650: alpar@1401: ///\brief An adaptor for composing a subgraph of a marci@792: /// bidirected graph made from a directed one. marci@612: /// alpar@1401: /// An adaptor for composing a subgraph of a alpar@911: /// bidirected graph made from a directed one. alpar@911: /// alpar@1401: ///\warning Graph adaptors are in even more experimental state than the other alpar@879: ///parts of the lib. Use them at you own risk. alpar@879: /// marci@923: /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge marci@923: /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by marci@923: /// reversing its orientation. We are given moreover two bool valued marci@923: /// maps on the edge-set, marci@923: /// \f$forward\_filter\f$, and \f$backward\_filter\f$. alpar@1401: /// SubBidirGraphAdaptor implements the graph structure with node-set marci@923: /// \f$V\f$ and edge-set marci@923: /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. marci@792: /// The purpose of writing + instead of union is because parallel marci@923: /// edges can arise. (Similarly, antiparallel edges also can arise). marci@792: /// In other words, a subgraph of the bidirected graph obtained, which marci@792: /// is given by orienting the edges of the original graph in both directions. marci@923: /// As the oppositely directed edges are logically different, marci@923: /// the maps are able to attach different values for them. marci@923: /// alpar@1401: /// An example for such a construction is \c RevGraphAdaptor where the marci@792: /// forward_filter is everywhere false and the backward_filter is marci@792: /// everywhere true. We note that for sake of efficiency, alpar@1401: /// \c RevGraphAdaptor is implemented in a different way. alpar@1401: /// But BidirGraphAdaptor is obtained from alpar@1401: /// SubBidirGraphAdaptor by considering everywhere true marci@910: /// valued maps both for forward_filter and backward_filter. marci@1252: /// alpar@1401: /// The most important application of SubBidirGraphAdaptor alpar@1401: /// is ResGraphAdaptor, which stands for the residual graph in directed marci@792: /// flow and circulation problems. alpar@1401: /// As adaptors usually, the SubBidirGraphAdaptor implements the marci@792: /// above mentioned graph structure without its physical storage, marci@923: /// that is the whole stuff is stored in constant memory. marci@992: template alpar@1401: class SubBidirGraphAdaptor : marci@992: public IterableGraphExtender< alpar@1401: SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > { marci@650: public: marci@992: typedef _Graph Graph; marci@992: typedef IterableGraphExtender< alpar@1401: SubBidirGraphAdaptorBase< marci@992: _Graph, ForwardFilterMap, BackwardFilterMap> > Parent; marci@569: protected: alpar@1401: SubBidirGraphAdaptor() { } marci@992: public: alpar@1401: SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, marci@992: BackwardFilterMap& _backward_filter) { marci@992: setGraph(_graph); marci@992: setForwardFilterMap(_forward_filter); marci@992: setBackwardFilterMap(_backward_filter); marci@992: } marci@992: }; marci@650: marci@569: marci@650: alpar@1401: ///\brief An adaptor for composing bidirected graph from a directed one. marci@650: /// alpar@1401: ///\warning Graph adaptors are in even more experimental state than the other alpar@879: ///parts of the lib. Use them at you own risk. alpar@879: /// alpar@1401: /// An adaptor for composing bidirected graph from a directed one. marci@650: /// A bidirected graph is composed over the directed one without physical marci@650: /// storage. As the oppositely directed edges are logically different ones marci@650: /// the maps are able to attach different values for them. marci@650: template alpar@1401: class BidirGraphAdaptor : alpar@1401: public SubBidirGraphAdaptor< marci@650: Graph, marci@650: ConstMap, marci@650: ConstMap > { marci@650: public: alpar@1401: typedef SubBidirGraphAdaptor< marci@650: Graph, marci@650: ConstMap, marci@650: ConstMap > Parent; marci@650: protected: marci@650: ConstMap cm; marci@650: alpar@1401: BidirGraphAdaptor() : Parent(), cm(true) { marci@655: Parent::setForwardFilterMap(cm); marci@655: Parent::setBackwardFilterMap(cm); marci@655: } marci@650: public: alpar@1401: BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { marci@650: Parent::setGraph(_graph); marci@650: Parent::setForwardFilterMap(cm); marci@650: Parent::setBackwardFilterMap(cm); marci@650: } marci@738: marci@738: int edgeNum() const { marci@738: return 2*this->graph->edgeNum(); marci@738: } alpar@1401: // KEEP_MAPS(Parent, BidirGraphAdaptor); marci@650: }; marci@650: marci@650: marci@650: template marci@658: class ResForwardFilter { marci@658: // const Graph* graph; marci@650: const CapacityMap* capacity; marci@650: const FlowMap* flow; marci@650: public: marci@658: ResForwardFilter(/*const Graph& _graph, */ marci@658: const CapacityMap& _capacity, const FlowMap& _flow) : marci@658: /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } marci@658: ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } marci@656: void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } marci@656: void setFlow(const FlowMap& _flow) { flow=&_flow; } marci@650: bool operator[](const typename Graph::Edge& e) const { marci@738: return (Number((*flow)[e]) < Number((*capacity)[e])); marci@650: } marci@650: }; marci@650: marci@650: template marci@658: class ResBackwardFilter { marci@650: const CapacityMap* capacity; marci@650: const FlowMap* flow; marci@650: public: marci@658: ResBackwardFilter(/*const Graph& _graph,*/ marci@658: const CapacityMap& _capacity, const FlowMap& _flow) : marci@658: /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } marci@658: ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } marci@656: void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } marci@656: void setFlow(const FlowMap& _flow) { flow=&_flow; } marci@650: bool operator[](const typename Graph::Edge& e) const { marci@738: return (Number(0) < Number((*flow)[e])); marci@650: } marci@650: }; marci@650: marci@653: alpar@1401: /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems. marci@650: alpar@1401: An adaptor for composing the residual graph for directed flow and circulation problems. marci@1242: Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a marci@1242: number type. Let moreover marci@1242: \f$f,c:A\to F\f$, be functions on the edge-set. alpar@1401: In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow marci@1242: and \f$c\f$ for a capacity function. marci@1242: Suppose that a graph instange \c g of type marci@1242: \c ListGraph implements \f$G\f$. marci@1242: \code marci@1242: ListGraph g; marci@1242: \endcode alpar@1401: Then RevGraphAdaptor implements the graph structure with node-set marci@1242: \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where marci@1242: \f$A_{forward}=\{uv : uv\in A, f(uv)0\}\f$, marci@1242: i.e. the so called residual graph. marci@1242: When we take the union \f$A_{forward}\cup A_{backward}\f$, marci@1242: multilicities are counted, i.e. if an edge is in both alpar@1401: \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it marci@1242: appears twice. marci@1242: The following code shows how marci@1242: such an instance can be constructed. marci@1242: \code marci@1242: typedef ListGraph Graph; marci@1242: Graph::EdgeMap f(g); marci@1242: Graph::EdgeMap c(g); alpar@1401: ResGraphAdaptor, Graph::EdgeMap > gw(g); marci@1242: \endcode marci@1242: \author Marton Makai marci@1242: */ marci@650: template alpar@1401: class ResGraphAdaptor : alpar@1401: public SubBidirGraphAdaptor< marci@650: Graph, marci@658: ResForwardFilter, marci@658: ResBackwardFilter > { marci@650: public: alpar@1401: typedef SubBidirGraphAdaptor< marci@650: Graph, marci@658: ResForwardFilter, marci@658: ResBackwardFilter > Parent; marci@650: protected: marci@650: const CapacityMap* capacity; marci@650: FlowMap* flow; marci@658: ResForwardFilter forward_filter; marci@658: ResBackwardFilter backward_filter; alpar@1401: ResGraphAdaptor() : Parent(), marci@658: capacity(0), flow(0) { } marci@658: void setCapacityMap(const CapacityMap& _capacity) { marci@658: capacity=&_capacity; marci@658: forward_filter.setCapacity(_capacity); marci@658: backward_filter.setCapacity(_capacity); marci@658: } marci@658: void setFlowMap(FlowMap& _flow) { marci@658: flow=&_flow; marci@658: forward_filter.setFlow(_flow); marci@658: backward_filter.setFlow(_flow); marci@658: } marci@650: public: alpar@1401: ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, marci@650: FlowMap& _flow) : marci@650: Parent(), capacity(&_capacity), flow(&_flow), marci@658: forward_filter(/*_graph,*/ _capacity, _flow), marci@658: backward_filter(/*_graph,*/ _capacity, _flow) { marci@650: Parent::setGraph(_graph); marci@650: Parent::setForwardFilterMap(forward_filter); marci@650: Parent::setBackwardFilterMap(backward_filter); marci@650: } marci@650: marci@660: typedef typename Parent::Edge Edge; marci@660: marci@660: void augment(const Edge& e, Number a) const { marci@650: if (Parent::forward(e)) marci@650: flow->set(e, (*flow)[e]+a); marci@650: else marci@650: flow->set(e, (*flow)[e]-a); marci@650: } marci@650: marci@660: /// \brief Residual capacity map. marci@660: /// marci@910: /// In generic residual graphs the residual capacity can be obtained marci@910: /// as a map. marci@660: class ResCap { marci@660: protected: alpar@1401: const ResGraphAdaptor* res_graph; marci@660: public: alpar@987: typedef Number Value; alpar@987: typedef Edge Key; alpar@1401: ResCap(const ResGraphAdaptor& marci@888: _res_graph) : res_graph(&_res_graph) { } marci@660: Number operator[](const Edge& e) const { marci@660: if (res_graph->forward(e)) marci@660: return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; marci@660: else marci@660: return (*(res_graph->flow))[e]; marci@660: } marci@660: }; marci@660: alpar@1401: // KEEP_MAPS(Parent, ResGraphAdaptor); marci@650: }; marci@650: marci@650: marci@998: marci@998: template alpar@1401: class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> { marci@998: public: marci@998: typedef _Graph Graph; alpar@1401: typedef GraphAdaptorBase<_Graph> Parent; marci@998: protected: marci@998: FirstOutEdgesMap* first_out_edges; alpar@1401: ErasingFirstGraphAdaptorBase() : Parent(), marci@998: first_out_edges(0) { } marci@998: marci@998: void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) { marci@998: first_out_edges=&_first_out_edges; marci@998: } marci@998: marci@998: public: marci@998: marci@998: typedef typename Parent::Node Node; marci@998: typedef typename Parent::Edge Edge; marci@998: marci@998: void firstOut(Edge& i, const