diff -r ae092c63d3ba -r 2c6204d4b0f6 lemon/cost_scaling.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/lemon/cost_scaling.h Mon Feb 18 03:34:16 2008 +0000 @@ -0,0 +1,561 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_COST_SCALING_H +#define LEMON_COST_SCALING_H + +/// \ingroup min_cost_flow +/// +/// \file +/// \brief Cost scaling algorithm for finding a minimum cost flow. + +#include +#include +#include +#include +#include + +#include +#include + +namespace lemon { + + /// \addtogroup min_cost_flow + /// @{ + + /// \brief Implementation of the cost scaling algorithm for finding a + /// minimum cost flow. + /// + /// \ref CostScaling implements the cost scaling algorithm performing + /// generalized push-relabel operations for finding a minimum cost + /// flow. + /// + /// \tparam Graph The directed graph type the algorithm runs on. + /// \tparam LowerMap The type of the lower bound map. + /// \tparam CapacityMap The type of the capacity (upper bound) map. + /// \tparam CostMap The type of the cost (length) map. + /// \tparam SupplyMap The type of the supply map. + /// + /// \warning + /// - Edge capacities and costs should be \e non-negative \e integers. + /// - Supply values should be \e signed \e integers. + /// - \c LowerMap::Value must be convertible to \c CapacityMap::Value. + /// - \c CapacityMap::Value and \c SupplyMap::Value must be + /// convertible to each other. + /// - All value types must be convertible to \c CostMap::Value, which + /// must be signed type. + /// + /// \note Edge costs are multiplied with the number of nodes during + /// the algorithm so overflow problems may arise more easily than with + /// other minimum cost flow algorithms. + /// If it is available, long long int type is used instead of + /// long int in the inside computations. + /// + /// \author Peter Kovacs + + template < typename Graph, + typename LowerMap = typename Graph::template EdgeMap, + typename CapacityMap = typename Graph::template EdgeMap, + typename CostMap = typename Graph::template EdgeMap, + typename SupplyMap = typename Graph::template NodeMap > + class CostScaling + { + GRAPH_TYPEDEFS(typename Graph); + + typedef typename CapacityMap::Value Capacity; + typedef typename CostMap::Value Cost; + typedef typename SupplyMap::Value Supply; + typedef typename Graph::template EdgeMap CapacityEdgeMap; + typedef typename Graph::template NodeMap SupplyNodeMap; + + typedef ResGraphAdaptor< const Graph, Capacity, + CapacityEdgeMap, CapacityEdgeMap > ResGraph; + typedef typename ResGraph::Edge ResEdge; + +#if defined __GNUC__ && !defined __STRICT_ANSI__ + typedef long long int LCost; +#else + typedef long int LCost; +#endif + typedef typename Graph::template EdgeMap LargeCostMap; + + public: + + /// The type of the flow map. + typedef CapacityEdgeMap FlowMap; + /// The type of the potential map. + typedef typename Graph::template NodeMap PotentialMap; + + private: + + /// \brief Map adaptor class for handling residual edge costs. + /// + /// \ref ResidualCostMap is a map adaptor class for handling + /// residual edge costs. + class ResidualCostMap : public MapBase + { + private: + + const LargeCostMap &_cost_map; + + public: + + ///\e + ResidualCostMap(const LargeCostMap &cost_map) : + _cost_map(cost_map) {} + + ///\e + LCost operator[](const ResEdge &e) const { + return ResGraph::forward(e) ? _cost_map[e] : -_cost_map[e]; + } + + }; //class ResidualCostMap + + /// \brief Map adaptor class for handling reduced edge costs. + /// + /// \ref ReducedCostMap is a map adaptor class for handling reduced + /// edge costs. + class ReducedCostMap : public MapBase + { + private: + + const Graph &_gr; + const LargeCostMap &_cost_map; + const PotentialMap &_pot_map; + + public: + + ///\e + ReducedCostMap( const Graph &gr, + const LargeCostMap &cost_map, + const PotentialMap &pot_map ) : + _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} + + ///\e + LCost operator[](const Edge &e) const { + return _cost_map[e] + _pot_map[_gr.source(e)] + - _pot_map[_gr.target(e)]; + } + + }; //class