diff -r d8475431bbbb -r 8e85e6bbefdf src/lemon/preflow.h --- a/src/lemon/preflow.h Sat May 21 21:04:57 2005 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,868 +0,0 @@ -/* -*- C++ -*- - * src/lemon/preflow.h - Part of LEMON, a generic C++ optimization library - * - * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport - * (Egervary Research Group on Combinatorial Optimization, EGRES). - * - * Permission to use, modify and distribute this software is granted - * provided that this copyright notice appears in all copies. For - * precise terms see the accompanying LICENSE file. - * - * This software is provided "AS IS" with no warranty of any kind, - * express or implied, and with no claim as to its suitability for any - * purpose. - * - */ - -#ifndef LEMON_PREFLOW_H -#define LEMON_PREFLOW_H - -#include -#include - -#include -#include -#include - -/// \file -/// \ingroup flowalgs -/// Implementation of the preflow algorithm. - -namespace lemon { - - /// \addtogroup flowalgs - /// @{ - - ///%Preflow algorithms class. - - ///This class provides an implementation of the \e preflow \e - ///algorithm producing a flow of maximum value in a directed - ///graph. The preflow algorithms are the fastest known max flow algorithms - ///up to now. The \e source node, the \e target node, the \e - ///capacity of the edges and the \e starting \e flow value of the - ///edges should be passed to the algorithm through the - ///constructor. It is possible to change these quantities using the - ///functions \ref source, \ref target, \ref capacityMap and \ref - ///flowMap. - /// - ///After running \ref lemon::Preflow::phase1() "phase1()" - ///or \ref lemon::Preflow::run() "run()", the maximal flow - ///value can be obtained by calling \ref flowValue(). The minimum - ///value cut can be written into a bool node map by - ///calling \ref minCut(). (\ref minMinCut() and \ref maxMinCut() writes - ///the inclusionwise minimum and maximum of the minimum value cuts, - ///resp.) - /// - ///\param Graph The directed graph type the algorithm runs on. - ///\param Num The number type of the capacities and the flow values. - ///\param CapacityMap The capacity map type. - ///\param FlowMap The flow map type. - /// - ///\author Jacint Szabo - ///\todo Second template parameter is superfluous - template , - typename FlowMap=typename Graph::template EdgeMap > - class Preflow { - protected: - typedef typename Graph::Node Node; - typedef typename Graph::NodeIt NodeIt; - typedef typename Graph::EdgeIt EdgeIt; - typedef typename Graph::OutEdgeIt OutEdgeIt; - typedef typename Graph::InEdgeIt InEdgeIt; - - typedef typename Graph::template NodeMap NNMap; - typedef typename std::vector VecNode; - - const Graph* _g; - Node _source; - Node _target; - const CapacityMap* _capacity; - FlowMap* _flow; - int _node_num; //the number of nodes of G - - typename Graph::template NodeMap level; - typename Graph::template NodeMap excess; - - // constants used for heuristics - static const int H0=20; - static const int H1=1; - - public: - - ///Indicates the property of the starting flow map. - - ///Indicates the property of the starting flow map. - ///The meanings are as follows: - ///- \c ZERO_FLOW: constant zero flow - ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to - ///the sum of the out-flows in every node except the \e source and - ///the \e target. - ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at - ///least the sum of the out-flows in every node except the \e source. - ///- \c NO_FLOW: indicates an unspecified edge map. \c flow will be - ///set to the constant zero flow in the beginning of - ///the algorithm in this case. - /// - enum FlowEnum{ - NO_FLOW, - ZERO_FLOW, - GEN_FLOW, - PRE_FLOW - }; - - ///Indicates the state of the preflow algorithm. - - ///Indicates the state of the preflow algorithm. - ///The meanings are as follows: - ///- \c AFTER_NOTHING: before running the algorithm or - /// at an unspecified state. - ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1 - ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2() - /// - enum StatusEnum { - AFTER_NOTHING, - AFTER_PREFLOW_PHASE_1, - AFTER_PREFLOW_PHASE_2 - }; - - protected: - FlowEnum flow_prop; - StatusEnum status; // Do not needle this flag only if necessary. - - public: - ///The constructor of the class. - - ///The constructor of the class. - ///\param _gr The directed graph the algorithm runs on. - ///\param _s The source node. - ///\param _t The target node. - ///\param _cap The capacity of the edges. - ///\param _f The flow of the edges. - ///Except the graph, all of these parameters can be reset by - ///calling \ref source, \ref target, \ref capacityMap and \ref - ///flowMap, resp. - Preflow(const Graph& _gr, Node _s, Node _t, - const CapacityMap& _cap, FlowMap& _f) : - _g(&_gr), _source(_s), _target(_t), _capacity(&_cap), - _flow(&_f), _node_num(countNodes(_gr)), level(_gr), excess(_gr,0), - flow_prop(NO_FLOW), status(AFTER_NOTHING) { } - - - - ///Runs the preflow algorithm. - - ///Runs the preflow algorithm. - /// - void run() { - phase1(flow_prop); - phase2(); - } - - ///Runs the preflow algorithm. - - ///Runs the preflow algorithm. - ///\pre The starting flow map must be - /// - a constant zero flow if \c fp is \c ZERO_FLOW, - /// - an arbitrary flow if \c fp is \c GEN_FLOW, - /// - an arbitrary preflow if \c fp is \c PRE_FLOW, - /// - any map if \c fp is NO_FLOW. - ///If the starting flow map is a flow or a preflow then - ///the algorithm terminates faster. - void run(FlowEnum fp) { - flow_prop=fp; - run(); - } - - ///Runs the first phase of the preflow algorithm. - - ///The preflow algorithm consists of two phases, this method runs - ///the first phase. After the first phase the maximum flow value - ///and a minimum value cut can already be computed, although a - ///maximum flow is not yet obtained. So after calling this method - ///\ref flowValue returns the value of a maximum flow and \ref - ///minCut returns a minimum cut. - ///\warning \ref minMinCut and \ref maxMinCut do not give minimum - ///value cuts unless calling \ref phase2. - ///\pre The starting flow must be - ///- a constant zero flow if \c fp is \c ZERO_FLOW, - ///- an arbitary flow if \c fp is \c GEN_FLOW, - ///- an arbitary preflow if \c fp is \c PRE_FLOW, - ///- any map if \c fp is NO_FLOW. - void phase1(FlowEnum fp) - { - flow_prop=fp; - phase1(); - } - - - ///Runs the first phase of the preflow algorithm. - - ///The preflow algorithm consists of two phases, this method runs - ///the first phase. After the first phase the maximum flow value - ///and a minimum value cut can already be computed, although a - ///maximum flow is not yet obtained. So after calling this method - ///\ref flowValue returns the value of a maximum flow and \ref - ///minCut returns a minimum cut. - ///\warning \ref minCut(), \ref minMinCut() and \ref maxMinCut() do not - ///give minimum value cuts unless calling \ref phase2(). - void phase1() - { - int heur0=(int)(H0*_node_num); //time while running 'bound decrease' - int heur1=(int)(H1*_node_num); //time while running 'highest label' - int heur=heur1; //starting time