diff -r 4406c93c862b -r 8aca0af3f30b src/work/jacint/preflowproba.h --- a/src/work/jacint/preflowproba.h Fri Apr 23 19:41:01 2004 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,689 +0,0 @@ -// -*- C++ -*- - -//run gyorsan tudna adni a minmincutot a 2 fazis elejen , ne vegyuk be konstruktorba egy cutmapet? -//constzero jo igy? - -//majd marci megmondja betegyem-e bfs-t meg resgraphot - -/* -Heuristics: - 2 phase - gap - list 'level_list' on the nodes on level i implemented by hand - stack 'active' on the active nodes on level i implemented by hand - runs heuristic 'highest label' for H1*n relabels - runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' - -Parameters H0 and H1 are initialized to 20 and 10. - -Constructors: - -Preflow(Graph, Node, Node, CapMap, FlowMap, bool) : bool must be false if - FlowMap is not constant zero, and should be true if it is - -Members: - -void run() - -T flowValue() : returns the value of a maximum flow - -void minMinCut(CutMap& M) : sets M to the characteristic vector of the - minimum min cut. M should be a map of bools initialized to false. - -void maxMinCut(CutMap& M) : sets M to the characteristic vector of the - maximum min cut. M should be a map of bools initialized to false. - -void minCut(CutMap& M) : sets M to the characteristic vector of - a min cut. M should be a map of bools initialized to false. - -FIXME reset - -*/ - -#ifndef HUGO_PREFLOW_PROBA_H -#define HUGO_PREFLOW_PROBA_H - -#define H0 20 -#define H1 1 - -#include -#include -#include - -namespace hugo { - - template , - typename FlowMap=typename Graph::EdgeMap > - class PreflowProba { - - typedef typename Graph::Node Node; - typedef typename Graph::Edge Edge; - typedef typename Graph::NodeIt NodeIt; - typedef typename Graph::OutEdgeIt OutEdgeIt; - typedef typename Graph::InEdgeIt InEdgeIt; - - const Graph& G; - Node s; - Node t; - const CapMap& capacity; - FlowMap& flow; - T value; - bool constzero; - bool res; - - typedef ResGraphWrapper ResGW; - typedef typename ResGW::OutEdgeIt ResOutEdgeIt; - typedef typename ResGW::InEdgeIt ResInEdgeIt; - typedef typename ResGW::Edge ResEdge; - - public: - PreflowProba(Graph& _G, Node _s, Node _t, CapMap& _capacity, - FlowMap& _flow, bool _constzero, bool _res ) : - G(_G), s(_s), t(_t), capacity(_capacity), flow(_flow), constzero(_constzero), res(_res) {} - - - void run() { - - ResGW res_graph(G, capacity, flow); - - value=0; //for the subsequent runs - - bool phase=0; //phase 0 is the 1st phase, phase 1 is the 2nd - int n=G.nodeNum(); - int heur0=(int)(H0*n); //time while running 'bound decrease' - int heur1=(int)(H1*n); //time while running 'highest label' - int heur=heur1; //starting time interval (#of relabels) - bool what_heur=1; - /* - what_heur is 0 in case 'bound decrease' - and 1 in case 'highest label' - */ - bool end=false; - /* - Needed for 'bound decrease', 'true' - means no active nodes are above bound b. - */ - int relabel=0; - int k=n-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - typename Graph::NodeMap level(G,n); - typename Graph::NodeMap excess(G); - - std::vector active(n-1,INVALID); - typename Graph::NodeMap next(G,INVALID); - //Stack of the active nodes in level i < n. - //We use it in both phases. - - typename Graph::NodeMap left(G,INVALID); - typename Graph::NodeMap right(G,INVALID); - std::vector level_list(n,INVALID); - /* - List of the nodes in level i bfs_queue; - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - InEdgeIt e; - for(G.first(e,v); G.valid(e); G.next(e)) { - Node w=G.tail(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( G.valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - } - - //the starting flow - OutEdgeIt e; - for(G.first(e,s); G.valid(e); G.next(e)) - { - T c=capacity[e]; - if ( c == 0 ) continue; - Node w=G.head(e); - if ( level[w] < n ) { - if ( excess[w] == 0 && w!