ReducedCostMap + + private: + + // Scaling factor + static const int ALPHA = 4; + + // Paramters for heuristics + static const int BF_HEURISTIC_EPSILON_BOUND = 5000; + static const int BF_HEURISTIC_BOUND_FACTOR = 3; + + private: + + // The directed graph the algorithm runs on + const Graph &_graph; + // The original lower bound map + const LowerMap *_lower; + // The modified capacity map + CapacityEdgeMap _capacity; + // The original cost map + const CostMap &_orig_cost; + // The scaled cost map + LargeCostMap _cost; + // The modified supply map + SupplyNodeMap _supply; + bool _valid_supply; + + // Edge map of the current flow + FlowMap _flow; + // Node map of the current potentials + PotentialMap _potential; + + // The residual graph + ResGraph _res_graph; + // The residual cost map + ResidualCostMap _res_cost; + // The reduced cost map + ReducedCostMap _red_cost; + // The excess map + SupplyNodeMap _excess; + // The epsilon parameter used for cost scaling + LCost _epsilon; + + public: + + /// \brief General constructor of the class (with lower bounds). + /// + /// General constructor of the class (with lower bounds). + /// + /// \param graph The directed graph the algorithm runs on. + /// \param lower The lower bounds of the edges. + /// \param capacity The capacities (upper bounds) of the edges. + /// \param cost The cost (length) values of the edges. + /// \param supply The supply values of the nodes (signed). + CostScaling( const Graph &graph, + const LowerMap &lower, + const CapacityMap &capacity, + const CostMap &cost, + const SupplyMap &supply ) : + _graph(graph), _lower(&lower), _capacity(graph), _orig_cost(cost), + _cost(graph), _supply(graph), _flow(graph, 0), _potential(graph, 0), + _res_graph(graph, _capacity, _flow), _res_cost(_cost), + _red_cost(graph, _cost, _potential), _excess(graph, 0) + { + // Removing non-zero lower bounds + _capacity = subMap(capacity, lower); + Supply sum = 0; + for (NodeIt n(_graph); n != INVALID; ++n) { + Supply s = supply[n]; + for (InEdgeIt e(_graph, n); e != INVALID; ++e) + s += lower[e]; + for (OutEdgeIt e(_graph, n); e != INVALID; ++e) + s -= lower[e]; + _supply[n] = s; + sum += s; + } + _valid_supply = sum == 0; + } + + /// \brief General constructor of the class (without lower bounds). + /// + /// General constructor of the class (without lower bounds). + /// + /// \param graph The directed graph the algorithm runs on. + /// \param capacity The capacities (upper bounds) of the edges. + /// \param cost The cost (length) values of the edges. + /// \param supply The supply values of the nodes (signed). + CostScaling( const Graph &graph, + const CapacityMap &capacity, + const CostMap &cost, + const SupplyMap &supply ) : + _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost), + _cost(graph), _supply(supply), _flow(graph, 0), _potential(graph, 0), + _res_graph(graph, _capacity, _flow), _res_cost(_cost), + _red_cost(graph, _cost, _potential), _excess(graph, 0) + { + // Checking the sum of supply values + Supply sum = 0; + for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; + _valid_supply = sum == 0; + } + + /// \brief Simple constructor of the class (with lower bounds). + /// + /// Simple constructor of the class (with lower bounds). + /// + /// \param graph The directed graph the algorithm runs on. + /// \param lower The lower bounds of the edges. + /// \param capacity The capacities (upper bounds) of the edges. + /// \param cost The cost (length) values of the edges. + /// \param s The source node. + /// \param t The target node. + /// \param flow_value The required amount of flow from node \c s + /// to node \c t (i.e. the supply of \c s and the demand of \c t). + CostScaling( const Graph &graph, + const LowerMap &lower, + const CapacityMap &capacity, + const CostMap &cost, + Node s, Node t, + Supply flow_value ) : + _graph(graph), _lower(&lower), _capacity(graph), _orig_cost(cost), + _cost(graph), _supply(graph), _flow(graph, 0), _potential(graph, 