Node& n) const { marci@998: i=(*first_out_edges)[n]; marci@998: } marci@998: marci@998: void erase(const Edge& e) const { marci@998: Node n=source(e); marci@998: Edge f=e; marci@998: Parent::nextOut(f); marci@998: first_out_edges->set(n, f); marci@998: } marci@998: }; marci@998: marci@998: marci@612: /// For blocking flows. marci@556: alpar@1401: ///\warning Graph adaptors are in even more experimental state than the other alpar@879: ///parts of the lib. Use them at you own risk. alpar@879: /// alpar@1401: /// This graph adaptor is used for on-the-fly marci@792: /// Dinits blocking flow computations. marci@612: /// For each node, an out-edge is stored which is used when the marci@612: /// \code marci@612: /// OutEdgeIt& first(OutEdgeIt&, const Node&) marci@612: /// \endcode marci@612: /// is called. marci@556: /// marci@792: /// \author Marton Makai marci@998: template alpar@1401: class ErasingFirstGraphAdaptor : marci@998: public IterableGraphExtender< alpar@1401: ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > { marci@650: public: marci@998: typedef _Graph Graph; marci@998: typedef IterableGraphExtender< alpar@1401: ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent; alpar@1401: ErasingFirstGraphAdaptor(Graph& _graph, marci@998: FirstOutEdgesMap& _first_out_edges) { marci@998: setGraph(_graph); marci@998: setFirstOutEdgesMap(_first_out_edges); marci@998: } marci@1019: marci@998: }; marci@556: deba@1472: template deba@1472: class NewEdgeSetAdaptorBase { deba@1472: public: deba@1472: deba@1472: typedef _Graph Graph; deba@1472: typedef typename Graph::Node Node; deba@1472: typedef typename Graph::NodeIt NodeIt; deba@1472: deba@1472: protected: deba@1472: deba@1472: struct NodeT { deba@1472: int first_out, first_in; deba@1472: NodeT() : first_out(-1), first_in(-1) {} deba@1472: }; deba@1472: deba@1472: class NodesImpl : protected Graph::template NodeMap { deba@1472: deba@1472: typedef typename Graph::template NodeMap Parent; deba@1472: typedef NewEdgeSetAdaptorBase Adaptor; deba@1472: deba@1472: Adaptor& adaptor; deba@1472: deba@1472: public: deba@1472: deba@1472: NodesImpl(Adaptor& _adaptor, const Graph& _graph) deba@1472: : Parent(_graph), adaptor(_adaptor) {} deba@1472: deba@1472: virtual ~NodesImpl() {} deba@1472: deba@1472: virtual void build() { deba@1472: Parent::build(); deba@1472: } deba@1472: deba@1472: virtual void clear() { deba@1472: adaptor._clear(); deba@1472: Parent::clear(); deba@1472: } deba@1472: deba@1472: virtual void add(const Node& node) { deba@1472: Parent::add(node); deba@1472: adaptor._add(node); deba@1472: } deba@1472: deba@1472: virtual void erase(const Node& node) { deba@1472: adaptor._erase(node); deba@1472: Parent::erase(node); deba@1472: } deba@1472: deba@1472: NodeT& operator[](const Node& node) { deba@1472: return Parent::operator[](node); deba@1472: } deba@1472: deba@1472: const NodeT& operator[](const Node& node) const { deba@1472: return Parent::operator[](node); deba@1472: } deba@1472: deba@1472: }; deba@1472: deba@1472: NodesImpl* nodes; deba@1472: deba@1472: struct EdgeT { deba@1472: Node source, target; deba@1472: int next_out, next_in; deba@1472: int prev_out, prev_in; deba@1472: EdgeT() : prev_out(-1), prev_in(-1) {} deba@1472: }; deba@1472: deba@1472: std::vector edges; deba@1472: deba@1472: int first_edge; deba@1472: int first_free_edge; deba@1472: deba@1472: virtual void _clear() = 0; deba@1472: virtual void _add(const Node& node) = 0; deba@1472: virtual void _erase(const Node& node) = 0; deba@1472: deba@1472: const Graph* graph; deba@1472: deba@1472: void initalize(const Graph& _graph, NodesImpl& _nodes) { deba@1472: graph = &_graph; deba@1472: nodes = &_nodes; deba@1472: } deba@1472: deba@1472: public: deba@1472: deba@1472: class Edge { deba@1472: friend class NewEdgeSetAdaptorBase; deba@1472: protected: deba@1472: Edge(int _id) : id(_id) {} deba@1472: int id; deba@1472: public: deba@1472: Edge() {} deba@1472: Edge(Invalid) : id(-1) {} deba@1472: bool operator==(const Edge& edge) const { return id == edge.id; } deba@1472: bool operator!