deba@2211: /* -*- C++ -*- deba@2211: * deba@2225: * This file is a part of LEMON, a generic C++ optimization library deba@2225: * deba@2225: * Copyright (C) 2003-2006 deba@2225: * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport deba@2211: * (Egervary Research Group on Combinatorial Optimization, EGRES). deba@2211: * deba@2211: * Permission to use, modify and distribute this software is granted deba@2211: * provided that this copyright notice appears in all copies. For deba@2211: * precise terms see the accompanying LICENSE file. deba@2211: * deba@2211: * This software is provided "AS IS" with no warranty of any kind, deba@2211: * express or implied, and with no claim as to its suitability for any deba@2211: * purpose. deba@2211: * deba@2211: */ deba@2211: deba@2211: #ifndef LEMON_HAO_ORLIN_H deba@2211: #define LEMON_HAO_ORLIN_H deba@2211: deba@2340: #include deba@2340: deba@2340: deba@2340: deba@2211: #include deba@2211: #include deba@2340: #include deba@2211: #include deba@2211: deba@2211: #include deba@2211: #include deba@2211: #include deba@2211: #include deba@2211: deba@2211: /// \file deba@2376: /// \ingroup min_cut deba@2225: /// \brief Implementation of the Hao-Orlin algorithm. deba@2225: /// deba@2225: /// Implementation of the HaoOrlin algorithms class for testing network deba@2211: /// reliability. deba@2211: deba@2211: namespace lemon { deba@2211: deba@2376: /// \ingroup min_cut deba@2225: /// athos@2228: /// \brief %Hao-Orlin algorithm to find a minimum cut in directed graphs. deba@2211: /// athos@2273: /// Hao-Orlin calculates a minimum cut in a directed graph athos@2273: /// \f$ D=(V,A) \f$. It takes a fixed node \f$ source \in V \f$ and consists athos@2228: /// of two phases: in the first phase it determines a minimum cut athos@2273: /// with \f$ source \f$ on the source-side (i.e. a set \f$ X\subsetneq V \f$ athos@2273: /// with \f$ source \in X \f$ and minimal out-degree) and in the athos@2228: /// second phase it determines a minimum cut with \f$ source \f$ on the athos@2228: /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ athos@2228: /// and minimal out-degree). Obviously, the smaller of these two athos@2228: /// cuts will be a minimum cut of \f$ D \f$. The algorithm is a athos@2228: /// modified push-relabel preflow algorithm and our implementation athos@2228: /// calculates the minimum cut in \f$ O(n^3) \f$ time (we use the athos@2228: /// highest-label rule). The purpose of such an algorithm is testing athos@2228: /// network reliability. For an undirected graph with \f$ n \f$ athos@2228: /// nodes and \f$ e \f$ edges you can use the algorithm of Nagamochi athos@2273: /// and Ibaraki which solves the undirected problem in athos@2273: /// \f$ O(ne + n^2 \log(n)) \f$ time: it is implemented in the MinCut athos@2273: /// algorithm athos@2228: /// class. deba@2225: /// deba@2225: /// \param _Graph is the graph type of the algorithm. deba@2225: /// \param _CapacityMap is an edge map of capacities which should deba@2225: /// be any numreric type. The default type is _Graph::EdgeMap. deba@2225: /// \param _Tolerance is the handler of the inexact computation. The athos@2228: /// default type for this is Tolerance. deba@2211: /// deba@2211: /// \author Attila Bernath and Balazs Dezso deba@2225: #ifdef DOXYGEN deba@2225: template deba@2225: #else deba@2211: template , deba@2211: typename _Tolerance = Tolerance > deba@2225: #endif deba@2211: class HaoOrlin { deba@2211: protected: deba@2211: deba@2211: typedef _Graph Graph; deba@2211: typedef _CapacityMap CapacityMap; deba@2211: typedef _Tolerance Tolerance; deba@2211: deba@2211: typedef typename CapacityMap::Value Value; deba@2211: deba@2211: deba@2211: typedef typename Graph::Node Node; deba@2211: typedef typename Graph::NodeIt NodeIt; deba@2211: typedef typename Graph::EdgeIt EdgeIt; deba@2211: typedef typename Graph::OutEdgeIt OutEdgeIt; deba@2211: typedef typename Graph::InEdgeIt InEdgeIt; deba@2211: deba@2211: const Graph* _graph; deba@2225: deba@2211: const CapacityMap* _capacity; deba@2211: deba@2211: typedef typename Graph::template EdgeMap FlowMap; deba@2211: deba@2211: FlowMap* _preflow; deba@2211: deba@2211: Node _source, _target; deba@2211: int _node_num; deba@2211: deba@2211: typedef ResGraphAdaptor OutResGraph; deba@2225: typedef typename OutResGraph::Edge OutResEdge; deba@2225: deba@2225: OutResGraph* _out_res_graph; deba@2211: deba@2225: typedef RevGraphAdaptor RevGraph; deba@2225: RevGraph* _rev_graph; deba@2225: deba@2225: typedef ResGraphAdaptor InResGraph; deba@2225: typedef typename InResGraph::Edge InResEdge; deba@2225: deba@2225: InResGraph* _in_res_graph; deba@2225: deba@2211: typedef IterableBoolMap WakeMap; deba@2211: WakeMap* _wake; deba@2211: deba@2211: typedef typename Graph::template NodeMap DistMap; deba@2211: DistMap* _dist; deba@2211: deba@2211: typedef typename Graph::template NodeMap ExcessMap; deba@2211: ExcessMap* _excess; deba@2211: deba@2211: typedef typename Graph::template NodeMap SourceSetMap; deba@2211: SourceSetMap* _source_set; deba@2211: deba@2211: std::vector _level_size; deba@2211: deba@2211: int _highest_active; deba@2211: std::vector > _active_nodes; deba@2211: deba@2211: int _dormant_max; deba@2211: std::vector > _dormant; deba@2211: deba@2211: deba@2211: Value _min_cut; deba@2211: deba@2211: typedef typename Graph::template NodeMap MinCutMap; deba@2211: MinCutMap* _min_cut_map; deba@2211: deba@2211: Tolerance _tolerance; deba@2211: deba@2211: public: deba@2211: deba@2225: /// \brief Constructor deba@2225: /// deba@2225: /// Constructor of the algorithm class. deba@2211: HaoOrlin(const Graph& graph, const CapacityMap& capacity, deba@2211: const Tolerance& tolerance = Tolerance()) : deba@2211: _graph(&graph), _capacity(&capacity), deba@2225: _preflow(0), _source(), _target(), deba@2340: _out_res_graph(0), _rev_graph(0), _in_res_graph(0), deba@2211: _wake(0),_dist(0), _excess(0), _source_set(0), deba@2211: _highest_active(), _active_nodes(), _dormant_max(), _dormant(), deba@2211: _min_cut(), _min_cut_map(0), _tolerance(tolerance) {} deba@2211: deba@2211: ~HaoOrlin() { deba@2211: if (_min_cut_map) { deba@2211: delete _min_cut_map; deba@2211: } deba@2225: if (_in_res_graph) { deba@2225: delete _in_res_graph; deba@2225: } deba@2225: if (_rev_graph) { deba@2225: delete _rev_graph; deba@2225: } deba@2225: if (_out_res_graph) { deba@2225: delete _out_res_graph; deba@2211: } deba@2211: if (_source_set) { deba@2211: delete _source_set; deba@2211: } deba@2211: if (_excess) { deba@2211: delete _excess; deba@2211: } deba@2211: if (_dist) { deba@2211: delete _dist; deba@2211: } deba@2211: if (_wake) { deba@2211: delete _wake; deba@2211: } deba@2211: if (_preflow) { deba@2211: delete _preflow; deba@2211: } deba@2211: } deba@2211: deba@2211: private: deba@2211: deba@2340: template deba@2340: void findMinCut(const Node& target, bool out, ResGraph& res_graph) { deba@2225: typedef typename ResGraph::Edge ResEdge; deba@2225: typedef typename ResGraph::OutEdgeIt ResOutEdgeIt; deba@2225: deba@2225: for (typename Graph::EdgeIt it(*_graph); it != INVALID; ++it) { deba@2225: (*_preflow)[it] = 0; deba@2225: } deba@2225: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2225: (*_wake)[it] = true; deba@2225: (*_dist)[it] = 1; deba@2225: (*_excess)[it] = 0; deba@2225: (*_source_set)[it] = false; deba@2225: } deba@2225: deba@2225: _dormant[0].push_front(_source); deba@2225: (*_source_set)[_source] = true; deba@2225: _dormant_max = 0; deba@2225: (*_wake)[_source] = false; deba@2225: deba@2225: _level_size[0] = 1; deba@2225: _level_size[1] = _node_num - 1; deba@2225: deba@2340: _target = target; deba@2340: (*_dist)[target] = 0; deba@2340: deba@2340: for (ResOutEdgeIt it(res_graph, _source); it != INVALID; ++it) { deba@2340: Value delta = res_graph.rescap(it); deba@2340: (*_excess)[_source] -= delta; deba@2340: res_graph.augment(it, delta); deba@2340: Node a = res_graph.target(it); deba@2340: if ((*_excess)[a] == 0 && (*_wake)[a] && a != _target) { deba@2340: _active_nodes[(*_dist)[a]].push_front(a); deba@2340: if (_highest_active < (*_dist)[a]) { deba@2340: _highest_active = (*_dist)[a]; deba@2340: } deba@2340: } deba@2340: (*_excess)[a] += delta; deba@2340: } deba@2340: deba@2340: deba@2225: do { deba@2225: Node n; deba@2225: while ((n = findActiveNode()) != INVALID) { deba@2340: for (ResOutEdgeIt e(res_graph, n); e != INVALID; ++e) { deba@2340: Node a = res_graph.target(e); deba@2340: if ((*_dist)[a] >= (*_dist)[n] || !(*_wake)[a]) continue; deba@2340: Value delta = res_graph.rescap(e); deba@2340: if (_tolerance.positive((*_excess)[n] - delta)) { deba@2340: (*_excess)[n] -= delta; deba@2340: } else { deba@2225: delta = (*_excess)[n]; deba@2340: (*_excess)[n] = 0; deba@2225: } deba@2225: res_graph.augment(e, delta); deba@2340: if ((*_excess)[a] == 0 && a != _target) { deba@2225: _active_nodes[(*_dist)[a]].push_front(a); deba@2225: } deba@2225: (*_excess)[a] += delta; deba@2340: if ((*_excess)[n] == 0) break; deba@2225: } deba@2340: if ((*_excess)[n] != 0) { deba@2340: relabel(n, res_graph); deba@2225: } deba@2225: } deba@2225: deba@2225: Value current_value = cutValue(out); deba@2225: if (_min_cut > current_value){ deba@2225: if (out) { deba@2225: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2225: _min_cut_map->set(it, !(*_wake)[it]); deba@2225: } deba@2225: } else { deba@2225: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2225: _min_cut_map->set(it, (*_wake)[it]); deba@2225: } deba@2225: } deba@2225: deba@2225: _min_cut = current_value; deba@2225: } deba@2225: deba@2225: } while (selectNewSink(res_graph)); deba@2225: } deba@2225: deba@2340: template deba@2340: void relabel(const Node& n, ResGraph& res_graph) { deba@2225: typedef typename ResGraph::OutEdgeIt ResOutEdgeIt; deba@2225: deba@2225: int k = (*_dist)[n]; deba@2211: if (_level_size[k] == 1) { deba@2211: ++_dormant_max; deba@2211: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2211: if ((*_wake)[it] && (*_dist)[it] >= k) { deba@2211: (*_wake)[it] = false; deba@2211: _dormant[_dormant_max].push_front(it); deba@2211: --_level_size[(*_dist)[it]]; deba@2211: } deba@2211: } deba@2340: --_highest_active; deba@2225: } else { deba@2225: int new_dist = _node_num; deba@2225: for (ResOutEdgeIt e(res_graph, n); e != INVALID; ++e) { deba@2225: Node t = res_graph.target(e); deba@2225: if ((*_wake)[t] && new_dist > (*_dist)[t]) { deba@2225: new_dist = (*_dist)[t]; deba@2225: } deba@2225: } deba@2225: if (new_dist == _node_num) { deba@2211: ++_dormant_max; deba@2225: (*_wake)[n] = false; deba@2225: _dormant[_dormant_max].push_front(n); deba@2225: --_level_size[(*_dist)[n]]; deba@2225: } else { deba@2225: --_level_size[(*_dist)[n]]; deba@2225: (*_dist)[n] = new_dist + 1; deba@2225: _highest_active = (*_dist)[n]; deba@2225: _active_nodes[_highest_active].push_front(n); deba@2225: ++_level_size[(*_dist)[n]]; deba@2211: } deba@2211: } deba@2211: } deba@2211: deba@2225: template deba@2225: bool selectNewSink(ResGraph& res_graph) { deba@2225: typedef typename ResGraph::OutEdgeIt ResOutEdgeIt; deba@2225: deba@2211: Node old_target = _target; deba@2211: (*_wake)[_target] = false; deba@2211: --_level_size[(*_dist)[_target]]; deba@2211: _dormant[0].push_front(_target); deba@2211: (*_source_set)[_target] = true; deba@2386: if (int(_dormant[0].size()) == _node_num){ deba@2211: _dormant[0].clear(); deba@2211: return false; deba@2211: } deba@2211: deba@2211: bool wake_was_empty = false; deba@2211: deba@2211: if(_wake->trueNum() == 0) { deba@2211: while (!_dormant[_dormant_max].empty()){ deba@2211: (*_wake)[_dormant[_dormant_max].front()] = true; deba@2211: ++_level_size[(*_dist)[_dormant[_dormant_max].front()]]; deba@2211: _dormant[_dormant_max].pop_front(); deba@2211: } deba@2211: --_dormant_max; deba@2211: wake_was_empty = true; deba@2211: } deba@2211: deba@2211: int min_dist = std::numeric_limits::max(); deba@2211: for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) { deba@2211: if (min_dist > (*_dist)[it]){ deba@2211: _target = it; deba@2211: min_dist = (*_dist)[it]; deba@2211: } deba@2211: } deba@2211: deba@2211: if (wake_was_empty){ deba@2211: for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) { deba@2340: if ((*_excess)[it] != 0 && it != _target) { deba@2340: _active_nodes[(*_dist)[it]].push_front(it); deba@2340: if (_highest_active < (*_dist)[it]) { deba@2340: _highest_active = (*_dist)[it]; deba@2211: } deba@2211: } deba@2211: } deba@2211: } deba@2211: deba@2340: Node n = old_target; deba@2340: for (ResOutEdgeIt e(res_graph, n); e != INVALID; ++e){ deba@2340: Node a = res_graph.target(e); deba@2340: if (!(*_wake)[a]) continue; deba@2340: Value delta = res_graph.rescap(e); deba@2340: res_graph.augment(e, delta); deba@2340: (*_excess)[n] -= delta; deba@2340: if ((*_excess)[a] == 0 && (*_wake)[a] && a != _target) { deba@2340: _active_nodes[(*_dist)[a]].push_front(a); deba@2340: if (_highest_active < (*_dist)[a]) { deba@2340: _highest_active = (*_dist)[a]; deba@2225: } deba@2340: } deba@2340: (*_excess)[a] += delta; deba@2211: } deba@2211: deba@2211: return true; deba@2211: } deba@2340: deba@2211: Node findActiveNode() { deba@2211: while (_highest_active > 0 && _active_nodes[_highest_active].empty()){ deba@2211: --_highest_active; deba@2211: } deba@2211: if( _highest_active > 0) { deba@2211: Node n = _active_nodes[_highest_active].front(); deba@2211: _active_nodes[_highest_active].pop_front(); deba@2211: return n; deba@2211: } else { deba@2211: return INVALID; deba@2211: } deba@2211: } deba@2211: deba@2225: Value cutValue(bool out) { deba@2225: Value value = 0; deba@2225: if (out) { deba@2225: for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) { deba@2225: for (InEdgeIt e(*_graph, it); e != INVALID; ++e) { deba@2225: if (!(*_wake)[_graph->source(e)]){ deba@2225: value += (*_capacity)[e]; deba@2225: } deba@2225: } deba@2225: } deba@2225: } else { deba@2225: for (typename WakeMap::TrueIt it(*_wake); it != INVALID; ++it) { deba@2225: for (OutEdgeIt e(*_graph, it); e != INVALID; ++e) { deba@2225: if (!