diff -r f393a8162688 -r a3ba22ebccc6 lemon/max_matching.h --- a/lemon/max_matching.h Thu Dec 27 13:40:16 2007 +0000 +++ b/lemon/max_matching.h Fri Dec 28 11:00:51 2007 +0000 @@ -19,10 +19,14 @@ #ifndef LEMON_MAX_MATCHING_H #define LEMON_MAX_MATCHING_H +#include #include +#include + #include #include #include +#include ///\ingroup matching ///\file @@ -31,7 +35,7 @@ namespace lemon { ///\ingroup matching - + /// ///\brief Edmonds' alternating forest maximum matching algorithm. /// ///This class provides Edmonds' alternating forest matching @@ -618,6 +622,2500 @@ } }; + + /// \ingroup matching + /// + /// \brief Weighted matching in general undirected graphs + /// + /// This class provides an efficient implementation of Edmond's + /// maximum weighted matching algorithm. The implementation is based + /// on extensive use of priority queues and provides + /// \f$O(nm\log(n))\f$ time complexity. + /// + /// The maximum weighted matching problem is to find undirected + /// edges in the graph with maximum overall weight and no two of + /// them shares their endpoints. The problem can be formulated with + /// the next linear program: + /// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] + ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] + /// \f[x_e \ge 0\quad \forall e\in E\f] + /// \f[\max \sum_{e\in E}x_ew_e\f] + /// where \f$\delta(X)\f$ is the set of edges incident to a node in + /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both endpoints in + /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of + /// the nodes. + /// + /// The algorithm calculates an optimal matching and a proof of the + /// optimality. The solution of the dual problem can be used to check + /// the result of the algorithm. The dual linear problem is the next: + /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f] + /// \f[y_u \ge 0 \quad \forall u \in V\f] + /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] + /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f] + /// + /// The algorithm can be executed with \c run() or the \c init() and + /// then the \c start() member functions. After it the matching can + /// be asked with \c matching() or mate() functions. The dual + /// solution can be get with \c nodeValue(), \c blossomNum() and \c + /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt + /// "BlossomIt" nested class which is able to iterate on the nodes + /// of a blossom. If the value type is integral then the dual + /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". + /// + /// \author Balazs Dezso + template > + class MaxWeightedMatching { + public: + + typedef _UGraph UGraph; + typedef _WeightMap WeightMap; + typedef typename WeightMap::Value Value; + + /// \brief Scaling factor for dual solution + /// + /// Scaling factor for dual solution, it is equal to 4 or 1 + /// according to the value type. + static const int dualScale = + std::numeric_limits::is_integer ? 4 : 1; + + typedef typename UGraph::template NodeMap + MatchingMap; + + private: + + UGRAPH_TYPEDEFS(typename UGraph); + + typedef typename UGraph::template NodeMap NodePotential; + typedef std::vector BlossomNodeList; + + struct BlossomVariable { + int begin, end; + Value value; + + BlossomVariable(int _begin, int _end, Value _value) + : begin(_begin), end(_end), value(_value) {} + + }; + + typedef std::vector BlossomPotential; + + const UGraph& _ugraph; + const WeightMap& _weight; + + MatchingMap* _matching; + + NodePotential* _node_potential; + + BlossomPotential _blossom_potential; + BlossomNodeList _blossom_node_list; + + int _node_num; + int _blossom_num; + + typedef typename UGraph::template NodeMap NodeIntMap; + typedef typename UGraph::template EdgeMap EdgeIntMap; + typedef typename UGraph::template UEdgeMap UEdgeIntMap; + typedef IntegerMap IntIntMap; + + enum Status { + EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 + }; + + typedef HeapUnionFind BlossomSet; + struct BlossomData { + int tree; + Status status; + Edge pred, next; + Value pot, offset; + Node base; + }; + + NodeIntMap *_blossom_index; + BlossomSet *_blossom_set; + IntegerMap* _blossom_data; + + NodeIntMap *_node_index; + EdgeIntMap *_node_heap_index; + + struct NodeData { + + NodeData(EdgeIntMap& node_heap_index) + : heap(node_heap_index) {} + + int blossom; + Value pot; + BinHeap heap; + std::map heap_index; + + int tree; + }; + + IntegerMap* _node_data; + + typedef ExtendFindEnum TreeSet; + + IntIntMap *_tree_set_index; + TreeSet *_tree_set; + + NodeIntMap *_delta1_index; + BinHeap *_delta1; + + IntIntMap *_delta2_index; + BinHeap *_delta2; + + UEdgeIntMap *_delta3_index; + BinHeap *_delta3; + + IntIntMap *_delta4_index; + BinHeap *_delta4; + + Value _delta_sum; + + void createStructures() { + _node_num = countNodes(_ugraph); + _blossom_num = _node_num * 3 / 2; + + if (!_matching) { + _matching = new MatchingMap(_ugraph); + } + if (!_node_potential) { + _node_potential = new NodePotential(_ugraph); + } + if (!_blossom_set) { + _blossom_index = new NodeIntMap(_ugraph); + _blossom_set = new BlossomSet(*_blossom_index); + _blossom_data = new IntegerMap(_blossom_num); + } + + if (!_node_index) { + _node_index = new NodeIntMap(_ugraph); + _node_heap_index = new EdgeIntMap(_ugraph); + _node_data = new IntegerMap(_node_num, + NodeData(*_node_heap_index)); + } + + if (!_tree_set) { + _tree_set_index = new IntIntMap(_blossom_num); + _tree_set = new TreeSet(*_tree_set_index); + } + if (!_delta1) { + _delta1_index = new NodeIntMap(_ugraph); + _delta1 = new BinHeap(*_delta1_index); + } + if (!_delta2) { + _delta2_index = new IntIntMap(_blossom_num); + _delta2 = new BinHeap(*_delta2_index); + } + if (!_delta3) { + _delta3_index = new UEdgeIntMap(_ugraph); + _delta3 = new BinHeap(*_delta3_index); + } + if (!_delta4) { + _delta4_index = new IntIntMap(_blossom_num); + _delta4 = new BinHeap(*_delta4_index); + } + } + + void destroyStructures() { + _node_num = countNodes(_ugraph); + _blossom_num = _node_num * 3 / 2; + + if (_matching) { + delete _matching; + } + if (_node_potential) { + delete _node_potential; + } + if (_blossom_set) { + delete _blossom_index; + delete _blossom_set; + delete _blossom_data; + } + + if (_node_index) { + delete _node_index; + delete _node_heap_index; + delete _node_data; + } + + if (_tree_set) { + delete _tree_set_index; + delete _tree_set; + } + if (_delta1) { + delete _delta1_index; + delete _delta1; + } + if (_delta2) { + delete _delta2_index; + delete _delta2; + } + if (_delta3) { + delete _delta3_index; + delete _delta3; + } + if (_delta4) { + delete _delta4_index; + delete _delta4; + } + } + + void matchedToEven(int blossom, int tree) { + if (_delta2->state(blossom) == _delta2->IN_HEAP) { + _delta2->erase(blossom); + } + + if (!_blossom_set->trivial(blossom)) { + (*_blossom_data)[blossom].pot -= + 2 * (_delta_sum - (*_blossom_data)[blossom].offset); + } + + for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); + n != INVALID; ++n) { + + _blossom_set->increase(n, std::numeric_limits::max()); + int ni = (*_node_index)[n]; + + (*_node_data)[ni].heap.clear(); + (*_node_data)[ni].heap_index.clear(); + + (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; + + _delta1->push(n, (*_node_data)[ni].pot); + + for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) { + Node v = _ugraph.source(e); + int vb = _blossom_set->find(v); + int vi = (*_node_index)[v]; + + Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - + dualScale * _weight[e]; + + if ((*_blossom_data)[vb].status == EVEN) { + if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { + _delta3->push(e, rw / 2); + } + } else if ((*_blossom_data)[vb].status == UNMATCHED) { + if (_delta3->state(e) != _delta3->IN_HEAP) { + _delta3->push(e, rw); + } + } else { + typename std::map::iterator it = + (*_node_data)[vi].heap_index.find(tree); + + if (it != (*_node_data)[vi].heap_index.end()) { + if ((*_node_data)[vi].heap[it->second] > rw) { + (*_node_data)[vi].heap.replace(it->second, e); + (*_node_data)[vi].heap.decrease(e, rw); + it->second = e; + } + } else { + (*_node_data)[vi].heap.push(e, rw); + (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); + } + + if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { + _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); + + if ((*_blossom_data)[vb].status == MATCHED) { + if (_delta2->state(vb) != _delta2->IN_HEAP) { + _delta2->push(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset){ + _delta2->decrease(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } + } + } + } + } + } + (*_blossom_data)[blossom].offset = 0; + } + + void matchedToOdd(int blossom) { + if (_delta2->state(blossom) == _delta2->IN_HEAP) { + _delta2->erase(blossom); + } + (*_blossom_data)[blossom].offset += _delta_sum; + if (!