diff -r 327f7cf13843 -r 84b04b70ad89 src/work/athos/mincostflows.h --- a/src/work/athos/mincostflows.h Tue May 11 15:42:11 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,254 +0,0 @@ -// -*- c++ -*- -#ifndef HUGO_MINCOSTFLOWS_H -#define HUGO_MINCOSTFLOWS_H - -///\ingroup galgs -///\file -///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost - -#include -#include -#include -#include -#include -#include - -namespace hugo { - -/// \addtogroup galgs -/// @{ - - ///\brief Implementation of an algorithm for finding a flow of value \c k - ///(for small values of \c k) having minimal total cost between 2 nodes - /// - /// - /// The class \ref hugo::MinCostFlows "MinCostFlows" implements - /// an algorithm for finding a flow of value \c k - ///(for small values of \c k) having minimal total cost - /// from a given source node to a given target node in an - /// edge-weighted directed graph having nonnegative integer capacities. - /// The range of the length (weight) function is nonnegative reals but - /// the range of capacity function is the set of nonnegative integers. - /// It is not a polinomial time algorithm for counting the minimum cost - /// maximal flow, since it counts the minimum cost flow for every value 0..M - /// where \c M is the value of the maximal flow. - /// - ///\author Attila Bernath - template - class MinCostFlows { - - typedef typename LengthMap::ValueType Length; - - //Warning: this should be integer type - typedef typename CapacityMap::ValueType Capacity; - - typedef typename Graph::Node Node; - typedef typename Graph::NodeIt NodeIt; - typedef typename Graph::Edge Edge; - typedef typename Graph::OutEdgeIt OutEdgeIt; - typedef typename Graph::template EdgeMap EdgeIntMap; - - // typedef ConstMap ConstMap; - - typedef ResGraphWrapper ResGraphType; - typedef typename ResGraphType::Edge ResGraphEdge; - - class ModLengthMap { - //typedef typename ResGraphType::template NodeMap NodeMap; - typedef typename Graph::template NodeMap NodeMap; - const ResGraphType& G; - // const EdgeIntMap& rev; - const LengthMap &ol; - const NodeMap &pot; - public : - typedef typename LengthMap::KeyType KeyType; - typedef typename LengthMap::ValueType ValueType; - - ValueType operator[](typename ResGraphType::Edge e) const { - if (G.forward(e)) - return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); - else - return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); - } - - ModLengthMap(const ResGraphType& _G, - const LengthMap &o, const NodeMap &p) : - G(_G), /*rev(_rev),*/ ol(o), pot(p){}; - };//ModLengthMap - - - protected: - - //Input - const Graph& G; - const LengthMap& length; - const CapacityMap& capacity; - - - //auxiliary variables - - //To store the flow - EdgeIntMap flow; - //To store the potentila (dual variables) - typename Graph::template NodeMap potential; - - //Container to store found paths - //std::vector< std::vector > paths; - //typedef DirPath DPath; - //DPath paths; - - - Length total_length; - - - public : - - - MinCostFlows(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), - length(_length), capacity(_cap), flow(_G), potential(_G){ } - - - ///Runs the algorithm. - - ///Runs the algorithm. - ///Returns k if there are at least k edge-disjoint paths from s to t. - ///Otherwise it returns the number of found edge-disjoint paths from s to t. - ///\todo May be it does make sense to be able to start with a nonzero - /// feasible primal-dual solution pair as well. - int run(Node s, Node t, int k) { - - //Resetting variables from previous runs - total_length = 0; - - FOR_EACH_LOC(typename Graph::EdgeIt, e, G){ - flow.set(e,0); - } - - FOR_EACH_LOC(typename Graph::NodeIt, n, G){ - //cout << potential[n]< potential(res_graph); - - - ModLengthMap mod_length(res_graph, length, potential); - - Dijkstra dijkstra(res_graph, mod_length); - - int i; - for (i=0; i 0 && fl_e != 0) - return false; - if (mod_pot < 0 && fl_e != capacity[e]) - return false; - } - } - return true; - } - - /* - ///\todo To be implemented later - - ///This function gives back the \c j-th path in argument p. - ///Assumes that \c run() has been run and nothing changed since then. - /// \warning It is assumed that \c p is constructed to be a path of graph \c G. If \c j is greater than the result of previous \c run, then the result here will be an empty path. - template - void getPath(DirPath& p, int j){ - p.clear(); - typename DirPath::Builder B(p); - for(typename std::vector::iterator i=paths[j].begin(); - i!=paths[j].end(); ++i ){ - B.pushBack(*i); - } - - B.commit(); - } - - */ - - }; //class MinCostFlows - - ///@} - -} //namespace hugo - -#endif //HUGO_MINCOSTFLOW_H