=t ) { - next.set(w,active[level[w]]); - active[level[w]]=w; - } - flow.set(e, c); - excess.set(w, excess[w]+c); - } - } - } - else - { - - /* - Reverse_bfs from t in the residual graph, - to find the starting level. - */ - level.set(t,0); - std::queue bfs_queue; - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - InEdgeIt e; - for(G.first(e,v); G.valid(e); G.next(e)) { - if ( capacity[e] == flow[e] ) continue; - Node w=G.tail(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( G.valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - - OutEdgeIt f; - for(G.first(f,v); G.valid(f); G.next(f)) { - if ( 0 == flow[f] ) continue; - Node w=G.head(f); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( G.valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - } - - - /* - Counting the excess - */ - NodeIt v; - for(G.first(v); G.valid(v); G.next(v)) { - T exc=0; - - InEdgeIt e; - for(G.first(e,v); G.valid(e); G.next(e)) exc+=flow[e]; - OutEdgeIt f; - for(G.first(f,v); G.valid(f); G.next(f)) exc-=flow[e]; - - excess.set(v,exc); - - //putting the active nodes into the stack - int lev=level[v]; - if ( exc > 0 && lev < n ) { - next.set(v,active[lev]); - active[lev]=v; - } - } - - - //the starting flow - OutEdgeIt e; - for(G.first(e,s); G.valid(e); G.next(e)) - { - T rem=capacity[e]-flow[e]; - if ( rem == 0 ) continue; - Node w=G.head(e); - if ( level[w] < n ) { - if ( excess[w] == 0 && w!=t ) { - next.set(w,active[level[w]]); - active[level[w]]=w; - } - flow.set(e, capacity[e]); - excess.set(w, excess[w]+rem); - } - } - - InEdgeIt f; - for(G.first(f,s); G.valid(f); G.next(f)) - { - if ( flow[f] == 0 ) continue; - Node w=G.head(f); - if ( level[w] < n ) { - if ( excess[w] == 0 && w!=t ) { - next.set(w,active[level[w]]); - active[level[w]]=w; - } - excess.set(w, excess[w]+flow[f]); - flow.set(f, 0); - } - } - } - - - - - /* - End of preprocessing - */ - - - - /* - Push/relabel on the highest level active nodes. - */ - while ( true ) { - - if ( b == 0 ) { - if ( phase ) break; - - if ( !what_heur && !end && k > 0 ) { - b=k; - end=true; - } else { - phase=1; - level.set(s,0); - std::queue bfs_queue; - bfs_queue.push(s); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - if (res){ - ResInEdgeIt e; - for(res_graph.first(e,v); res_graph.valid(e); - res_graph.next(e)) { - Node u=res_graph.tail(e); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) { - next.set(u,active[l]); - active[l]=u; - } - } - } - } else { - InEdgeIt e; - for(G.first(e,v); G.valid(e); G.next(e)) { - if ( capacity[e] == flow[e] ) continue; - Node u=G.tail(e); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) { - next.set(u,active[l]); - active[l]=u; - } - } - } - - OutEdgeIt f; - for(G.first(f,v); G.valid(f); G.next(f)) { - if ( 0 == flow[f] ) continue; - Node u=G.head(f); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) { - next.set(u,active[l]); - active[l]=u; - } - } - } - } - } - b=n-2; - } - - } - - - if ( !G.valid(active[b]) ) --b; - else { - end=false; - - Node w=active[b]; - active[b]=next[w]; - int lev=level[w]; - T exc=excess[w]; - int newlevel=n; //bound on the next level of w - - OutEdgeIt e; - for(G.first(e,w); G.valid(e); G.next(e)) { - - if ( flow[e] == capacity[e] ) continue; - Node v=G.head(e); - //e=wv - - if( lev > level[v] ) { - /*Push is allowed now*/ - - if ( excess[v]==0 && v!=t && v!=s ) { - int lev_v=level[v]; - next.set(v,active[lev_v]); - active[lev_v]=v; - } - - T cap=capacity[e]; - T flo=flow[e]; - T remcap=cap-flo; - - if ( remcap >= exc ) { - /*A nonsaturating push.*/ - - flow.set(e, flo+exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - - } else { - /*A saturating push.*/ - - flow.set(e, cap); - excess.set(v, excess[v]+remcap); - exc-=remcap; - } - } else if ( newlevel > level[v] ){ - newlevel = level[v]; - } - - } //for out edges wv - - - if ( exc > 0 ) { - InEdgeIt e; - for(G.first(e,w); G.valid(e); G.next(e)) { - - if( flow[e] == 0 ) continue; - Node v=G.tail(e); - //e=vw - - if( lev > level[v] ) { - /*Push is allowed now*/ - - if ( excess[v]==0 && v!=t && v!