_blossom_set->trivial(blossom)) { + _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + + (*_blossom_data)[blossom].offset); + } + } + + void evenToMatched(int blossom, int tree) { + if (!_blossom_set->trivial(blossom)) { + (*_blossom_data)[blossom].pot += 2 * _delta_sum; + } + + for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); + n != INVALID; ++n) { + int ni = (*_node_index)[n]; + (*_node_data)[ni].pot -= _delta_sum; + + _delta1->erase(n); + + for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) { + Node v = _ugraph.source(e); + int vb = _blossom_set->find(v); + int vi = (*_node_index)[v]; + + Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - + dualScale * _weight[e]; + + if (vb == blossom) { + if (_delta3->state(e) == _delta3->IN_HEAP) { + _delta3->erase(e); + } + } else if ((*_blossom_data)[vb].status == EVEN) { + + if (_delta3->state(e) == _delta3->IN_HEAP) { + _delta3->erase(e); + } + + int vt = _tree_set->find(vb); + + if (vt != tree) { + + Edge r = _ugraph.oppositeEdge(e); + + typename std::map::iterator it = + (*_node_data)[ni].heap_index.find(vt); + + if (it != (*_node_data)[ni].heap_index.end()) { + if ((*_node_data)[ni].heap[it->second] > rw) { + (*_node_data)[ni].heap.replace(it->second, r); + (*_node_data)[ni].heap.decrease(r, rw); + it->second = r; + } + } else { + (*_node_data)[ni].heap.push(r, rw); + (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); + } + + if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { + _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); + + if (_delta2->state(blossom) != _delta2->IN_HEAP) { + _delta2->push(blossom, _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset); + } else if ((*_delta2)[blossom] > + _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset){ + _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset); + } + } + } + + } else if ((*_blossom_data)[vb].status == UNMATCHED) { + if (_delta3->state(e) == _delta3->IN_HEAP) { + _delta3->erase(e); + } + } else { + + typename std::map::iterator it = + (*_node_data)[vi].heap_index.find(tree); + + if (it != (*_node_data)[vi].heap_index.end()) { + (*_node_data)[vi].heap.erase(it->second); + (*_node_data)[vi].heap_index.erase(it); + if ((*_node_data)[vi].heap.empty()) { + _blossom_set->increase(v, std::numeric_limits::max()); + } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { + _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); + } + + if ((*_blossom_data)[vb].status == MATCHED) { + if (_blossom_set->classPrio(vb) == + std::numeric_limits::max()) { + _delta2->erase(vb); + } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset) { + _delta2->increase(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } + } + } + } + } + } + } + + void oddToMatched(int blossom) { + (*_blossom_data)[blossom].offset -= _delta_sum; + + if (_blossom_set->classPrio(blossom) != + std::numeric_limits::max()) { + _delta2->push(blossom, _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset); + } + + if (!_blossom_set->trivial(blossom)) { + _delta4->erase(blossom); + } + } + + void oddToEven(int blossom, int tree) { + if (!_blossom_set->trivial(blossom)) { + _delta4->erase(blossom); + (*_blossom_data)[blossom].pot -= + 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); + } + + for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); + n != INVALID; ++n) { + int ni = (*_node_index)[n]; + + _blossom_set->increase(n, std::numeric_limits::max()); + + (*_node_data)[ni].heap.clear(); + (*_node_data)[ni].heap_index.clear(); + (*_node_data)[ni].pot += + 2 * _delta_sum - (*_blossom_data)[blossom].offset; + + _delta1->push(n, (*_node_data)[ni].pot); + + for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) { + Node v = _ugraph.source(e); + int vb = _blossom_set->find(v); + int vi = (*_node_index)[v]; + + Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - + dualScale * _weight[e]; + + if ((*_blossom_data)[vb].status == EVEN) { + if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { + _delta3->push(e, rw / 2); + } + } else if ((*_blossom_data)[vb].status == UNMATCHED) { + if (_delta3->state(e) != _delta3->IN_HEAP) { + _delta3->push(e, rw); + } + } else { + + typename std::map::iterator it = + (*_node_data)[vi].heap_index.find(tree); + + if (it != (*_node_data)[vi].heap_index.end()) { + if ((*_node_data)[vi].heap[it->second] > rw) { + (*_node_data)[vi].heap.replace(it->second, e); + (*_node_data)[vi].heap.decrease(e, rw); + it->second = e; + } + } else { + (*_node_data)[vi].heap.push(e, rw); + (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); + } + + if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { + _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); + + if ((*_blossom_data)[vb].status == MATCHED) { + if (_delta2->state(vb) != _delta2->IN_HEAP) { + _delta2->push(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset) { + _delta2->decrease(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } + } + } + } + } + } + (*_blossom_data)[blossom].offset = 0; + } + + + void matchedToUnmatched(int blossom) { + if (_delta2->state(blossom) == _delta2->IN_HEAP) { + _delta2->erase(blossom); + } + + for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); + n != INVALID; ++n) { + int ni = (*_node_index)[n]; + + _blossom_set->increase(n, std::numeric_limits::max()); + + (*_node_data)[ni].heap.clear(); + (*_node_data)[ni].heap_index.clear(); + + for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) { + Node v = _ugraph.target(e); + int vb = _blossom_set->find(v); + int vi = (*_node_index)[v]; + + Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - + dualScale * _weight[e]; + + if ((*_blossom_data)[vb].status == EVEN) { + if (_delta3->state(e) != _delta3->IN_HEAP) { + _delta3->push(e, rw); + } + } + } + } + } + + void unmatchedToMatched(int blossom) { + for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); + n != INVALID; ++n) { + int ni = (*_node_index)[n]; + + for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) { + Node v = _ugraph.source(e); + int vb = _blossom_set->find(v); + int vi = (*_node_index)[v]; + + Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - + dualScale * _weight[e]; + + if (vb == blossom) { + if (_delta3->state(e) == _delta3->IN_HEAP) { + _delta3->erase(e); + } + } else if ((*_blossom_data)[vb].status == EVEN) { + + if (_delta3->state(e) == _delta3->IN_HEAP) { + _delta3->erase(e); + } + + int vt = _tree_set->find(vb); + + Edge r = _ugraph.oppositeEdge(e); + + typename std::map::iterator it = + (*_node_data)[ni].heap_index.find(vt); + + if (it != (*_node_data)[ni].heap_index.end()) { + if ((*_node_data)[ni].heap[it->second] > rw) { + (*_node_data)[ni].heap.replace(it->second, r); + (*_node_data)[ni].heap.decrease(r, rw); + it->second = r; + } + } else { + (*_node_data)[ni].heap.push(r, rw); + (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); + } + + if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { + _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); + + if (_delta2->state(blossom) != _delta2->IN_HEAP) { + _delta2->push(blossom, _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset); + } else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- + (*_blossom_data)[blossom].offset){ + _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset); + } + } + + } else if ((*_blossom_data)[vb].status == UNMATCHED) { + if (_delta3->state(e) == _delta3->IN_HEAP) { + _delta3->erase(e); + } + } + } + } + } + + void alternatePath(int even, int tree) { + int odd; + + evenToMatched(even, tree); + (*_blossom_data)[even].status = MATCHED; + + while ((*_blossom_data)[even].pred != INVALID) { + odd = _blossom_set->find(_ugraph.target((*_blossom_data)[even].pred)); + (*_blossom_data)[odd].status = MATCHED; + oddToMatched(odd); + (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; + + even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].pred)); + (*_blossom_data)[even].status = MATCHED; + evenToMatched(even, tree); + (*_blossom_data)[even].next = + _ugraph.oppositeEdge((*_blossom_data)[odd].pred); + } + + } + + void destroyTree(int tree) { + for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { + if ((*_blossom_data)[b].status == EVEN) { + (*_blossom_data)[b].status = MATCHED; + evenToMatched(b, tree); + } else if ((*_blossom_data)[b].status == ODD) { + (*_blossom_data)[b].status = MATCHED; + oddToMatched(b); + } + } + _tree_set->eraseClass(tree); + } + + + void unmatchNode(const Node& node) { + int blossom = _blossom_set->find(node); + int tree = _tree_set->find(blossom); + + alternatePath(blossom, tree); + destroyTree(tree); + + (*_blossom_data)[blossom].status = UNMATCHED; + (*_blossom_data)[blossom].base = node; + matchedToUnmatched(blossom); + } + + + void augmentOnEdge(const UEdge& edge) { + + int left = _blossom_set->find(_ugraph.source(edge)); + int right = _blossom_set->find(_ugraph.target(edge)); + + if ((*_blossom_data)[left].status == EVEN) { + int left_tree = _tree_set->find(left); + alternatePath(left, left_tree); + destroyTree(left_tree); + } else { + (*_blossom_data)[left].status = MATCHED; + unmatchedToMatched(left); + } + + if ((*_blossom_data)[right].status == EVEN) { + int right_tree = _tree_set->find(right); + alternatePath(right, right_tree); + destroyTree(right_tree); + } else { + (*_blossom_data)[right].status = MATCHED; + unmatchedToMatched(right); + } + + (*_blossom_data)[left].next = _ugraph.direct(edge, true); + (*_blossom_data)[right].next = _ugraph.direct(edge, false); + } + + void extendOnEdge(const Edge& edge) { + int base = _blossom_set->find(_ugraph.target(edge)); + int tree = _tree_set->find(base); + + int odd = _blossom_set->find(_ugraph.source(edge)); + _tree_set->insert(odd, tree); + (*_blossom_data)[odd].status = ODD; + matchedToOdd(odd); + (*_blossom_data)[odd].pred = edge; + + int even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].next)); + (*_blossom_data)[even].pred = (*_blossom_data)[even].next; + _tree_set->insert(even, tree); + (*_blossom_data)[even].status = EVEN; + matchedToEven(even, tree); + } + + void shrinkOnEdge(const UEdge& uedge, int tree) { + int nca = -1; + std::vector left_path, right_path; + + { + std::set left_set, right_set; + int left = _blossom_set->find(_ugraph.source(uedge)); + left_path.push_back(left); + left_set.insert(left); + + int right = _blossom_set->find(_ugraph.target(uedge)); + right_path.push_back(right); + right_set.insert(right); + + while (true) { + + if ((*_blossom_data)[left].pred == INVALID) break; + + left = + _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred)); + left_path.push_back(left); + left = + _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred)); + left_path.push_back(left); + + left_set.insert(left); + + if (right_set.find(left) != right_set.end()) { + nca = left; + break; + } + + if ((*_blossom_data)[right].pred == INVALID) break; + + right = + _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred)); + right_path.push_back(right); + right = + _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred)); + right_path.push_back(right); + + right_set.insert(right); + + if (left_set.find(right) != left_set.end()) { + nca = right; + break; + } + + } + + if (nca == -1) { + if ((*_blossom_data)[left].pred == INVALID) { + nca = right; + while (left_set.find(nca) == left_set.end()) { + nca = + _blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred)); + right_path.push_back(nca); + nca = + _blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred)); + right_path.push_back(nca); + } + } else { + nca = left; + while (right_set.find(nca) == right_set.end()) { + nca = + _blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred)); + left_path.push_back(nca); + nca = + _blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred)); + left_path.push_back(nca); + } + } + } + } + + std::vector subblossoms; + Edge prev; + + prev = _ugraph.direct(uedge, true); + for (int i = 0; left_path[i] != nca; i += 2) { + subblossoms.push_back(left_path[i]); + (*_blossom_data)[left_path[i]].next = prev; + _tree_set->erase(left_path[i]); + + subblossoms.push_back(left_path[i + 1]); + (*_blossom_data)[left_path[i + 1]].status = EVEN; + oddToEven(left_path[i + 1], tree); + _tree_set->erase(left_path[i + 1]); + prev = _ugraph.oppositeEdge((*_blossom_data)[left_path[i + 1]].pred); + } + + int k = 0; + while (right_path[k] != nca) ++k; + + subblossoms.push_back(nca); + (*_blossom_data)[nca].next = prev; + + for (int i = k - 2; i >= 0; i -= 2) { + subblossoms.push_back(right_path[i + 1]); + (*_blossom_data)[right_path[i + 1]].status = EVEN; + oddToEven(right_path[i + 1], tree); + _tree_set->erase(right_path[i + 1]); + + (*_blossom_data)[right_path[i + 1]].next = + (*_blossom_data)[right_path[i + 1]].pred; + + subblossoms.push_back(right_path[i]); + _tree_set->erase(right_path[i]); + } + + int surface = + _blossom_set->join(subblossoms.begin(), subblossoms.end()); + + for (int i = 0; i < int(subblossoms.size()); ++i) { + if (!_blossom_set->trivial(subblossoms[i])) { + (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; + } + (*_blossom_data)[subblossoms[i]].status = MATCHED; + } + + (*_blossom_data)[surface].pot = -2 * _delta_sum; + (*_blossom_data)[surface].offset = 0; + (*_blossom_data)[surface].status = EVEN; + (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; + (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; + + _tree_set->insert(surface, tree); + _tree_set->erase(nca); + } + + void splitBlossom(int blossom) { + Edge next = (*_blossom_data)[blossom].next; + Edge pred = (*_blossom_data)[blossom].pred; + + int tree = _tree_set->find(blossom); + + (*_blossom_data)[blossom].status = MATCHED; + oddToMatched(blossom); + if (_delta2->state(blossom) == _delta2->IN_HEAP) { + _delta2->erase(blossom); + } + + std::vector subblossoms; + _blossom_set->split(blossom, std::back_inserter(subblossoms)); + + Value offset = (*_blossom_data)[blossom].offset; + int b = _blossom_set->find(_ugraph.source(pred)); + int d = _blossom_set->find(_ugraph.source(next)); + + int ib, id; + for (int i = 0; i < int(subblossoms.size()); ++i) { + if (subblossoms[i] == b) ib = i; + if (subblossoms[i] == d) id = i; + + (*_blossom_data)[subblossoms[i]].offset = offset; + if (!_blossom_set->trivial(subblossoms[i])) { + (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; + } + if (_blossom_set->classPrio(subblossoms[i]) != + std::numeric_limits::max()) { + _delta2->push(subblossoms[i], + _blossom_set->classPrio(subblossoms[i]) - + (*_blossom_data)[subblossoms[i]].offset); + } + } + + if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { + for (int i = (id + 1) % subblossoms.size(); + i != ib; i = (i + 2) % subblossoms.size()) { + int sb = subblossoms[i]; + int tb = subblossoms[(i + 1) % subblossoms.size()]; + (*_blossom_data)[sb].next = + _ugraph.oppositeEdge((*_blossom_data)[tb].next); + } + + for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { + int sb = subblossoms[i]; + int tb = subblossoms[(i + 1) % subblossoms.size()]; + int ub = subblossoms[(i + 2) % subblossoms.size()]; + + (*_blossom_data)[sb].status = ODD; + matchedToOdd(sb); + _tree_set->insert(sb, tree); + (*_blossom_data)[sb].pred = pred; + (*_blossom_data)[sb].next = + _ugraph.oppositeEdge((*_blossom_data)[tb].next); + + pred = (*_blossom_data)[ub].next; + + (*_blossom_data)[tb].status = EVEN; + matchedToEven(tb, tree); + _tree_set->insert(tb, tree); + (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; + } + + (*_blossom_data)[subblossoms[id]].status = ODD; + matchedToOdd(subblossoms[id]); + _tree_set->insert(subblossoms[id], tree); + (*_blossom_data)[subblossoms[id]].next = next; + (*_blossom_data)[subblossoms[id]].pred = pred; + + } else { + + for (int i = (ib + 1) % subblossoms.size(); + i != id; i = (i + 2) % subblossoms.size()) { + int sb = subblossoms[i]; + int tb = subblossoms[(i + 1) % subblossoms.size()]; + (*_blossom_data)[sb].next = + _ugraph.oppositeEdge((*_blossom_data)[tb].next); + } + + for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { + int sb = subblossoms[i]; + int tb = subblossoms[(i + 1) % subblossoms.size()]; + int ub = subblossoms[(i + 2) % subblossoms.size()]; + + (*_blossom_data)[sb].status = ODD; + matchedToOdd(sb); + _tree_set->insert(sb, tree); + (*_blossom_data)[sb].next = next; + (*_blossom_data)[sb].pred = + _ugraph.oppositeEdge((*_blossom_data)[tb].next); + + (*_blossom_data)[tb].status = EVEN; + matchedToEven(tb, tree); + _tree_set->insert(tb, tree); + (*_blossom_data)[tb].pred = + (*_blossom_data)[tb].next = + _ugraph.oppositeEdge((*_blossom_data)[ub].next); + next = (*_blossom_data)[ub].next; + } + + (*_blossom_data)[subblossoms[ib]].status = ODD; + matchedToOdd(subblossoms[ib]); + _tree_set->insert(subblossoms[ib], tree); + (*_blossom_data)[subblossoms[ib]].next = next; + (*_blossom_data)[subblossoms[ib]].pred = pred; + } + _tree_set->erase(blossom); + } + + void extractBlossom(int blossom, const Node& base, const Edge& matching) { + if (_blossom_set->trivial(blossom)) { + int bi = (*_node_index)[base]; + Value pot = (*_node_data)[bi].pot; + + _matching->set(base, matching); + _blossom_node_list.push_back(base); + _node_potential->set(base, pot); + } else { + + Value pot = (*_blossom_data)[blossom].pot; + int bn = _blossom_node_list.size(); + + std::vector subblossoms; + _blossom_set->split(blossom, std::back_inserter(subblossoms)); + int b = _blossom_set->find(base); + int ib = -1; + for (int i = 0; i < int(subblossoms.size()); ++i) { + if (subblossoms[i] == b) { ib = i; break; } + } + + for (int i = 1; i < int(subblossoms.size()); i += 2) { + int sb = subblossoms[(ib + i) % subblossoms.size()]; + int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; + + Edge m = (*_blossom_data)[tb].next; + extractBlossom(sb, _ugraph.target(m), _ugraph.oppositeEdge(m)); + extractBlossom(tb, _ugraph.source(m), m); + } + extractBlossom(subblossoms[ib], base, matching); + + int en = _blossom_node_list.size(); + + _blossom_potential.push_back(BlossomVariable(bn, en, pot)); + } + } + + void extractMatching() { + std::vector blossoms; + for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { + blossoms.push_back(c); + } + + for (int i = 0; i < int(blossoms.size()); ++i) { + if ((*_blossom_data)[blossoms[i]].status == MATCHED) { + + Value offset = (*_blossom_data)[blossoms[i]].offset; + (*_blossom_data)[blossoms[i]].pot += 2 * offset; + for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); + n != INVALID; ++n) { + (*_node_data)[(*_node_index)[n]].pot -= offset; + } + + Edge matching = (*_blossom_data)[blossoms[i]].next; + Node base = _ugraph.source(matching); + extractBlossom(blossoms[i], base, matching); + } else { + Node base = (*_blossom_data)[blossoms[i]].base; + extractBlossom(blossoms[i], base, INVALID); + } + } + } + + public: + + /// \brief Constructor + /// + /// Constructor. + MaxWeightedMatching(const UGraph& ugraph, const WeightMap& weight) + : _ugraph(ugraph), _weight(weight), _matching(0), + _node_potential(0), _blossom_potential(), _blossom_node_list(), + _node_num(0), _blossom_num(0), + + _blossom_index(0), _blossom_set(0), _blossom_data(0), + _node_index(0), _node_heap_index(0), _node_data(0), + _tree_set_index(0), _tree_set(0), + + _delta1_index(0), _delta1(0), + _delta2_index(0), _delta2(0), + _delta3_index(0), _delta3(0), + _delta4_index(0), _delta4(0), + + _delta_sum() {} + + ~MaxWeightedMatching() { + destroyStructures(); + } + + /// \name Execution control + /// The simplest way to execute the algorithm is to use the member + /// \c run() member function. + + ///@{ + + /// \brief Initialize the algorithm + /// + /// Initialize the algorithm + void init() { + createStructures(); + + for (EdgeIt e(_ugraph); e != INVALID; ++e) { + _node_heap_index->set(e, BinHeap::PRE_HEAP); + } + for (NodeIt n(_ugraph); n != INVALID; ++n) { + _delta1_index->set(n, _delta1->PRE_HEAP); + } + for (UEdgeIt e(_ugraph); e != INVALID; ++e) { + _delta3_index->set(e, _delta3->PRE_HEAP); + } + for (int i = 0; i < _blossom_num; ++i) { + _delta2_index->set(i, _delta2->PRE_HEAP); + _delta4_index->set(i, _delta4->PRE_HEAP); + } + + int index = 0; + for (NodeIt n(_ugraph); n != INVALID; ++n) { + Value max = 0; + for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) { + if (_ugraph.target(e) == n) continue; + if ((dualScale * _weight[e]) / 2 > max) { + max = (dualScale * _weight[e]) / 2; + } + } + _node_index->set(n, index); + (*_node_data)[index].pot = max; + _delta1->push(n, max); + int blossom = + _blossom_set->insert(n, std::numeric_limits::max()); + + _tree_set->insert(blossom); + + (*_blossom_data)[blossom].status = EVEN; + (*_blossom_data)[blossom].pred = INVALID; + (*_blossom_data)[blossom].next = INVALID; + (*_blossom_data)[blossom].pot = 0; + (*_blossom_data)[blossom].offset = 0; + ++index; + } + for (UEdgeIt e(_ugraph); e != INVALID; ++e) { + int si = (*_node_index)[_ugraph.source(e)]; + int ti = (*_node_index)[_ugraph.target(e)]; + if (_ugraph.source(e) != _ugraph.target(e)) { + _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - + dualScale * _weight[e]) / 2); + } + } + } + + /// \brief Starts the algorithm + /// + /// Starts the algorithm + void start() { + enum OpType { + D1, D2, D3, D4 + }; + + int unmatched = _node_num; + while (unmatched > 0) { + Value d1 = !_delta1->empty() ? + _delta1->prio() : std::numeric_limits::max(); + + Value d2 = !_delta2->empty() ? + _delta2->prio() : std::numeric_limits::max(); + + Value d3 = !_delta3->empty() ? + _delta3->prio() : std::numeric_limits::max(); + + Value d4 = !_delta4->empty() ? + _delta4->prio() : std::numeric_limits::max(); + + _delta_sum = d1; OpType ot = D1; + if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } + if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } + if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } + + + switch (ot) { + case D1: + { + Node n = _delta1->top(); + unmatchNode(n); + --unmatched; + } + break; + case D2: + { + int blossom = _delta2->top(); + Node n = _blossom_set->classTop(blossom); + Edge e = (*_node_data)[(*_node_index)[n]].heap.top(); + extendOnEdge(e); + } + break; + case D3: + { + UEdge e = _delta3->top(); + + int left_blossom = _blossom_set->find(_ugraph.source(e)); + int right_blossom = _blossom_set->find(_ugraph.target(e)); + + if (left_blossom == right_blossom) { + _delta3->pop(); + } else { + int left_tree; + if ((*_blossom_data)[left_blossom].status == EVEN) { + left_tree = _tree_set->find(left_blossom); + } else { + left_tree = -1; + ++unmatched; + } + int right_tree; + if ((*_blossom_data)[right_blossom].status == EVEN) { + right_tree = _tree_set->find(right_blossom); + } else { + right_tree = -1; + ++unmatched; + } + + if (left_tree == right_tree) { + shrinkOnEdge(e, left_tree); + } else { + augmentOnEdge(e); + unmatched -= 2; + } + } + } break; + case D4: + splitBlossom(_delta4->top()); + break; + } + } + extractMatching(); + } + + /// \brief Runs %MaxWeightedMatching algorithm. + /// + /// This method runs the %MaxWeightedMatching algorithm. + /// + /// \note mwm.run() is just a shortcut of the following code. + /// \code + /// mwm.init(); + /// mwm.start(); + /// \endcode + void run() { + init(); + start(); + } + + /// @} + + /// \name Primal solution + /// Functions for get the primal solution, ie. the matching. + + /// @{ + + /// \brief Returns the matching value. + /// + /// Returns the matching value. + Value matchingValue() const { + Value sum = 0; + for (NodeIt n(_ugraph); n != INVALID; ++n) { + if ((*_matching)[n] != INVALID) { + sum += _weight[(*_matching)[n]]; + } + } + return sum /= 2; + } + + /// \brief Returns true when the edge is in the matching. + /// + /// Returns true when the edge is in the matching. + bool matching(const UEdge& edge) const { + return (*_matching)[_ugraph.source(edge)] == _ugraph.direct(edge, true); + } + + /// \brief Returns the incident matching edge. + /// + /// Returns the incident matching edge from given node. If the + /// node is not matched then it gives back \c INVALID. + Edge matching(const Node& node) const { + return (*_matching)[node]; + } + + /// \brief Returns the mate of the node. + /// + /// Returns the adjancent node in a mathcing edge. If the node is + /// not matched then it gives back \c INVALID. + Node mate(const Node& node) const { + return (*_matching)[node] != INVALID ? + _ugraph.target((*_matching)[node]) : INVALID; + } + + /// @} + + /// \name Dual solution + /// Functions for get the dual solution. + + /// @{ + + /// \brief Returns the value of the dual