interval (#of relabels) - int numrelabel=0; - - bool what_heur=1; - //It is 0 in case 'bound decrease' and 1 in case 'highest label' - - bool end=false; - //Needed for 'bound decrease', true means no active - //nodes are above bound b. - - int k=_node_num-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - VecNode first(_node_num, INVALID); - NNMap next(*_g, INVALID); - - NNMap left(*_g, INVALID); - NNMap right(*_g, INVALID); - VecNode level_list(_node_num,INVALID); - //List of the nodes in level i 0 ) { - b=k; - end=true; - } else break; - } - - if ( first[b]==INVALID ) --b; - else { - end=false; - Node w=first[b]; - first[b]=next[w]; - int newlevel=push(w, next, first); - if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, - left, right, b, k, what_heur); - - ++numrelabel; - if ( numrelabel >= heur ) { - numrelabel=0; - if ( what_heur ) { - what_heur=0; - heur=heur0; - end=false; - } else { - what_heur=1; - heur=heur1; - b=k; - } - } - } - } - flow_prop=PRE_FLOW; - status=AFTER_PREFLOW_PHASE_1; - } - // Heuristics: - // 2 phase - // gap - // list 'level_list' on the nodes on level i implemented by hand - // stack 'active' on the active nodes on level i - // runs heuristic 'highest label' for H1*n relabels - // runs heuristic 'bound decrease' for H0*n relabels, - // starts with 'highest label' - // Parameters H0 and H1 are initialized to 20 and 1. - - - ///Runs the second phase of the preflow algorithm. - - ///The preflow algorithm consists of two phases, this method runs - ///the second phase. After calling \ref phase1 and then \ref - ///phase2, \ref flow contains a maximum flow, \ref flowValue - ///returns the value of a maximum flow, \ref minCut returns a - ///minimum cut, while the methods \ref minMinCut and \ref - ///maxMinCut return the inclusionwise minimum and maximum cuts of - ///minimum value, resp. \pre \ref phase1 must be called before. - void phase2() - { - - int k=_node_num-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - - VecNode first(_node_num, INVALID); - NNMap next(*_g, INVALID); - level.set(_source,0); - std::queue bfs_queue; - bfs_queue.push(_source); - - while ( !bfs_queue.empty() ) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - for(InEdgeIt e(*_g,v); e!=INVALID; ++e) { - if ( (*_capacity)[e] <= (*_flow)[e] ) continue; - Node u=_g->source(e); - if ( level[u] >= _node_num ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) { - next.set(u,first[l]); - first[l]=u; - } - } - } - - for(OutEdgeIt e(*_g,v); e!=INVALID; ++e) { - if ( 0 >= (*_flow)[e] ) continue; - Node u=_g->target(e); - if ( level[u] >= _node_num ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) { - next.set(u,first[l]); - first[l]=u; - } - } - } - } - b=_node_num-2; - - while ( true ) { - - if ( b == 0 ) break; - if ( first[b]==INVALID ) --b; - else { - Node w=first[b]; - first[b]=next[w]; - int newlevel=push(w,next, first); - - //relabel - if ( excess[w] > 0 ) { - level.set(w,++newlevel); - next.set(w,first[newlevel]); - first[newlevel]=w; - b=newlevel; - } - } - } // while(true) - flow_prop=GEN_FLOW; - status=AFTER_PREFLOW_PHASE_2; - } - - /// Returns the value of the maximum flow. - - /// Returns the value of the maximum flow by returning the excess - /// of the target node \c t. This value equals to the value of - /// the maximum flow already after running \ref phase1. - Num flowValue() const { - return excess[_target]; - } - - - ///Returns a minimum value cut. - - ///Sets \c M to the characteristic vector of a minimum value - ///cut. This method can be called both after running \ref - ///phase1 and \ref phase2. It is much faster after - ///\ref phase1. \pre M should be a bool-valued node-map. \pre - ///If \ref minCut() is called after \ref phase2() then M should - ///be initialized to false. - template - void minCut(_CutMap& M) const { - switch ( status ) { - case AFTER_PREFLOW_PHASE_1: - for(NodeIt v(*_g); v!