=(const Edge& edge) const { return id != edge.id; } deba@1472: bool operator<(const Edge& edge) const { return id < edge.id; } deba@1472: }; deba@1472: deba@1472: NewEdgeSetAdaptorBase() : first_edge(-1), first_free_edge(-1) {} deba@1472: virtual ~NewEdgeSetAdaptorBase() {} deba@1472: deba@1472: Edge addEdge(const Node& source, const Node& target) { deba@1472: int n; deba@1472: if (first_free_edge == -1) { deba@1472: n = edges.size(); deba@1472: edges.push_back(EdgeT()); deba@1472: } else { deba@1472: n = first_free_edge; deba@1472: first_free_edge = edges[first_free_edge].next_in; deba@1472: } deba@1472: edges[n].next_in = (*nodes)[target].first_in; deba@1472: (*nodes)[target].first_in = n; deba@1472: edges[n].next_out = (*nodes)[source].first_out; deba@1472: (*nodes)[source].first_out = n; deba@1472: edges[n].source = source; deba@1472: edges[n].target = target; deba@1472: return Edge(n); deba@1472: } deba@1472: deba@1472: void erase(const Edge& edge) { deba@1472: int n = edge.id; deba@1472: if (edges[n].prev_in != -1) { deba@1472: edges[edges[n].prev_in].next_in = edges[n].next_in; deba@1472: } else { deba@1472: (*nodes)[edges[n].target].first_in = edges[n].next_in; deba@1472: } deba@1472: if (edges[n].next_in != -1) { deba@1472: edges[edges[n].next_in].prev_in = edges[n].prev_in; deba@1472: } deba@1472: deba@1472: if (edges[n].prev_out != -1) { deba@1472: edges[edges[n].prev_out].next_out = edges[n].next_out; deba@1472: } else { deba@1472: (*nodes)[edges[n].source].first_out = edges[n].next_out; deba@1472: } deba@1472: if (edges[n].next_out != -1) { deba@1472: edges[edges[n].next_out].prev_out = edges[n].prev_out; deba@1472: } deba@1472: deba@1472: } deba@1472: deba@1472: void first(Node& node) const { deba@1472: graph->first(node); deba@1472: } deba@1472: deba@1472: void next(Node& node) const { deba@1472: graph->next(node); deba@1472: } deba@1472: deba@1472: void first(Edge& edge) const { deba@1472: Node node; deba@1472: for (first(node); node != INVALID && (*nodes)[node].first_in == -1; deba@1472: next(node)); deba@1472: edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in; deba@1472: } deba@1472: deba@1472: void next(Edge& edge) const { deba@1472: if (edges[edge.id].next_in != -1) { deba@1472: edge.id = edges[edge.id].next_in; deba@1472: } else { deba@1472: Node node = edges[edge.id].target; deba@1472: for (next(node); node != INVALID && (*nodes)[node].first_in == -1; deba@1472: next(node)); deba@1472: edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in; deba@1472: } deba@1472: } deba@1472: deba@1472: void firstOut(Edge& edge, const Node& node) const { deba@1472: edge.id = (*nodes)[node].first_out; deba@1472: } deba@1472: deba@1472: void nextOut(Edge& edge) const { deba@1472: edge.id = edges[edge.id].next_out; deba@1472: } deba@1472: deba@1472: void firstIn(Edge& edge, const Node& node) const { deba@1472: edge.id = (*nodes)[node].first_in; deba@1472: } deba@1472: deba@1472: void nextIn(Edge& edge) const { deba@1472: edge.id = edges[edge.id].next_in; deba@1472: } deba@1472: deba@1472: int id(const Node& node) const { return graph->id(node); } deba@1472: int id(const Edge& edge) const { return edge.id; } deba@1472: deba@1472: Node fromId(int id, Node) const { return graph->fromId(id, Node()); } deba@1472: Edge fromId(int id, Edge) const { return Edge(id); } deba@1472: deba@1472: int maxId(Node) const { return graph->maxId(Node()); }; deba@1472: int maxId(Edge) const { return edges.size() - 1; } deba@1472: deba@1472: Node source(const Edge& edge) const { return edges[edge.id].source;} deba@1472: Node target(const Edge& edge) const { return edges[edge.id].target;} deba@1472: deba@1472: }; deba@1472: deba@1538: deba@1538: /// \brief Graph adaptor using a node set of another graph and an deba@1538: /// own edge set. deba@1538: /// deba@1538: /// This structure can be used to establish another graph over a node set deba@1538: /// of an existing one. The node iterator will go through the nodes of the deba@1538: /// original graph. deba@1538: /// deba@1538: /// \param _Graph The type of the graph which shares its node set with alpar@1631: /// this class. Its interface must conform to the \ref concept::StaticGraph deba@1538: /// "StaticGraph" concept. deba@1538: /// deba@1538: /// In the edge extension and removing it conforms to the alpar@1631: /// \ref concept::ExtendableGraph "ExtendableGraph" concept. deba@1472: template deba@1472: class NewEdgeSetAdaptor : deba@1472: public ErasableGraphExtender< deba@1472: ClearableGraphExtender< deba@1472: ExtendableGraphExtender< deba@1669: MappableGraphExtender< deba@1472: IterableGraphExtender< deba@1472: AlterableGraphExtender< deba@1472: NewEdgeSetAdaptorBase<_Graph> > > > > > > { deba@1472: deba@1472: public: deba@1472: deba@1472: typedef ErasableGraphExtender< deba@1472: ClearableGraphExtender< deba@1472: ExtendableGraphExtender< deba@1669: MappableGraphExtender< deba@1472: IterableGraphExtender< deba@1472: AlterableGraphExtender< deba@1472: NewEdgeSetAdaptorBase<_Graph> > > > > > > Parent; deba@1472: deba@1472: deba@1472: typedef typename Parent::Node Node; deba@1472: typedef typename Parent::Edge Edge; deba@1472: deba@1472: private: deba@1472: deba@1472: virtual void _clear() { deba@1472: Parent::edges.clear(); deba@1472: Parent::first_edge = -1; deba@1472: Parent::first_free_edge = -1; deba@1472: Parent::getNotifier(Edge()).clear(); deba@1472: Parent::getNotifier(Node()).clear(); deba@1472: } deba@1472: deba@1472: virtual void _add(const Node& node) { deba@1472: Parent::getNotifier(Node()).add(node); deba@1472: } deba@1472: deba@1472: virtual void _erase(const Node& node) { deba@1472: Edge edge; deba@1472: Parent::firstOut(edge, node); deba@1472: while (edge != INVALID) { deba@1472: Parent::erase(edge); deba@1472: Parent::firstOut(edge, node); deba@1472: } deba@1472: deba@1472: Parent::firstIn(edge, node); deba@1472: while (edge != INVALID) { deba@1472: Parent::erase(edge); deba@1472: Parent::firstIn(edge, node); deba@1472: } deba@1472: deba@1472: Parent::getNotifier(Node()).erase(node); deba@1472: } deba@1472: deba@1472: deba@1472: typedef typename Parent::NodesImpl NodesImpl; deba@1472: deba@1472: NodesImpl nodes; deba@1472: deba@1472: public: deba@1472: deba@1538: /// \brief Constructor of the adaptor. deba@1538: /// deba@1538: /// Constructor of the adaptor. deba@1472: NewEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) { deba@1472: Parent::initalize(_graph, nodes); deba@1472: } deba@1472: deba@1472: void clear() { deba@1538: Parent::getNotifier(Edge()).clear(); deba@1538: deba@1472: Parent::edges.clear(); deba@1472: Parent::first_edge = -1; deba@1472: Parent::first_free_edge = -1; deba@1538: } deba@1538: deba@1538: }; deba@1472: deba@1538: /// \brief Graph adaptor using a node set of another graph and an deba@1538: /// own undir edge set. deba@1538: /// deba@1538: /// This structure can be used to establish another undirected graph over deba@1538: /// a node set of an existing one. The node iterator will go through the deba@1538: /// nodes of the original graph. deba@1538: /// deba@1538: /// \param _Graph The type of the graph which shares its node set with alpar@1631: /// this class. Its interface must conform to the \ref concept::StaticGraph deba@1538: /// "StaticGraph" concept. deba@1538: /// deba@1538: /// In the edge extension and removing it conforms to the alpar@1631: /// \ref concept::ExtendableGraph "ExtendableGraph" concept. deba@1538: template deba@1538: class NewUndirEdgeSetAdaptor : deba@1538: public ErasableUndirGraphExtender< deba@1538: ClearableUndirGraphExtender< deba@1538: ExtendableUndirGraphExtender< deba@1538: MappableUndirGraphExtender< deba@1538: IterableUndirGraphExtender< deba@1538: AlterableUndirGraphExtender< deba@1538: UndirGraphExtender< deba@1538: NewEdgeSetAdaptorBase<_Graph> > > > > > > > { deba@1538: deba@1538: public: deba@1538: deba@1538: typedef ErasableUndirGraphExtender< deba@1538: ClearableUndirGraphExtender< deba@1538: ExtendableUndirGraphExtender< deba@1538: MappableUndirGraphExtender< deba@1538: IterableUndirGraphExtender< deba@1538: AlterableUndirGraphExtender< deba@1538: UndirGraphExtender< deba@1538: NewEdgeSetAdaptorBase<_Graph> > > > > > > > Parent; deba@1538: deba@1538: deba@1538: typedef typename Parent::Node Node; deba@1538: typedef typename Parent::Edge Edge; deba@1538: typedef typename Parent::UndirEdge UndirEdge; deba@1538: deba@1538: private: deba@1538: deba@1538: virtual void _clear() { deba@1538: Parent::edges.clear(); deba@1538: Parent::first_edge = -1; deba@1538: Parent::first_free_edge = -1; deba@1538: Parent::getNotifier(Edge()).clear(); deba@1538: Parent::getNotifier(Node()).clear(); deba@1538: } deba@1538: deba@1538: virtual void _add(const Node& node) { deba@1538: Parent::getNotifier(Node()).add(node); deba@1538: } deba@1538: deba@1538: virtual void _erase(const Node& node) { deba@1538: Edge edge; deba@1538: Parent::firstOut(edge, node); deba@1538: while (edge != INVALID) { deba@1538: Parent::erase(edge); deba@1538: Parent::firstOut(edge, node); deba@1538: } deba@1538: deba@1538: Parent::firstIn(edge, node); deba@1538: while (edge != INVALID) { deba@1538: Parent::erase(edge); deba@1538: Parent::firstIn(edge, node); deba@1538: } deba@1538: deba@1538: Parent::getNotifier(Node()).erase(node); deba@1538: } deba@1538: deba@1538: typedef typename Parent::NodesImpl NodesImpl; deba@1538: deba@1538: NodesImpl nodes; deba@1538: deba@1538: public: deba@1538: deba@1538: deba@1538: /// \brief Constructor of the adaptor. deba@1538: /// deba@1538: /// Constructor of the adaptor. deba@1538: NewUndirEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) { deba@1538: Parent::initalize(_graph, nodes); deba@1538: } deba@1538: deba@1538: void clear() { deba@1472: Parent::getNotifier(Edge()).clear(); deba@1538: Parent::getNotifier(UndirEdge()).clear(); deba@1538: deba@1538: Parent::edges.clear(); deba@1538: Parent::first_edge = -1; deba@1538: Parent::first_free_edge = -1; deba@1472: } deba@1472: deba@1472: }; deba@1472: marci@556: ///@} marci@556: alpar@921: } //namespace lemon marci@556: alpar@1401: #endif //LEMON_GRAPH_ADAPTOR_H marci@556: