athos@1247: /* -*- C++ -*- alpar@1253: * src/lemon/lp_base.h - Part of LEMON, a generic C++ optimization library athos@1247: * athos@1247: * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport athos@1247: * (Egervary Combinatorial Optimization Research Group, EGRES). athos@1247: * athos@1247: * Permission to use, modify and distribute this software is granted athos@1247: * provided that this copyright notice appears in all copies. For athos@1247: * precise terms see the accompanying LICENSE file. athos@1247: * athos@1247: * This software is provided "AS IS" with no warranty of any kind, athos@1247: * express or implied, and with no claim as to its suitability for any athos@1247: * purpose. athos@1247: * athos@1247: */ athos@1247: athos@1246: #ifndef LEMON_LP_BASE_H athos@1246: #define LEMON_LP_BASE_H athos@1246: alpar@1253: #include alpar@1253: alpar@1253: #include alpar@1253: alpar@1253: #include"lin_expr.h" athos@1246: ///\file athos@1246: ///\brief The interface of the LP solver interface. athos@1246: namespace lemon { alpar@1253: alpar@1253: ///Internal data structure to convert floating id's to fix one's alpar@1253: alpar@1253: ///\todo This might by implemented to be usable in other places. alpar@1253: class _FixId alpar@1253: { alpar@1253: std::vector index; alpar@1253: std::vector cross; alpar@1253: int first_free; alpar@1253: public: alpar@1253: _FixId() : first_free(-1) {}; alpar@1253: ///Convert a floating id to a fix one alpar@1253: alpar@1253: ///\param n is a floating id alpar@1253: ///\return the corresponding fix id alpar@1253: int fixId(int n) {return cross[n];} alpar@1253: ///Convert a fix id to a floating one alpar@1253: alpar@1253: ///\param n is a fix id alpar@1253: ///\return the corresponding floating id alpar@1253: int floatingId(int n) { return index[n];} alpar@1253: ///Add a new floating id. alpar@1253: alpar@1253: ///\param n is a floating id alpar@1253: ///\return the fix id of the new value alpar@1253: ///\todo Multiple additions should also be handled. alpar@1253: int insert(int n) alpar@1253: { alpar@1253: if(n>=int(cross.size())) { alpar@1253: cross.resize(n+1); alpar@1253: if(first_free==-1) { alpar@1253: cross[n]=index.size(); alpar@1253: index.push_back(n); alpar@1253: } alpar@1253: else { alpar@1253: cross[n]=first_free; alpar@1253: int next=index[first_free]; alpar@1253: index[first_free]=n; alpar@1253: first_free=next; alpar@1253: } alpar@1253: } alpar@1253: else throw LogicError(); //floatingId-s must form a continuous range; alpar@1253: } alpar@1253: ///Remove a fix id. alpar@1253: alpar@1253: ///\param n is a fix id alpar@1253: /// alpar@1253: void erase(int n) alpar@1253: { alpar@1253: int fl=index[n]; alpar@1253: index[n]=first_free; alpar@1253: first_free=n; alpar@1253: for(int i=fl+1;i Expr; alpar@1253: alpar@1253: protected: alpar@1253: _FixId rows; alpar@1253: _FixId cols; athos@1246: athos@1246: //MATRIX MANIPULATING FUNCTIONS athos@1246: athos@1246: /// \e athos@1246: virtual int _addCol() = 0; athos@1246: /// \e athos@1246: virtual int _addRow() = 0; athos@1246: /// \e alpar@1253: athos@1246: /// \warning Arrays are indexed from 1 (datum at index 0 is ignored) alpar@1253: /// athos@1246: virtual void _setRowCoeffs(int i, athos@1251: int length, athos@1247: int const * indices, athos@1247: Value const * values ) = 0; athos@1246: /// \e alpar@1253: athos@1246: /// \warning Arrays are indexed from 1 (datum at index 0 is ignored) alpar@1253: /// athos@1246: virtual void _setColCoeffs(int i, athos@1251: int length, athos@1247: int const * indices, athos@1247: Value const * values ) = 0; athos@1246: athos@1247: /// \e alpar@1253: athos@1247: /// The lower bound of a variable (column) have to be given by an athos@1247: /// extended number of type Value, i.e. a finite number of type athos@1247: /// Value or -INF. athos@1247: virtual void _setColLowerBound(int i, Value value) = 0; athos@1247: /// \e alpar@1253: athos@1247: /// The upper bound of a variable (column) have to be given by an athos@1247: /// extended number of type Value, i.e. a finite number of type athos@1247: /// Value or INF. athos@1247: virtual void _setColUpperBound(int i, Value value) = 0; athos@1247: /// \e alpar@1253: athos@1247: /// The lower bound of a linear expression (row) have to be given by an athos@1247: /// extended number of type Value, i.e. a finite number of type athos@1247: /// Value or -INF. athos@1247: virtual void _setRowLowerBound(int i, Value value) = 0; athos@1247: /// \e alpar@1253: athos@1247: /// The upper bound of a linear expression (row) have to be given by an athos@1247: /// extended number of type Value, i.e. a finite number of type athos@1247: /// Value or INF. athos@1247: virtual void _setRowUpperBound(int i, Value value) = 0; athos@1247: athos@1247: /// \e athos@1247: virtual void _setObjCoeff(int i, Value obj_coef) = 0; alpar@1253: alpar@1253: ///\e alpar@1253: alpar@1253: ///\bug unimplemented!!!! alpar@1253: void clearObj() {} alpar@1253: public: alpar@1253: alpar@1253: alpar@1253: ///\e alpar@1253: virtual ~LpSolverBase() {} alpar@1253: alpar@1253: ///Add a new empty column (i.e a new variable) to the LP alpar@1253: Col addCol() { Col c; c.id=cols.insert(_addCol()); return c;} alpar@1253: ///Add a new empty row (i.e a new constaint) to the LP alpar@1253: Row addRow() { Row r; r.id=rows.insert(_addRow()); return r;} alpar@1253: alpar@1253: ///Add a new row (i.e a new constaint) to the LP alpar@1253: alpar@1253: ///\param l lower bound (-INF means no bound) alpar@1253: ///\param e a linear expression (see \ref Expr) alpar@1253: ///\param u upper bound (INF means no bound) alpar@1253: ///\bug This is a temportary function. The interface will change to alpar@1253: ///a better one. alpar@1253: Row addRow(Value l,Expr e, Value u) { alpar@1253: Row r=addRow(); alpar@1253: std::vector indices; alpar@1253: std::vector values; alpar@1253: indices.push_back(0); alpar@1253: values.push_back(0); alpar@1253: for(Expr::iterator i=e.begin(); i!=e.end(); ++i) { alpar@1253: indices.push_back(cols.floatingId((*i).first.id)); alpar@1253: values.push_back((*i).second); alpar@1253: } alpar@1253: _setRowCoeffs(rows.floatingId(r.id),indices.size()-1, alpar@1253: &indices[0],&values[0]); alpar@1253: _setRowLowerBound(rows.floatingId(r.id),l); alpar@1253: _setRowUpperBound(rows.floatingId(r.id),l); alpar@1253: return r; alpar@1253: } alpar@1253: alpar@1253: /// Set the lower bound of a column (i.e a variable) alpar@1253: alpar@1253: /// The upper bound of a variable (column) have to be given by an alpar@1253: /// extended number of type Value, i.e. a finite number of type alpar@1253: /// Value or -INF. alpar@1253: virtual void setColLowerBound(Col c, Value value) { alpar@1253: _setColLowerBound(cols.floatingId(c.id),value); alpar@1253: } alpar@1253: /// Set the upper bound of a column (i.e a variable) alpar@1253: alpar@1253: /// The upper bound of a variable (column) have to be given by an alpar@1253: /// extended number of type Value, i.e. a finite number of type alpar@1253: /// Value or INF. alpar@1253: virtual void setColUpperBound(Col c, Value value) { alpar@1253: _setColUpperBound(cols.floatingId(c.id),value); alpar@1253: }; alpar@1253: /// Set the lower bound of a row (i.e a constraint) alpar@1253: alpar@1253: /// The lower bound of a linear expression (row) have to be given by an alpar@1253: /// extended number of type Value, i.e. a finite number of type alpar@1253: /// Value or -INF. alpar@1253: virtual void setRowLowerBound(Row r, Value value) { alpar@1253: _setRowLowerBound(rows.floatingId(r.id),value); alpar@1253: }; alpar@1253: /// Set the upper bound of a row (i.e a constraint) alpar@1253: alpar@1253: /// The upper bound of a linear expression (row) have to be given by an alpar@1253: /// extended number of type Value, i.e. a finite number of type alpar@1253: /// Value or INF. alpar@1253: virtual void setRowUpperBound(Row r, Value value) { alpar@1253: _setRowUpperBound(rows.floatingId(r.id),value); alpar@1253: }; alpar@1253: ///Set an element of the objective function alpar@1253: void setObjCoeff(Col c, Value v) {_setObjCoeff(cols.floatingId(c.id),v); }; alpar@1253: ///Set the objective function alpar@1253: alpar@1253: ///\param e is a linear expression of type \ref Expr. alpar@1253: ///\todo What to do with the constant component? alpar@1253: void setObj(Expr e) { alpar@1253: clearObj(); alpar@1253: for (Expr::iterator i=e.begin(); i!=e.end(); ++i) alpar@1253: setObjCoeff((*i).first,(*i).second); alpar@1253: } alpar@1253: athos@1248: }; athos@1246: athos@1246: } //namespace lemon athos@1246: athos@1246: #endif //LEMON_LP_BASE_H