solution. + /// + /// Returns the value of the dual solution. It should be equal to + /// the primal value scaled by \ref dualScale "dual scale". + Value dualValue() const { + Value sum = 0; + for (NodeIt n(_ugraph); n != INVALID; ++n) { + sum += nodeValue(n); + } + for (int i = 0; i < blossomNum(); ++i) { + sum += blossomValue(i) * (blossomSize(i) / 2); + } + return sum; + } + + /// \brief Returns the value of the node. + /// + /// Returns the the value of the node. + Value nodeValue(const Node& n) const { + return (*_node_potential)[n]; + } + + /// \brief Returns the number of the blossoms in the basis. + /// + /// Returns the number of the blossoms in the basis. + /// \see BlossomIt + int blossomNum() const { + return _blossom_potential.size(); + } + + + /// \brief Returns the number of the nodes in the blossom. + /// + /// Returns the number of the nodes in the blossom. + int blossomSize(int k) const { + return _blossom_potential[k].end - _blossom_potential[k].begin; + } + + /// \brief Returns the value of the blossom. + /// + /// Returns the the value of the blossom. + /// \see BlossomIt + Value blossomValue(int k) const { + return _blossom_potential[k].value; + } + + /// \brief Lemon iterator for get the items of the blossom. + /// + /// Lemon iterator for get the nodes of the blossom. This class + /// provides a common style lemon iterator which gives back a + /// subset of the nodes. + class BlossomIt { + public: + + /// \brief Constructor. + /// + /// Constructor for get the nodes of the variable. + BlossomIt(const MaxWeightedMatching& algorithm, int variable) + : _algorithm(&algorithm) + { + _index = _algorithm->_blossom_potential[variable].begin; + _last = _algorithm->_blossom_potential[variable].end; + } + + /// \brief Invalid constructor. + /// + /// Invalid constructor. + BlossomIt(Invalid) : _index(-1) {} + + /// \brief Conversion to node. + /// + /// Conversion to node. + operator Node() const { + return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID; + } + + /// \brief Increment operator. + /// + /// Increment operator. + BlossomIt& operator++() { + ++_index; + if (_index == _last) { + _index = -1; + } + return *this; + } + + bool operator==(const BlossomIt& it) const { + return _index == it._index; + } + bool operator!=(const BlossomIt& it) const { + return _index != it._index; + } + + private: + const MaxWeightedMatching* _algorithm; + int _last; + int _index; + }; + + /// @} + + }; + + /// \ingroup matching + /// + /// \brief Weighted perfect matching in general undirected graphs + /// + /// This class provides an efficient implementation of Edmond's + /// maximum weighted perfecr matching algorithm. The implementation + /// is based on extensive use of priority queues and provides + /// \f$O(nm\log(n))\f$ time complexity. + /// + /// The maximum weighted matching problem is to find undirected + /// edges in the graph with maximum overall weight and no two of + /// them shares their endpoints and covers all nodes. The problem + /// can be formulated with the next linear program: + /// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] + ///\f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} \quad \forall B\in\mathcal{O}\f] + /// \f[x_e \ge 0\quad \forall e\in E\f] + /// \f[\max \sum_{e\in E}x_ew_e\f] + /// where \f$\delta(X)\f$ is the set of edges incident to a node in + /// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both endpoints in + /// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality subsets of + /// the nodes. + /// + /// The algorithm calculates an optimal matching and a proof of the + /// optimality. The solution of the dual problem can be used to check + /// the result of the algorithm. The dual linear problem is the next: + /// \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge w_{uv} \quad \forall uv\in E\f] + /// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] + /// \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}}\frac{\vert B \vert - 1}{2}z_B\f] + /// + /// The algorithm can be executed with \c run() or the \c init() and + /// then the \c start() member functions. After it the matching can + /// be asked with \c matching() or mate() functions. The dual + /// solution can be get with \c nodeValue(), \c blossomNum() and \c + /// blossomValue() members and \ref MaxWeightedMatching::BlossomIt + /// "BlossomIt" nested class which is able to iterate on the nodes + /// of a blossom. If the value type is integral then the dual + /// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". + /// + /// \author Balazs Dezso + template > + class MaxWeightedPerfectMatching { + public: + + typedef _UGraph UGraph; + typedef _WeightMap WeightMap; + typedef typename WeightMap::Value Value; + + /// \brief Scaling factor for dual solution + /// + /// Scaling factor for dual solution, it is equal to 4 or 1 + /// according to the value type. + static const int dualScale = + std::numeric_limits::is_integer ? 4 : 1; + + typedef typename UGraph::template NodeMap + MatchingMap; + + private: + + UGRAPH_TYPEDEFS(typename UGraph); + + typedef typename UGraph::template NodeMap NodePotential; + typedef std::vector BlossomNodeList; + + struct BlossomVariable { + int begin, end; + Value value; + + BlossomVariable(int _begin, int _end, Value _value) + : begin(_begin), end(_end), value(_value) {} + + }; + + typedef std::vector BlossomPotential; + + const UGraph& _ugraph; + const WeightMap& _weight; + + MatchingMap* _matching; + + NodePotential* _node_potential; + + BlossomPotential _blossom_potential; + BlossomNodeList _blossom_node_list; + + int _node_num; + int _blossom_num; + + typedef typename UGraph::template NodeMap NodeIntMap; + typedef typename UGraph::template EdgeMap EdgeIntMap; + typedef typename UGraph::template UEdgeMap UEdgeIntMap; + typedef IntegerMap IntIntMap; + + enum Status { + EVEN = -1, MATCHED = 0, ODD = 1 + }; + + typedef HeapUnionFind BlossomSet; + struct BlossomData { + int tree; + Status status; + Edge pred, next; + Value pot, offset; + }; + + NodeIntMap *_blossom_index; + BlossomSet *_blossom_set; + IntegerMap* _blossom_data; + + NodeIntMap *_node_index; + EdgeIntMap *_node_heap_index; + + struct NodeData { + + NodeData(EdgeIntMap& node_heap_index) + : heap(node_heap_index) {} + + int blossom; + Value pot; + BinHeap heap; + std::map heap_index; + + int tree; + }; + + IntegerMap* _node_data; + + typedef ExtendFindEnum TreeSet; + + IntIntMap *_tree_set_index; + TreeSet *_tree_set; + + IntIntMap *_delta2_index; + BinHeap *_delta2; + + UEdgeIntMap *_delta3_index; + BinHeap *_delta3; + + IntIntMap *_delta4_index; + BinHeap *_delta4; + + Value _delta_sum; + + void createStructures() { + _node_num = countNodes(_ugraph); + _blossom_num = _node_num * 3 / 2; + + if (!_matching) { + _matching = new MatchingMap(_ugraph); + } + if (!_node_potential) { + _node_potential = new NodePotential(_ugraph); + } + if (!_blossom_set) { + _blossom_index = new NodeIntMap(_ugraph); + _blossom_set = new BlossomSet(*_blossom_index); + _blossom_data = new IntegerMap(_blossom_num); + } + + if (!_node_index) { + _node_index = new NodeIntMap(_ugraph); + _node_heap_index = new EdgeIntMap(_ugraph); + _node_data = new IntegerMap(_node_num, + NodeData(*_node_heap_index)); + } + + if (!_tree_set) { + _tree_set_index = new IntIntMap(_blossom_num); + _tree_set = new TreeSet(*_tree_set_index); + } + if (!_delta2) { + _delta2_index = new IntIntMap(_blossom_num); + _delta2 = new BinHeap(*_delta2_index); + } + if (!_delta3) { + _delta3_index = new UEdgeIntMap(_ugraph); + _delta3 = new BinHeap(*_delta3_index); + } + if (!_delta4) { + _delta4_index = new IntIntMap(_blossom_num); + _delta4 = new BinHeap(*_delta4_index); + } + } + + void destroyStructures() { + _node_num = countNodes(_ugraph); + _blossom_num = _node_num * 3 / 2; + + if (_matching) { + delete _matching; + } + if (_node_potential) { + delete _node_potential; + } + if (_blossom_set) { + delete _blossom_index; + delete _blossom_set; + delete _blossom_data; + } + + if (_node_index) { + delete _node_index; + delete _node_heap_index; + delete _node_data; + } + + if (_tree_set) { + delete _tree_set_index; + delete _tree_set; + } + if (_delta2) { + delete _delta2_index; + delete _delta2; + } + if (_delta3) { + delete _delta3_index; + delete _delta3; + } + if (_delta4) { + delete _delta4_index; + delete _delta4; + } + } + + void matchedToEven(int blossom, int tree) { + if (_delta2->state(blossom) == _delta2->IN_HEAP) { + _delta2->erase(blossom); + } + + if (!_blossom_set->trivial(blossom)) { + (*_blossom_data)[blossom].pot -= + 2 * (_delta_sum - (*_blossom_data)[blossom].offset); + } + + for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); + n != INVALID; ++n) { + + _blossom_set->increase(n, std::numeric_limits::max()); + int ni = (*_node_index)[n]; + + (*_node_data)[ni].heap.clear(); + (*_node_data)[ni].heap_index.clear(); + + (*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; + + for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) { + Node v = _ugraph.source(e); + int vb = _blossom_set->find(v); + int vi = (*_node_index)[v]; + + Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - + dualScale * _weight[e]; + + if ((*_blossom_data)[vb].status == EVEN) { + if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { + _delta3->push(e, rw / 2); + } + } else { + typename std::map::iterator it = + (*_node_data)[vi].heap_index.find(tree); + + if (it != (*_node_data)[vi].heap_index.end()) { + if ((*_node_data)[vi].heap[it->second] > rw) { + (*_node_data)[vi].heap.replace(it->second, e); + (*_node_data)[vi].heap.decrease(e, rw); + it->second = e; + } + } else { + (*_node_data)[vi].heap.push(e, rw); + (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); + } + + if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { + _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); + + if ((*_blossom_data)[vb].status == MATCHED) { + if (_delta2->state(vb) != _delta2->IN_HEAP) { + _delta2->push(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset){ + _delta2->decrease(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } + } + } + } + } + } + (*_blossom_data)[blossom].offset = 0; + } + + void matchedToOdd(int blossom) { + if (_delta2->state(blossom) == _delta2->IN_HEAP) { + _delta2->erase(blossom); + } + (*_blossom_data)[blossom].offset += _delta_sum; + if (!_blossom_set->trivial(blossom)) { + _delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + + (*_blossom_data)[blossom].offset); + } + } + + void evenToMatched(int blossom, int tree) { + if (!_blossom_set->trivial(blossom)) { + (*_blossom_data)[blossom].pot += 2 * _delta_sum; + } + + for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); + n != INVALID; ++n) { + int ni = (*_node_index)[n]; + (*_node_data)[ni].pot -= _delta_sum; + + for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) { + Node v = _ugraph.source(e); + int vb = _blossom_set->find(v); + int vi = (*_node_index)[v]; + + Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - + dualScale * _weight[e]; + + if (vb == blossom) { + if (_delta3->state(e) == _delta3->IN_HEAP) { + _delta3->erase(e); + } + } else if ((*_blossom_data)[vb].status == EVEN) { + + if (_delta3->state(e) == _delta3->IN_HEAP) { + _delta3->erase(e); + } + + int vt = _tree_set->find(vb); + + if (vt != tree) { + + Edge r = _ugraph.oppositeEdge(e); + + typename std::map::iterator it = + (*_node_data)[ni].heap_index.find(vt); + + if (it != (*_node_data)[ni].heap_index.end()) { + if ((*_node_data)[ni].heap[it->second] > rw) { + (*_node_data)[ni].heap.replace(it->second, r); + (*_node_data)[ni].heap.decrease(r, rw); + it->second = r; + } + } else { + (*_node_data)[ni].heap.push(r, rw); + (*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); + } + + if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { + _blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); + + if (_delta2->state(blossom) != _delta2->IN_HEAP) { + _delta2->push(blossom, _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset); + } else if ((*_delta2)[blossom] > + _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset){ + _delta2->decrease(blossom, _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset); + } + } + } + } else { + + typename std::map::iterator it = + (*_node_data)[vi].heap_index.find(tree); + + if (it != (*_node_data)[vi].heap_index.end()) { + (*_node_data)[vi].heap.erase(it->second); + (*_node_data)[vi].heap_index.erase(it); + if ((*_node_data)[vi].heap.empty()) { + _blossom_set->increase(v, std::numeric_limits::max()); + } else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { + _blossom_set->increase(v, (*_node_data)[vi].heap.prio()); + } + + if ((*_blossom_data)[vb].status == MATCHED) { + if (_blossom_set->classPrio(vb) == + std::numeric_limits::max()) { + _delta2->erase(vb); + } else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset) { + _delta2->increase(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } + } + } + } + } + } + } + + void oddToMatched(int blossom) { + (*_blossom_data)[blossom].offset -= _delta_sum; + + if (_blossom_set->classPrio(blossom) != + std::numeric_limits::max()) { + _delta2->push(blossom, _blossom_set->classPrio(blossom) - + (*_blossom_data)[blossom].offset); + } + + if (!_blossom_set->trivial(blossom)) { + _delta4->erase(blossom); + } + } + + void oddToEven(int blossom, int tree) { + if (!_blossom_set->trivial(blossom)) { + _delta4->erase(blossom); + (*_blossom_data)[blossom].pot -= + 2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); + } + + for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); + n != INVALID; ++n) { + int ni = (*_node_index)[n]; + + _blossom_set->increase(n, std::numeric_limits::max()); + + (*_node_data)[ni].heap.clear(); + (*_node_data)[ni].heap_index.clear(); + (*_node_data)[ni].pot += + 2 * _delta_sum - (*_blossom_data)[blossom].offset; + + for (InEdgeIt e(_ugraph, n); e != INVALID; ++e) { + Node v = _ugraph.source(e); + int vb = _blossom_set->find(v); + int vi = (*_node_index)[v]; + + Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - + dualScale * _weight[e]; + + if ((*_blossom_data)[vb].status == EVEN) { + if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { + _delta3->push(e, rw / 2); + } + } else { + + typename std::map::iterator it = + (*_node_data)[vi].heap_index.find(tree); + + if (it != (*_node_data)[vi].heap_index.end()) { + if ((*_node_data)[vi].heap[it->second] > rw) { + (*_node_data)[vi].heap.replace(it->second, e); + (*_node_data)[vi].heap.decrease(e, rw); + it->second = e; + } + } else { + (*_node_data)[vi].heap.push(e, rw); + (*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); + } + + if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { + _blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); + + if ((*_blossom_data)[vb].status == MATCHED) { + if (_delta2->state(vb) != _delta2->IN_HEAP) { + _delta2->push(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset) { + _delta2->decrease(vb, _blossom_set->classPrio(vb) - + (*_blossom_data)[vb].offset); + } + } + } + } + } + } + (*_blossom_data)[blossom].offset = 0; + } + + void alternatePath(int even, int tree) { + int odd; + + evenToMatched(even, tree); + (*_blossom_data)[even].status = MATCHED; + + while ((*_blossom_data)[even].pred != INVALID) { + odd = _blossom_set->find(_ugraph.target((*_blossom_data)[even].pred)); + (*_blossom_data)[odd].status = MATCHED; + oddToMatched(odd); + (*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; + + even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].pred)); + (*_blossom_data)[even].status = MATCHED; + evenToMatched(even, tree); + (*_blossom_data)[even].next = + _ugraph.oppositeEdge((*_blossom_data)[odd].pred); + } + + } + + void destroyTree(int tree) { + for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { + if ((*_blossom_data)[b].status == EVEN) { + (*_blossom_data)[b].status = MATCHED; + evenToMatched(b, tree); + } else if ((*_blossom_data)[b].status == ODD) { + (*_blossom_data)[b].status = MATCHED; + oddToMatched(b); + } + } + _tree_set->eraseClass(tree); + } + + void augmentOnEdge(const UEdge& edge) { + + int left = _blossom_set->find(_ugraph.source(edge)); + int right = _blossom_set->find(_ugraph.target(edge)); + + int left_tree = _tree_set->find(left); + alternatePath(left, left_tree); + destroyTree(left_tree); + + int right_tree = _tree_set->find(right); + alternatePath(right, right_tree); + destroyTree(right_tree); + + (*_blossom_data)[left].next = _ugraph.direct(edge, true); + (*_blossom_data)[right].next = _ugraph.direct(edge, false); + } + + void extendOnEdge(const Edge& edge) { + int base = _blossom_set->find(_ugraph.target(edge)); + int tree = _tree_set->find(base); + + int odd = _blossom_set->find(_ugraph.source(edge)); + _tree_set->insert(odd, tree); + (*_blossom_data)[odd].status = ODD; + matchedToOdd(odd); + (*_blossom_data)[odd].pred = edge; + + int even = _blossom_set->find(_ugraph.target((*_blossom_data)[odd].next)); + (*_blossom_data)[even].pred = (*_blossom_data)[even].next; + _tree_set->insert(even, tree); + (*_blossom_data)[even].status = EVEN; + matchedToEven(even, tree); + } + + void shrinkOnEdge(const UEdge& uedge, int tree) { + int nca = -1; + std::vector left_path, right_path; + + { + std::set left_set, right_set; + int left = _blossom_set->find(_ugraph.source(uedge)); + left_path.push_back(left); + left_set.insert(left); + + int right = _blossom_set->find(_ugraph.target(uedge)); + right_path.push_back(right); + right_set.insert(right); + + while (true) { + + if ((*_blossom_data)[left].pred == INVALID) break; + + left = + _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred)); + left_path.push_back(left); + left = + _blossom_set->find(_ugraph.target((*_blossom_data)[left].pred)); + left_path.push_back(left); + + left_set.insert(left); + + if (right_set.find(left) != right_set.end()) { + nca = left; + break; + } + + if ((*_blossom_data)[right].pred == INVALID) break; + + right = + _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred)); + right_path.push_back(right); + right = + _blossom_set->find(_ugraph.target((*_blossom_data)[right].pred)); + right_path.push_back(right); + + right_set.insert(right); + + if (left_set.find(right) != left_set.end()) { + nca = right; + break; + } + + } + + if (nca == -1) { + if ((*_blossom_data)[left].pred == INVALID) { + nca = right; + while (left_set.find(nca) == left_set.end()) { + nca = + _blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred)); + right_path.push_back(nca); + nca = + _blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred)); + right_path.push_back(nca); + } + } else { + nca = left; + while (right_set.find(nca) == right_set.end()) { + nca = + _blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred)); + left_path.push_back(nca); + nca = + _blossom_set->find(_ugraph.target((*_blossom_data)[nca].pred)); + left_path.push_back(nca); + } + } + } + } + + std::vector subblossoms; + Edge prev; + + prev = _ugraph.direct(uedge, true); + for (int i = 0; left_path[i] != nca; i += 2) { + subblossoms.push_back(left_path[i]); + (*_blossom_data)[left_path[i]].next = prev; + _tree_set->erase(left_path[i]); + + subblossoms.push_back(left_path[i + 1]); + (*_blossom_data)[left_path[i + 1]].status = EVEN; + oddToEven(left_path[i + 1], tree); + _tree_set->erase(left_path[i + 1]); + prev = _ugraph.oppositeEdge((*_blossom_data)[left_path[i + 1]].pred); + } + + int k = 0; + while (right_path[k] != nca) ++k; + + subblossoms.push_back(nca); + (*_blossom_data)[nca].next = prev; + + for (int i = k - 2; i >= 0; i -= 2) { + subblossoms.push_back(right_path[i + 1]); + (*_blossom_data)[right_path[i + 1]].status = EVEN; + oddToEven(right_path[i + 1], tree); + _tree_set->erase(right_path[i + 1]); + + (*_blossom_data)[right_path[i + 1]].next = + (*_blossom_data)[right_path[i + 1]].pred; + + subblossoms.push_back(right_path[i]); + _tree_set->erase(right_path[i]); + } + + int surface = + _blossom_set->join(subblossoms.begin(), subblossoms.end()); + + for (int i = 0; i < int(subblossoms.size()); ++i) { + if (!_blossom_set->trivial(subblossoms[i])) { + (*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; + } + (*_blossom_data)[subblossoms[i]].status = MATCHED; + } + + (*_blossom_data)[surface].pot = -2 * _delta_sum; + (*_blossom_data)[surface].offset = 0; + (*_blossom_data)[surface].status = EVEN; + (*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; + (*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; + + _tree_set->insert(surface, tree); + _tree_set->erase(nca); + } + + void splitBlossom(int blossom) { + Edge next = (*_blossom_data)[blossom].next; + Edge pred = (*_blossom_data)[blossom].pred; + + int tree = _tree_set->find(blossom); + + (*_blossom_data)[blossom].status = MATCHED; + oddToMatched(blossom); + if (_delta2->state(blossom) == _delta2->IN_HEAP) { + _delta2->erase(blossom); + } + + std::vector subblossoms; + _blossom_set->split(blossom, std::back_inserter(subblossoms)); + + Value offset = (*_blossom_data)[blossom].offset; + int b = _blossom_set->find(_ugraph.source(pred)); + int d = _blossom_set->find(_ugraph.source(next)); + + int ib, id; + for (int i = 0; i < int(subblossoms.size()); ++i) { + if (subblossoms[i] == b) ib = i; + if (subblossoms[i] == d) id = i; + + (*_blossom_data)[subblossoms[i]].offset = offset; + if (!_blossom_set->trivial(subblossoms[i])) { + (*_blossom_data)[subblossoms[i]].pot -= 2 * offset; + } + if (_blossom_set->classPrio(subblossoms[i]) != + std::numeric_limits::max()) { + _delta2->push(subblossoms[i], + _blossom_set->classPrio(subblossoms[i]) - + (*_blossom_data)[subblossoms[i]].offset); + } + } + + if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { + for (int i = (id + 1) % subblossoms.size(); + i != ib; i = (i + 2) % subblossoms.size()) { + int sb = subblossoms[i]; + int tb = subblossoms[(i + 1) % subblossoms.size()]; + (*_blossom_data)[sb].next = + _ugraph.oppositeEdge((*_blossom_data)[tb].next); + } + + for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { + int sb = subblossoms[i]; + int tb = subblossoms[(i + 1) % subblossoms.size()]; + int ub = subblossoms[(i + 2) % subblossoms.size()]; + + (*_blossom_data)[sb].status = ODD; + matchedToOdd(sb); + _tree_set->insert(sb, tree); + (*_blossom_data)[sb].pred = pred; + (*_blossom_data)[sb].next = + _ugraph.oppositeEdge((*_blossom_data)[tb].next); + + pred = (*_blossom_data)[ub].next; + + (*_blossom_data)[tb].status = EVEN; + matchedToEven(tb, tree); + _tree_set->insert(tb, tree); + (*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; + } + + (*_blossom_data)[subblossoms[id]].status = ODD; + matchedToOdd(subblossoms[id]); + _tree_set->insert(subblossoms[id], tree); + (*_blossom_data)[subblossoms[id]].next = next; + (*_blossom_data)[subblossoms[id]].pred = pred; + + } else { + + for (int i = (ib + 1) % subblossoms.size(); + i != id; i = (i + 2) % subblossoms.size()) { + int sb = subblossoms[i]; + int tb = subblossoms[(i + 1) % subblossoms.size()]; + (*_blossom_data)[sb].next = + _ugraph.oppositeEdge((*_blossom_data)[tb].next); + } + + for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { + int sb = subblossoms[i]; + int tb = subblossoms[(i + 1) % subblossoms.size()]; + int ub = subblossoms[(i + 2) % subblossoms.size()]; + + (*_blossom_data)[sb].status = ODD; + matchedToOdd(sb); + _tree_set->insert(sb, tree); + (*_blossom_data)[sb].next = next; + (*_blossom_data)[sb].pred = + _ugraph.oppositeEdge((*_blossom_data)[tb].next); + + (*_blossom_data)[tb].status = EVEN; + matchedToEven(tb, tree); + _tree_set->insert(tb, tree); + (*_blossom_data)[tb].pred = + (*_blossom_data)[tb].next = + _ugraph.oppositeEdge((*_blossom_data)[ub].next); + next = (*_blossom_data)[ub].next; + } + + (*_blossom_data)[subblossoms[ib]].status = ODD; + matchedToOdd(subblossoms[ib]); + _tree_set->insert(subblossoms[ib], tree); + (*_blossom_data)[subblossoms[ib]].next = next; + (*_blossom_data)[subblossoms[ib]].pred = pred; + } + _tree_set->erase(blossom); + } + + void extractBlossom(int blossom, const Node& base, const Edge& matching) { + if (_blossom_set->trivial(blossom)) { + int bi = (*_node_index)[base]; + Value pot = (*_node_data)[bi].pot; + + _matching->set(base, matching); + _blossom_node_list.push_back(base); + _node_potential->set(base, pot); + } else { + + Value pot = (*_blossom_data)[blossom].pot; + int bn = _blossom_node_list.size(); + + std::vector subblossoms; + _blossom_set->split(blossom, std::back_inserter(subblossoms)); + int b = _blossom_set->find(base); + int ib = -1; + for (int i = 0; i < int(subblossoms.size()); ++i) { + if (subblossoms[i] == b) { ib = i; break; } + } + + for (int i = 1; i < int(subblossoms.size()); i += 2) { + int sb = subblossoms[(ib + i) % subblossoms.size()]; + int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; + + Edge m = (*_blossom_data)[tb].next; + extractBlossom(sb, _ugraph.target(m), _ugraph.oppositeEdge(m)); + extractBlossom(tb, _ugraph.source(m), m); + } + extractBlossom(subblossoms[ib], base, matching); + + int