0), + _res_graph(graph, _capacity, _flow), _res_cost(_cost), + _red_cost(graph, _cost, _potential), _excess(graph, 0) + { + // Removing nonzero lower bounds + _capacity = subMap(capacity, lower); + for (NodeIt n(_graph); n != INVALID; ++n) { + Supply sum = 0; + if (n == s) sum = flow_value; + if (n == t) sum = -flow_value; + for (InEdgeIt e(_graph, n); e != INVALID; ++e) + sum += lower[e]; + for (OutEdgeIt e(_graph, n); e != INVALID; ++e) + sum -= lower[e]; + _supply[n] = sum; + } + _valid_supply = true; + } + + /// \brief Simple constructor of the class (without lower bounds). + /// + /// Simple constructor of the class (without lower bounds). + /// + /// \param graph The directed graph the algorithm runs on. + /// \param capacity The capacities (upper bounds) of the edges. + /// \param cost The cost (length) values of the edges. + /// \param s The source node. + /// \param t The target node. + /// \param flow_value The required amount of flow from node \c s + /// to node \c t (i.e. the supply of \c s and the demand of \c t). + CostScaling( const Graph &graph, + const CapacityMap &capacity, + const CostMap &cost, + Node s, Node t, + Supply flow_value ) : + _graph(graph), _lower(NULL), _capacity(capacity), _orig_cost(cost), + _cost(graph), _supply(graph, 0), _flow(graph, 0), _potential(graph, 0), + _res_graph(graph, _capacity, _flow), _res_cost(_cost), + _red_cost(graph, _cost, _potential), _excess(graph, 0) + { + _supply[s] = flow_value; + _supply[t] = -flow_value; + _valid_supply = true; + } + + /// \brief Runs the algorithm. + /// + /// Runs the algorithm. + /// + /// \return \c true if a feasible flow can be found. + bool run() { + init() && start(); + } + + /// \brief Returns a const reference to the edge map storing the + /// found flow. + /// + /// Returns a const reference to the edge map storing the found flow. + /// + /// \pre \ref run() must be called before using this function. + const FlowMap& flowMap() const { + return _flow; + } + + /// \brief Returns a const reference to the node map storing the + /// found potentials (the dual solution). + /// + /// Returns a const reference to the node map storing the found + /// potentials (the dual solution). + /// + /// \pre \ref run() must be called before using this function. + const PotentialMap& potentialMap() const { + return _potential; + } + + /// \brief Returns the total cost of the found flow. + /// + /// Returns the total cost of the found flow. The complexity of the + /// function is \f$ O(e) \f$. + /// + /// \pre \ref run() must be called before using this function. + Cost totalCost() const { + Cost c = 0; + for (EdgeIt e(_graph); e != INVALID; ++e) + c += _flow[e] * _orig_cost[e]; + return c; + } + + private: + + /// Initializes the algorithm. + bool init() { + if (!_valid_supply) return false; + + // Initializing the scaled cost map and the epsilon parameter + Cost max_cost = 0; + int node_num = countNodes(_graph); + for (EdgeIt e(_graph); e != INVALID; ++e) { + _cost[e] = LCost(_orig_cost[e]) * node_num * ALPHA; + if (_orig_cost[e] > max_cost) max_cost = _orig_cost[e]; + } + _epsilon = max_cost * node_num; + + // Finding a feasible flow using Circulation + Circulation< Graph, ConstMap, CapacityEdgeMap, + SupplyMap > + circulation( _graph, constMap((Capacity)0), _capacity, + _supply ); + return circulation.flowMap(_flow).run(); + } + + + /// Executes the algorithm. + bool start() { + std::deque active_nodes; + typename Graph::template NodeMap hyper(_graph, false); + + int node_num = countNodes(_graph); + for ( ; _epsilon >= 1; _epsilon = _epsilon < ALPHA && _epsilon > 1 ? + 1 : _epsilon / ALPHA ) + { + // Performing price refinement heuristic using Bellman-Ford + // algorithm + if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) { + typedef ShiftMap ShiftCostMap; + ShiftCostMap shift_cost(_res_cost, _epsilon); + BellmanFord bf(_res_graph, shift_cost); + bf.init(0); + bool done = false; + int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(node_num)); + for (int i = 