(*_wake)[_graph->target(e)]){ deba@2225: value += (*_capacity)[e]; deba@2225: } deba@2225: } deba@2211: } deba@2211: } deba@2225: return value; deba@2211: } deba@2225: deba@2211: deba@2211: public: deba@2211: deba@2225: /// \name Execution control deba@2225: /// The simplest way to execute the algorithm is to use deba@2225: /// one of the member functions called \c run(...). deba@2225: /// \n deba@2225: /// If you need more control on the execution, deba@2225: /// first you must call \ref init(), then the \ref calculateIn() or deba@2225: /// \ref calculateIn() functions. deba@2225: deba@2225: /// @{ deba@2225: deba@2211: /// \brief Initializes the internal data structures. deba@2211: /// deba@2211: /// Initializes the internal data structures. It creates deba@2225: /// the maps, residual graph adaptors and some bucket structures deba@2211: /// for the algorithm. deba@2211: void init() { deba@2211: init(NodeIt(*_graph)); deba@2211: } deba@2211: deba@2211: /// \brief Initializes the internal data structures. deba@2211: /// deba@2211: /// Initializes the internal data structures. It creates deba@2211: /// the maps, residual graph adaptor and some bucket structures athos@2228: /// for the algorithm. Node \c source is used as the push-relabel deba@2211: /// algorithm's source. deba@2211: void init(const Node& source) { deba@2211: _source = source; deba@2211: _node_num = countNodes(*_graph); deba@2211: deba@2211: _dormant.resize(_node_num); deba@2211: _level_size.resize(_node_num, 0); deba@2211: _active_nodes.resize(_node_num); deba@2211: deba@2211: if (!_preflow) { deba@2211: _preflow = new FlowMap(*_graph); deba@2211: } deba@2211: if (!_wake) { deba@2211: _wake = new WakeMap(*_graph); deba@2211: } deba@2211: if (!_dist) { deba@2211: _dist = new DistMap(*_graph); deba@2211: } deba@2211: if (!_excess) { deba@2211: _excess = new ExcessMap(*_graph); deba@2211: } deba@2211: if (!_source_set) { deba@2211: _source_set = new SourceSetMap(*_graph); deba@2211: } deba@2225: if (!_out_res_graph) { deba@2225: _out_res_graph = new OutResGraph(*_graph, *_capacity, *_preflow); deba@2225: } deba@2225: if (!_rev_graph) { deba@2225: _rev_graph = new RevGraph(*_graph); deba@2225: } deba@2225: if (!_in_res_graph) { deba@2225: _in_res_graph = new InResGraph(*_rev_graph, *_capacity, *_preflow); deba@2225: } deba@2211: if (!_min_cut_map) { deba@2211: _min_cut_map = new MinCutMap(*_graph); deba@2211: } deba@2211: deba@2211: _min_cut = std::numeric_limits::max(); deba@2211: } deba@2211: deba@2211: athos@2228: /// \brief Calculates a minimum cut with \f$ source \f$ on the athos@2228: /// source-side. deba@2211: /// athos@2228: /// \brief Calculates a minimum cut with \f$ source \f$ on the athos@2273: /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$ athos@2273: /// and minimal out-degree). deba@2211: void calculateOut() { deba@2211: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2211: if (it != _source) { deba@2211: calculateOut(it); deba@2211: return; deba@2211: } deba@2211: } deba@2211: } deba@2211: athos@2228: /// \brief Calculates a minimum cut with \f$ source \f$ on the athos@2228: /// source-side. deba@2211: /// athos@2228: /// \brief Calculates a minimum cut with \f$ source \f$ on the athos@2273: /// source-side (i.e. a set \f$ X\subsetneq V \f$ with \f$ source \in X \f$ athos@2273: /// and minimal out-degree). The \c target is the initial target deba@2211: /// for the push-relabel algorithm. deba@2211: void calculateOut(const Node& target) { deba@2340: findMinCut(target, true, *_out_res_graph); deba@2211: } deba@2211: athos@2228: /// \brief Calculates a minimum cut with \f$ source \f$ on the athos@2228: /// sink-side. deba@2225: /// athos@2228: /// \brief Calculates a minimum cut with \f$ source \f$ on the athos@2273: /// sink-side (i.e. a set \f$ X\subsetneq V \f$ with athos@2273: /// \f$ source \notin X \f$ athos@2273: /// and minimal out-degree). deba@2211: void calculateIn() { deba@2211: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2211: if (it != _source) { deba@2211: calculateIn(it); deba@2211: return; deba@2211: } deba@2211: } deba@2211: } deba@2211: athos@2228: /// \brief Calculates a minimum cut with \f$ source \f$ on the athos@2228: /// sink-side. deba@2225: /// athos@2228: /// \brief Calculates a minimum cut with \f$ source \f$ on the athos@2273: /// sink-side (i.e. a set \f$ X\subsetneq V athos@2273: /// \f$ with \f$ source \notin X \f$ and minimal out-degree). athos@2273: /// The \c target is the initial athos@2228: /// target for the push-relabel algorithm. deba@2225: void calculateIn(const Node& target) { deba@2340: findMinCut(target, false, *_in_res_graph); deba@2225: } deba@2225: deba@2225: /// \brief Runs the algorithm. deba@2225: /// athos@2228: /// Runs the algorithm. It finds nodes \c source and \c target athos@2228: /// arbitrarily and then calls \ref init(), \ref calculateOut() athos@2228: /// and \ref calculateIn(). deba@2211: void run() { deba@2211: init(); deba@2211: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2211: if (it != _source) { deba@2225: calculateOut(it); deba@2225: calculateIn(it); deba@2211: return; deba@2211: } deba@2211: } deba@2211: } deba@2211: deba@2225: /// \brief Runs the algorithm. deba@2225: /// athos@2228: /// Runs the algorithm. It uses the given \c source node, finds a athos@2228: /// proper \c target and then calls the \ref init(), \ref athos@2228: /// calculateOut() and \ref calculateIn(). deba@2211: void run(const Node& s) { deba@2211: init(s); deba@2211: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2211: if (it != _source) { deba@2225: calculateOut(it); deba@2225: calculateIn(it); deba@2211: return; deba@2211: } deba@2211: } deba@2211: } deba@2211: deba@2225: /// \brief Runs the algorithm. deba@2225: /// deba@2225: /// Runs the algorithm. It just calls the \ref init() and then deba@2225: /// \ref calculateOut() and \ref calculateIn(). deba@2211: void run(const Node& s, const Node& t) { deba@2225: init(s); deba@2225: calculateOut(t); deba@2225: calculateIn(t); deba@2211: } deba@2225: deba@2225: /// @} deba@2211: athos@2275: /// \name Query Functions athos@2275: /// The result of the %HaoOrlin algorithm deba@2225: /// can be obtained using these functions. deba@2225: /// \n athos@2275: /// Before using these functions, either \ref run(), \ref deba@2225: /// calculateOut() or \ref calculateIn() must be called. deba@2225: deba@2225: /// @{ deba@2225: deba@2225: /// \brief Returns the value of the minimum value cut. deba@2211: /// deba@2225: /// Returns the value of the minimum value cut. deba@2211: Value minCut() const { deba@2211: return _min_cut; deba@2211: } deba@2211: deba@2211: athos@2228: /// \brief Returns a minimum cut. deba@2211: /// deba@2211: /// Sets \c nodeMap to the characteristic vector of a minimum athos@2228: /// value cut: it will give a nonempty set \f$ X\subsetneq V \f$ athos@2228: /// with minimal out-degree (i.e. \c nodeMap will be true exactly athos@2275: /// for the nodes of \f$ X \f$). \pre nodeMap should be a athos@2228: /// bool-valued node-map. deba@2211: template deba@2211: Value minCut(NodeMap& nodeMap) const { deba@2211: for (NodeIt it(*_graph); it != INVALID; ++it) { deba@2211: nodeMap.set(it, (*_min_cut_map)[it]); deba@2211: } deba@2211: return minCut(); deba@2211: } deba@2225: deba@2225: /// @} deba@2211: deba@2211: }; //class HaoOrlin deba@2211: deba@2211: deba@2211: } //namespace lemon deba@2211: deba@2211: #endif //LEMON_HAO_ORLIN_H