=INVALID; ++v) { - if (level[v] < _node_num) { - M.set(v, false); - } else { - M.set(v, true); - } - } - break; - case AFTER_PREFLOW_PHASE_2: - minMinCut(M); - break; - case AFTER_NOTHING: - break; - } - } - - ///Returns the inclusionwise minimum of the minimum value cuts. - - ///Sets \c M to the characteristic vector of the minimum value cut - ///which is inclusionwise minimum. It is computed by processing a - ///bfs from the source node \c s in the residual graph. \pre M - ///should be a node map of bools initialized to false. \pre \ref - ///phase2 should already be run. - template - void minMinCut(_CutMap& M) const { - - std::queue queue; - M.set(_source,true); - queue.push(_source); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) { - Node v=_g->target(e); - if (!M[v] && (*_flow)[e] < (*_capacity)[e] ) { - queue.push(v); - M.set(v, true); - } - } - - for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) { - Node v=_g->source(e); - if (!M[v] && (*_flow)[e] > 0 ) { - queue.push(v); - M.set(v, true); - } - } - } - } - - ///Returns the inclusionwise maximum of the minimum value cuts. - - ///Sets \c M to the characteristic vector of the minimum value cut - ///which is inclusionwise maximum. It is computed by processing a - ///backward bfs from the target node \c t in the residual graph. - ///\pre \ref phase2() or run() should already be run. - template - void maxMinCut(_CutMap& M) const { - - for(NodeIt v(*_g) ; v!=INVALID; ++v) M.set(v, true); - - std::queue queue; - - M.set(_target,false); - queue.push(_target); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) { - Node v=_g->source(e); - if (M[v] && (*_flow)[e] < (*_capacity)[e] ) { - queue.push(v); - M.set(v, false); - } - } - - for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) { - Node v=_g->target(e); - if (M[v] && (*_flow)[e] > 0 ) { - queue.push(v); - M.set(v, false); - } - } - } - } - - ///Sets the source node to \c _s. - - ///Sets the source node to \c _s. - /// - void source(Node _s) { - _source=_s; - if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW; - status=AFTER_NOTHING; - } - - ///Returns the source node. - - ///Returns the source node. - /// - Node source() const { - return _source; - } - - ///Sets the target node to \c _t. - - ///Sets the target node to \c _t. - /// - void target(Node _t) { - _target=_t; - if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW; - status=AFTER_NOTHING; - } - - ///Returns the target node. - - ///Returns the target node. - /// - Node target() const { - return _target; - } - - /// Sets the edge map of the capacities to _cap. - - /// Sets the edge map of the capacities to _cap. - /// - void capacityMap(const CapacityMap& _cap) { - _capacity=&_cap; - status=AFTER_NOTHING; - } - /// Returns a reference to capacity map. - - /// Returns a reference to capacity map. - /// - const CapacityMap &capacityMap() const { - return *_capacity; - } - - /// Sets the edge map of the flows to _flow. - - /// Sets the edge map of the flows to _flow. - /// - void flowMap(FlowMap& _f) { - _flow=&_f; - flow_prop=NO_FLOW; - status=AFTER_NOTHING; - } - - /// Returns a reference to flow map. - - /// Returns a reference to flow map. - /// - const FlowMap &flowMap() const { - return *_flow; - } - - private: - - int push(Node w, NNMap& next, VecNode& first) { - - int lev=level[w]; - Num exc=excess[w]; - int newlevel=_node_num; //bound on the next level of w - - for(OutEdgeIt e(*_g,w) ; e!