=s ) { - int lev_v=level[v]; - next.set(v,active[lev_v]); - active[lev_v]=v; - } - - T flo=flow[e]; - - if ( flo >= exc ) { - /*A nonsaturating push.*/ - - flow.set(e, flo-exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - } else { - /*A saturating push.*/ - - excess.set(v, excess[v]+flo); - exc-=flo; - flow.set(e,0); - } - } else if ( newlevel > level[v] ) { - newlevel = level[v]; - } - } //for in edges vw - - } // if w still has excess after the out edge for cycle - - excess.set(w, exc); - - /* - Relabel - */ - - - if ( exc > 0 ) { - //now 'lev' is the old level of w - - if ( phase ) { - level.set(w,++newlevel); - next.set(w,active[newlevel]); - active[newlevel]=w; - b=newlevel; - } else { - //unlacing starts - Node right_n=right[w]; - Node left_n=left[w]; - - if ( G.valid(right_n) ) { - if ( G.valid(left_n) ) { - right.set(left_n, right_n); - left.set(right_n, left_n); - } else { - level_list[lev]=right_n; - left.set(right_n, INVALID); - } - } else { - if ( G.valid(left_n) ) { - right.set(left_n, INVALID); - } else { - level_list[lev]=INVALID; - } - } - //unlacing ends - - if ( !G.valid(level_list[lev]) ) { - - //gapping starts - for (int i=lev; i!=k ; ) { - Node v=level_list[++i]; - while ( G.valid(v) ) { - level.set(v,n); - v=right[v]; - } - level_list[i]=INVALID; - if ( !what_heur ) active[i]=INVALID; - } - - level.set(w,n); - b=lev-1; - k=b; - //gapping ends - - } else { - - if ( newlevel == n ) level.set(w,n); - else { - level.set(w,++newlevel); - next.set(w,active[newlevel]); - active[newlevel]=w; - if ( what_heur ) b=newlevel; - if ( k < newlevel ) ++k; //now k=newlevel - Node first=level_list[newlevel]; - if ( G.valid(first) ) left.set(first,w); - right.set(w,first); - left.set(w,INVALID); - level_list[newlevel]=w; - } - } - - - ++relabel; - if ( relabel >= heur ) { - relabel=0; - if ( what_heur ) { - what_heur=0; - heur=heur0; - end=false; - } else { - what_heur=1; - heur=heur1; - b=k; - } - } - } //phase 0 - - - } // if ( exc > 0 ) - - - } // if stack[b] is nonempty - - } // while(true) - - - value = excess[t]; - /*Max flow value.*/ - - } //void run() - - - - - - /* - Returns the maximum value of a flow. - */ - - T flowValue() { - return value; - } - - - FlowMap Flow() { - return flow; - } - - - - void Flow(FlowMap& _flow ) { - NodeIt v; - for(G.first(v) ; G.valid(v); G.next(v)) - _flow.set(v,flow[v]); - } - - - - /* - Returns the minimum min cut, by a bfs from s in the residual graph. - */ - - template - void minMinCut(_CutMap& M) { - - std::queue queue; - - M.set(s,true); - queue.push(s); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - OutEdgeIt e; - for(G.first(e,w) ; G.valid(e); G.next(e)) { - Node v=G.head(e); - if (!M[v] && flow[e] < capacity[e] ) { - queue.push(v); - M.set(v, true); - } - } - - InEdgeIt f; - for(G.first(f,w) ; G.valid(f); G.next(f)) { - Node v=G.tail(f); - if (!M[v] && flow[f] > 0 ) { - queue.push(v); - M.set(v, true); - } - } - } - } - - - - /* - Returns the maximum min cut, by a reverse bfs - from t in the residual graph. - */ - - template - void maxMinCut(_CutMap& M) { - - std::queue queue; - - M.set(t,true); - queue.push(t); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - - InEdgeIt e; - for(G.first(e,w) ; G.valid(e); G.next(e)) { - Node v=G.tail(e); - if (!M[v] && flow[e] < capacity[e] ) { - queue.push(v); - M.set(v, true); - } - } - - OutEdgeIt f; - for(G.first(f,w) ; G.valid(f); G.next(f)) { - Node v=G.head(f); - if (!M[v] && flow[f] > 0 ) { - queue.push(v); - M.set(v, true); - } - } - } - - NodeIt v; - for(G.first(v) ; G.valid(v); G.next(v)) { - M.set(v, !M[v]); - } - - } - - - - template - void minCut(CutMap& M) { - minMinCut(M); - } - - - void reset_target (Node _t) {t=_t;} - void reset_source (Node _s) {s=_s;} - - template - void reset_cap (_CapMap _cap) {capacity=_cap;} - - template - void reset_cap (_FlowMap _flow, bool _constzero) { - flow=_flow; - constzero=_constzero; - } - - - - }; - -} //namespace hugo - -#endif //PREFLOW_PROBA_H - - - -