0; i < K && !done; ++i) + done = bf.processNextWeakRound(); + if (done) { + for (NodeIt n(_graph); n != INVALID; ++n) + _potential[n] = bf.dist(n); + continue; + } + } + + // Saturating edges not satisfying the optimality condition + Capacity delta; + for (EdgeIt e(_graph); e != INVALID; ++e) { + if (_capacity[e] - _flow[e] > 0 && _red_cost[e] < 0) { + delta = _capacity[e] - _flow[e]; + _excess[_graph.source(e)] -= delta; + _excess[_graph.target(e)] += delta; + _flow[e] = _capacity[e]; + } + if (_flow[e] > 0 && -_red_cost[e] < 0) { + _excess[_graph.target(e)] -= _flow[e]; + _excess[_graph.source(e)] += _flow[e]; + _flow[e] = 0; + } + } + + // Finding active nodes (i.e. nodes with positive excess) + for (NodeIt n(_graph); n != INVALID; ++n) + if (_excess[n] > 0) active_nodes.push_back(n); + + // Performing push and relabel operations + while (active_nodes.size() > 0) { + Node n = active_nodes[0], t; + bool relabel_enabled = true; + + // Performing push operations if there are admissible edges + if (_excess[n] > 0) { + for (OutEdgeIt e(_graph, n); e != INVALID; ++e) { + if (_capacity[e] - _flow[e] > 0 && _red_cost[e] < 0) { + delta = _capacity[e] - _flow[e] <= _excess[n] ? + _capacity[e] - _flow[e] : _excess[n]; + t = _graph.target(e); + + // Push-look-ahead heuristic + Capacity ahead = -_excess[t]; + for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) { + if (_capacity[oe] - _flow[oe] > 0 && _red_cost[oe] < 0) + ahead += _capacity[oe] - _flow[oe]; + } + for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) { + if (_flow[ie] > 0 && -_red_cost[ie] < 0) + ahead += _flow[ie]; + } + if (ahead < 0) ahead = 0; + + // Pushing flow along the edge + if (ahead < delta) { + _flow[e] += ahead; + _excess[n] -= ahead; + _excess[t] += ahead; + active_nodes.push_front(t); + hyper[t] = true; + relabel_enabled = false; + break; + } else { + _flow[e] += delta; + _excess[n] -= delta; + _excess[t] += delta; + if (_excess[t] > 0 && _excess[t] <= delta) + active_nodes.push_back(t); + } + + if (_excess[n] == 0) break; + } + } + } + + if (_excess[n] > 0) { + for (InEdgeIt e(_graph, n); e != INVALID; ++e) { + if (_flow[e] > 0 && -_red_cost[e] < 0) { + delta = _flow[e] <= _excess[n] ? _flow[e] : _excess[n]; + t = _graph.source(e); + + // Push-look-ahead heuristic + Capacity ahead = -_excess[t]; + for (OutEdgeIt oe(_graph, t); oe != INVALID; ++oe) { + if (_capacity[oe] - _flow[oe] > 0 && _red_cost[oe] < 0) + ahead += _capacity[oe] - _flow[oe]; + } + for (InEdgeIt ie(_graph, t); ie != INVALID; ++ie) { + if (_flow[ie] > 0 && -_red_cost[ie] < 0) + ahead += _flow[ie]; + } + if (ahead < 0) ahead = 0; + + // Pushing flow along the edge + if (ahead < delta) { + _flow[e] -= ahead; + _excess[n] -= ahead; + _excess[t] += ahead; + active_nodes.push_front(t); + hyper[t] = true; + relabel_enabled = false; + break; + } else { + _flow[e] -= delta; + _excess[n] -= delta; + _excess[t] += delta; + if (_excess[t] > 0 && _excess[t] <= delta) + active_nodes.push_back(t); + } + + if (_excess[n] == 0) break; + } + } + } + + if (relabel_enabled && (_excess[n] > 0 || hyper[n])) { + // Performing relabel operation if the node is still active + LCost min_red_cost = std::numeric_limits::max(); + for (OutEdgeIt oe(_graph, n); oe != INVALID; ++oe) { + if ( _capacity[oe] - _flow[oe] > 0 && + _red_cost[oe] < min_red_cost ) + min_red_cost = _red_cost[oe]; + } + for (InEdgeIt ie(_graph, n); ie != INVALID; ++ie) { + if (_flow[ie] > 0 && -_red_cost[ie] < min_red_cost) + min_red_cost = -_red_cost[ie]; + } + _potential[n] -= min_red_cost + _epsilon; + hyper[n] = false; + } + + // Removing active nodes with non-positive excess + while ( active_nodes.size() > 0 && + _excess[active_nodes[0]] <= 0 && + !hyper[active_nodes[0]] ) { + active_nodes.pop_front(); + } + } + } + + // Handling non-zero lower bounds + if (_lower) { + for (EdgeIt e(_graph); e != INVALID; ++e) + _flow[e] += (*_lower)[e]; + } + return true; + } + + }; //class CostScaling + + ///@} + +} //namespace lemon + +#endif //LEMON_COST_SCALING_H