=INVALID; ++e) { - if ( (*_flow)[e] >= (*_capacity)[e] ) continue; - Node v=_g->target(e); - - if( lev > level[v] ) { //Push is allowed now - - if ( excess[v]<=0 && v!=_target && v!=_source ) { - next.set(v,first[level[v]]); - first[level[v]]=v; - } - - Num cap=(*_capacity)[e]; - Num flo=(*_flow)[e]; - Num remcap=cap-flo; - - if ( remcap >= exc ) { //A nonsaturating push. - - _flow->set(e, flo+exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - - } else { //A saturating push. - _flow->set(e, cap); - excess.set(v, excess[v]+remcap); - exc-=remcap; - } - } else if ( newlevel > level[v] ) newlevel = level[v]; - } //for out edges wv - - if ( exc > 0 ) { - for(InEdgeIt e(*_g,w) ; e!=INVALID; ++e) { - - if( (*_flow)[e] <= 0 ) continue; - Node v=_g->source(e); - - if( lev > level[v] ) { //Push is allowed now - - if ( excess[v]<=0 && v!=_target && v!=_source ) { - next.set(v,first[level[v]]); - first[level[v]]=v; - } - - Num flo=(*_flow)[e]; - - if ( flo >= exc ) { //A nonsaturating push. - - _flow->set(e, flo-exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - } else { //A saturating push. - - excess.set(v, excess[v]+flo); - exc-=flo; - _flow->set(e,0); - } - } else if ( newlevel > level[v] ) newlevel = level[v]; - } //for in edges vw - - } // if w still has excess after the out edge for cycle - - excess.set(w, exc); - - return newlevel; - } - - - - void preflowPreproc(VecNode& first, NNMap& next, - VecNode& level_list, NNMap& left, NNMap& right) - { - for(NodeIt v(*_g); v!=INVALID; ++v) level.set(v,_node_num); - std::queue bfs_queue; - - if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) { - //Reverse_bfs from t in the residual graph, - //to find the starting level. - level.set(_target,0); - bfs_queue.push(_target); - - while ( !bfs_queue.empty() ) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) { - if ( (*_capacity)[e] <= (*_flow)[e] ) continue; - Node w=_g->source(e); - if ( level[w] == _node_num && w != _source ) { - bfs_queue.push(w); - Node z=level_list[l]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - level_list[l]=w; - level.set(w, l); - } - } - - for(OutEdgeIt e(*_g,v) ; e!=INVALID; ++e) { - if ( 0 >= (*_flow)[e] ) continue; - Node w=_g->target(e); - if ( level[w] == _node_num && w != _source ) { - bfs_queue.push(w); - Node z=level_list[l]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - level_list[l]=w; - level.set(w, l); - } - } - } //while - } //if - - - switch (flow_prop) { - case NO_FLOW: - for(EdgeIt e(*_g); e!=INVALID; ++e) _flow->set(e,0); - case ZERO_FLOW: - for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0); - - //Reverse_bfs from t, to find the starting level. - level.set(_target,0); - bfs_queue.push(_target); - - while ( !bfs_queue.empty() ) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - for(InEdgeIt e(*_g,v) ; e!=INVALID; ++e) { - Node w=_g->source(e); - if ( level[w] == _node_num && w != _source ) { - bfs_queue.push(w); - Node z=level_list[l]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - level_list[l]=w; - level.set(w, l); - } - } - } - - //the starting flow - for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) { - Num c=(*_capacity)[e]; - if ( c <= 0 ) continue; - Node w=_g->target(e); - if ( level[w] < _node_num ) { - if ( excess[w] <= 0 && w!=_target ) { //putting into the stack - next.set(w,first[level[w]]); - first[level[w]]=w; - } - _flow->set(e, c); - excess.set(w, excess[w]+c); - } - } - break; - - case GEN_FLOW: - for(NodeIt v(*_g); v!=INVALID; ++v) excess.set(v,0); - { - Num exc=0; - for(InEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc+=(*_flow)[e]; - for(OutEdgeIt e(*_g,_target) ; e!=INVALID; ++e) exc-=(*_flow)[e]; - excess.set(_target,exc); - } - - //the starting flow - for(OutEdgeIt e(*_g,_source); e!=INVALID; ++e) { - Num rem=(*_capacity)[e]-(*_flow)[e]; - if ( rem <= 0 ) continue; - Node w=_g->target(e); - if ( level[w] < _node_num ) { - if ( excess[w] <= 0 && w!=_target ) { //putting into the stack - next.set(w,first[level[w]]); - first[level[w]]=w; - } - _flow->set(e, (*_capacity)[e]); - excess.set(w, excess[w]+rem); - } - } - - for(InEdgeIt e(*_g,_source); e!=INVALID; ++e) { - if ( (*_flow)[e] <= 0 ) continue; - Node w=_g->source(e); - if ( level[w] < _node_num ) { - if ( excess[w] <= 0 && w!=_target ) { - next.set(w,first[level[w]]); - first[level[w]]=w; - } - excess.set(w, excess[w]+(*_flow)[e]); - _flow->set(e, 0); - } - } - break; - - case PRE_FLOW: - //the starting flow - for(OutEdgeIt e(*_g,_source) ; e!=INVALID; ++e) { - Num rem=(*_capacity)[e]-(*_flow)[e]; - if ( rem <= 0 ) continue; - Node w=_g->target(e); - if ( level[w] < _node_num ) _flow->set(e, (*_capacity)[e]); - } - - for(InEdgeIt e(*_g,_source) ; e!=INVALID; ++e) { - if ( (*_flow)[e] <= 0 ) continue; - Node w=_g->source(e); - if ( level[w] < _node_num ) _flow->set(e, 0); - } - - //computing the excess - for(NodeIt w(*_g); w!=INVALID; ++w) { - Num exc=0; - for(InEdgeIt e(*_g,w); e!=INVALID; ++e) exc+=(*_flow)[e]; - for(OutEdgeIt e(*_g,w); e!=INVALID; ++e) exc-=(*_flow)[e]; - excess.set(w,exc); - - //putting the active nodes into the stack - int lev=level[w]; - if ( exc > 0 && lev < _node_num && Node(w) != _target ) { - next.set(w,first[lev]); - first[lev]=w; - } - } - break; - } //switch - } //preflowPreproc - - - void relabel(Node w, int newlevel, VecNode& first, NNMap& next, - VecNode& level_list, NNMap& left, - NNMap& right, int& b, int& k, bool what_heur ) - { - - int lev=level[w]; - - Node right_n=right[w]; - Node left_n=left[w]; - - //unlacing starts - if ( right_n!=INVALID ) { - if ( left_n!=INVALID ) { - right.set(left_n, right_n); - left.set(right_n, left_n); - } else { - level_list[lev]=right_n; - left.set(right_n, INVALID); - } - } else { - if ( left_n!=INVALID ) { - right.set(left_n, INVALID); - } else { - level_list[lev]=INVALID; - } - } - //unlacing ends - - if ( level_list[lev]==INVALID ) { - - //gapping starts - for (int i=lev; i!=k ; ) { - Node v=level_list[++i]; - while ( v!=INVALID ) { - level.set(v,_node_num); - v=right[v]; - } - level_list[i]=INVALID; - if ( !what_heur ) first[i]=INVALID; - } - - level.set(w,_node_num); - b=lev-1; - k=b; - //gapping ends - - } else { - - if ( newlevel == _node_num ) level.set(w,_node_num); - else { - level.set(w,++newlevel); - next.set(w,first[newlevel]); - first[newlevel]=w; - if ( what_heur ) b=newlevel; - if ( k < newlevel ) ++k; //now k=newlevel - Node z=level_list[newlevel]; - if ( z!=INVALID ) left.set(z,w); - right.set(w,z); - left.set(w,INVALID); - level_list[newlevel]=w; - } - } - } //relabel - - }; - - ///Function type interface for Preflow algorithm. - - /// \ingroup flowalgs - ///Function type interface for Preflow algorithm. - ///\sa Preflow - template - Preflow preflow(const GR &g, - typename GR::Node source, - typename GR::Node target, - const CM &cap, - FM &flow - ) - { - return Preflow(g,source,target,cap,flow); - } - -} //namespace lemon - -#endif //LEMON_PREFLOW_H