en = _blossom_node_list.size(); + + _blossom_potential.push_back(BlossomVariable(bn, en, pot)); + } + } + + void extractMatching() { + std::vector blossoms; + for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { + blossoms.push_back(c); + } + + for (int i = 0; i < int(blossoms.size()); ++i) { + + Value offset = (*_blossom_data)[blossoms[i]].offset; + (*_blossom_data)[blossoms[i]].pot += 2 * offset; + for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); + n != INVALID; ++n) { + (*_node_data)[(*_node_index)[n]].pot -= offset; + } + + Edge matching = (*_blossom_data)[blossoms[i]].next; + Node base = _ugraph.source(matching); + extractBlossom(blossoms[i], base, matching); + } + } + + public: + + /// \brief Constructor + /// + /// Constructor. + MaxWeightedPerfectMatching(const UGraph& ugraph, const WeightMap& weight) + : _ugraph(ugraph), _weight(weight), _matching(0), + _node_potential(0), _blossom_potential(), _blossom_node_list(), + _node_num(0), _blossom_num(0), + + _blossom_index(0), _blossom_set(0), _blossom_data(0), + _node_index(0), _node_heap_index(0), _node_data(0), + _tree_set_index(0), _tree_set(0), + + _delta2_index(0), _delta2(0), + _delta3_index(0), _delta3(0), + _delta4_index(0), _delta4(0), + + _delta_sum() {} + + ~MaxWeightedPerfectMatching() { + destroyStructures(); + } + + /// \name Execution control + /// The simplest way to execute the algorithm is to use the member + /// \c run() member function. + + ///@{ + + /// \brief Initialize the algorithm + /// + /// Initialize the algorithm + void init() { + createStructures(); + + for (EdgeIt e(_ugraph); e != INVALID; ++e) { + _node_heap_index->set(e, BinHeap::PRE_HEAP); + } + for (UEdgeIt e(_ugraph); e != INVALID; ++e) { + _delta3_index->set(e, _delta3->PRE_HEAP); + } + for (int i = 0; i < _blossom_num; ++i) { + _delta2_index->set(i, _delta2->PRE_HEAP); + _delta4_index->set(i, _delta4->PRE_HEAP); + } + + int index = 0; + for (NodeIt n(_ugraph); n != INVALID; ++n) { + Value max = std::numeric_limits::min(); + for (OutEdgeIt e(_ugraph, n); e != INVALID; ++e) { + if (_ugraph.target(e) == n) continue; + if ((dualScale * _weight[e]) / 2 > max) { + max = (dualScale * _weight[e]) / 2; + } + } + _node_index->set(n, index); + (*_node_data)[index].pot = max; + int blossom = + _blossom_set->insert(n, std::numeric_limits::max()); + + _tree_set->insert(blossom); + + (*_blossom_data)[blossom].status = EVEN; + (*_blossom_data)[blossom].pred = INVALID; + (*_blossom_data)[blossom].next = INVALID; + (*_blossom_data)[blossom].pot = 0; + (*_blossom_data)[blossom].offset = 0; + ++index; + } + for (UEdgeIt e(_ugraph); e != INVALID; ++e) { + int si = (*_node_index)[_ugraph.source(e)]; + int ti = (*_node_index)[_ugraph.target(e)]; + if (_ugraph.source(e) != _ugraph.target(e)) { + _delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - + dualScale * _weight[e]) / 2); + } + } + } + + /// \brief Starts the algorithm + /// + /// Starts the algorithm + bool start() { + enum OpType { + D2, D3, D4 + }; + + int unmatched = _node_num; + while (unmatched > 0) { + Value d2 = !_delta2->empty() ? + _delta2->prio() : std::numeric_limits::max(); + + Value d3 = !_delta3->empty() ? + _delta3->prio() : std::numeric_limits::max(); + + Value d4 = !_delta4->empty() ? + _delta4->prio() : std::numeric_limits::max(); + + _delta_sum = d2; OpType ot = D2; + if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } + if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } + + if (_delta_sum == std::numeric_limits::max()) { + return false; + } + + switch (ot) { + case D2: + { + int blossom = _delta2->top(); + Node n = _blossom_set->classTop(blossom); + Edge e = (*_node_data)[(*_node_index)[n]].heap.top(); + extendOnEdge(e); + } + break; + case D3: + { + UEdge e = _delta3->top(); + + int left_blossom = _blossom_set->find(_ugraph.source(e)); + int right_blossom = _blossom_set->find(_ugraph.target(e)); + + if (left_blossom == right_blossom) { + _delta3->pop(); + } else { + int left_tree = _tree_set->find(left_blossom); + int right_tree = _tree_set->find(right_blossom); + + if (left_tree == right_tree) { + shrinkOnEdge(e, left_tree); + } else { + augmentOnEdge(e); + unmatched -= 2; + } + } + } break; + case D4: + splitBlossom(_delta4->top()); + break; + } + } + extractMatching(); + return true; + } + + /// \brief Runs %MaxWeightedPerfectMatching algorithm. + /// + /// This method runs the %MaxWeightedPerfectMatching algorithm. + /// + /// \note mwm.run() is just a shortcut of the following code. + /// \code + /// mwm.init(); + /// mwm.start(); + /// \endcode + bool run() { + init(); + return start(); + } + + /// @} + + /// \name Primal solution + /// Functions for get the primal solution, ie. the matching. + + /// @{ + + /// \brief Returns the matching value. + /// + /// Returns the matching value. + Value matchingValue() const { + Value sum = 0; + for (NodeIt n(_ugraph); n != INVALID; ++n) { + if ((*_matching)[n] != INVALID) { + sum += _weight[(*_matching)[n]]; + } + } + return sum /= 2; + } + + /// \brief Returns true when the edge is in the matching. + /// + /// Returns true when the edge is in the matching. + bool matching(const UEdge& edge) const { + return (*_matching)[_ugraph.source(edge)] == _ugraph.direct(edge, true); + } + + /// \brief Returns the incident matching edge. + /// + /// Returns the incident matching edge from given node. + Edge matching(const Node& node) const { + return (*_matching)[node]; + } + + /// \brief Returns the mate of the node. + /// + /// Returns the adjancent node in a mathcing edge. + Node mate(const Node& node) const { + return _ugraph.target((*_matching)[node]); + } + + /// @} + + /// \name Dual solution + /// Functions for get the dual solution. + + /// @{ + + /// \brief Returns the value of the dual solution. + /// + /// Returns the value of the dual solution. It should be equal to + /// the primal value scaled by \ref dualScale "dual scale". + Value dualValue() const { + Value sum = 0; + for (NodeIt n(_ugraph); n != INVALID; ++n) { + sum += nodeValue(n); + } + for (int i = 0; i < blossomNum(); ++i) { + sum += blossomValue(i) * (blossomSize(i) / 2); + } + return sum; + } + + /// \brief Returns the value of the node. + /// + /// Returns the the value of the node. + Value nodeValue(const Node& n) const { + return (*_node_potential)[n]; + } + + /// \brief Returns the number of the blossoms in the basis. + /// + /// Returns the number of the blossoms in the basis. + /// \see BlossomIt + int blossomNum() const { + return _blossom_potential.size(); + } + + + /// \brief Returns the number of the nodes in the blossom. + /// + /// Returns the number of the nodes in the blossom. + int blossomSize(int k) const { + return _blossom_potential[k].end - _blossom_potential[k].begin; + } + + /// \brief Returns the value of the blossom. + /// + /// Returns the the value of the blossom. + /// \see BlossomIt + Value blossomValue(int k) const { + return _blossom_potential[k].value; + } + + /// \brief Lemon iterator for get the items of the blossom. + /// + /// Lemon iterator for get the nodes of the blossom. This class + /// provides a common style lemon iterator which gives back a + /// subset of the nodes. + class BlossomIt { + public: + + /// \brief Constructor. + /// + /// Constructor for get the nodes of the variable. + BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) + : _algorithm(&algorithm) + { + _index = _algorithm->_blossom_potential[variable].begin; + _last = _algorithm->_blossom_potential[variable].end; + } + + /// \brief Invalid constructor. + /// + /// Invalid constructor. + BlossomIt(Invalid) : _index(-1) {} + + /// \brief Conversion to node. + /// + /// Conversion to node. + operator Node() const { + return _algorithm ? _algorithm->_blossom_node_list[_index] : INVALID; + } + + /// \brief Increment operator. + /// + /// Increment operator. + BlossomIt& operator++() { + ++_index; + if (_index == _last) { + _index = -1; + } + return *this; + } + + bool operator==(const BlossomIt& it) const { + return _index == it._index; + } + bool operator!=(const BlossomIt& it) const { + return _index != it._index; + } + + private: + const MaxWeightedPerfectMatching* _algorithm; + int _last; + int _index; + }; + + /// @} + + }; + } //END OF NAMESPACE LEMON