diff -r ee5959aa4410 -r c280de819a73 src/work/jacint/max_save.h --- a/src/work/jacint/max_save.h Sun Apr 17 18:57:22 2005 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1136 +0,0 @@ -// -*- C++ -*- -#ifndef LEMON_MAX_FLOW_H -#define LEMON_MAX_FLOW_H - -///\ingroup galgs -///\file -///\brief Maximum flow algorithm. - -#define H0 20 -#define H1 1 - -#include -#include -#include - -#include -#include -#include -#include -#include - -/// \file -/// \brief Dimacs file format reader. - -namespace lemon { - - /// \addtogroup galgs - /// @{ - - ///Maximum flow algorithms class. - - ///This class provides various algorithms for finding a flow of - ///maximum value in a directed graph. The \e source node, the \e - ///target node, the \e capacity of the edges and the \e starting \e - ///flow value of the edges can be passed to the algorithm by the - ///constructor. It is possible to change these quantities using the - ///functions \ref resetSource, \ref resetTarget, \ref resetCap and - ///\ref resetFlow. Before any subsequent runs of any algorithm of - ///the class \ref resetFlow should be called, otherwise it will - ///start from a maximum flow. - - ///After running an algorithm of the class, the maximum value of a - ///value can be obtained by calling \ref flowValue(). The minimum - ///value cut can be written into a \c node map of \c bools by - ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes - ///the inclusionwise minimum and maximum of the minimum value - ///cuts, resp.) - - ///\param Graph The undirected graph type the algorithm runs on. - ///\param Num The number type of the capacities and the flow values. - ///\param The type of the capacity map. - ///\param The type of the flow map. - - ///\author Marton Makai, Jacint Szabo - template , - typename FlowMap=typename Graph::template EdgeMap > - class MaxFlow { - - typedef typename Graph::Node Node; - typedef typename Graph::NodeIt NodeIt; - typedef typename Graph::OutEdgeIt OutEdgeIt; - typedef typename Graph::InEdgeIt InEdgeIt; - - typedef typename std::vector > VecStack; - typedef typename Graph::template NodeMap NNMap; - typedef typename std::vector VecNode; - - typedef ResGraphWrapper ResGW; - typedef typename ResGW::OutEdgeIt ResGWOutEdgeIt; - typedef typename ResGW::Edge ResGWEdge; - //typedef typename ResGW::template NodeMap ReachedMap; //fixme - typedef typename Graph::template NodeMap ReachedMap; - - const Graph* g; - Node s; - Node t; - const CapMap* capacity; - FlowMap* flow; - int n; //the number of nodes of G - - //level works as a bool map in augmenting path algorithms and is - //used by bfs for storing reached information. In preflow, it - //shows the levels of nodes. - ReachedMap level; - - //excess is needed only in preflow - typename Graph::template NodeMap excess; - - - //fixme - // protected: - // MaxFlow() { } - // void set(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, - // FlowMap& _flow) - // { - // g=&_G; - // s=_s; - // t=_t; - // capacity=&_capacity; - // flow=&_flow; - // n=_G.nodeNum; - // level.set (_G); //kellene vmi ilyesmi fv - // excess(_G,0); //itt is - // } - - public: - - ///Indicates the property of the starting flow. - - ///Indicates the property of the starting flow. The meanings: - ///- \c ZERO_FLOW: constant zero flow - ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to - ///the sum of the out-flows in every node except the source and - ///the target. - ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at - ///least the sum of the out-flows in every node except the source. - enum flowEnum{ - ZERO_FLOW=0, - GEN_FLOW=1, - PRE_FLOW=2 - }; - - MaxFlow(const Graph& _G, Node _s, Node _t, const CapMap& _capacity, - FlowMap& _flow) : - g(&_G), s(_s), t(_t), capacity(&_capacity), - flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0) {} - - ///Runs a maximum flow algorithm. - - ///Runs a preflow algorithm, which is the fastest maximum flow - ///algorithm up-to-date. The default for \c fe is ZERO_FLOW. - ///\pre The starting flow must be a - /// - constant zero flow if \c fe is \c ZERO_FLOW, - /// - an arbitary flow if \c fe is \c GEN_FLOW, - /// - an arbitary preflow if \c fe is \c PRE_FLOW. - void run( flowEnum fe=ZERO_FLOW ) { - preflow(fe); - } - - ///Runs a preflow algorithm. - - ///Runs a preflow algorithm. The preflow algorithms provide the - ///fastest way to compute a maximum flow in a directed graph. - ///\pre The starting flow must be a - /// - constant zero flow if \c fe is \c ZERO_FLOW, - /// - an arbitary flow if \c fe is \c GEN_FLOW, - /// - an arbitary preflow if \c fe is \c PRE_FLOW. - void preflow(flowEnum fe) { - preflowPhase1(fe); - preflowPhase2(); - } - // Heuristics: - // 2 phase - // gap - // list 'level_list' on the nodes on level i implemented by hand - // stack 'active' on the active nodes on level i - // runs heuristic 'highest label' for H1*n relabels - // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' - // Parameters H0 and H1 are initialized to 20 and 1. - - ///Runs the first phase of the preflow algorithm. - - ///The preflow algorithm consists of two phases, this method runs the - ///first phase. After the first phase the maximum flow value and a - ///minimum value cut can already be computed, though a maximum flow - ///is net yet obtained. So after calling this method \ref flowValue - ///and \ref actMinCut gives proper results. - ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not - ///give minimum value cuts unless calling \ref preflowPhase2. - ///\pre The starting flow must be a - /// - constant zero flow if \c fe is \c ZERO_FLOW, - /// - an arbitary flow if \c fe is \c GEN_FLOW, - /// - an arbitary preflow if \c fe is \c PRE_FLOW. - void preflowPhase1( flowEnum fe ); - - ///Runs the second phase of the preflow algorithm. - - ///The preflow algorithm consists of two phases, this method runs - ///the second phase. After calling \ref preflowPhase1 and then - ///\ref preflowPhase2 the methods \ref flowValue, \ref minCut, - ///\ref minMinCut and \ref maxMinCut give proper results. - ///\pre \ref preflowPhase1 must be called before. - void preflowPhase2(); - - /// Starting from a flow, this method searches for an augmenting path - /// according to the Edmonds-Karp algorithm - /// and augments the flow on if any. - /// The return value shows if the augmentation was successful. - bool augmentOnShortestPath(); - - /// Starting from a flow, this method searches for an augmenting blockin - /// flow according to Dinits' algorithm and augments the flow on if any. - /// The blocking flow is computed in a physically constructed - /// residual graph of type \c Mutablegraph. - /// The return value show sif the augmentation was succesful. - template bool augmentOnBlockingFlow(); - - /// The same as \c augmentOnBlockingFlow but the - /// residual graph is not constructed physically. - /// The return value shows if the augmentation was succesful. - bool augmentOnBlockingFlow2(); - - /// Returns the actual flow value. - /// More precisely, it returns the negative excess of s, thus - /// this works also for preflows. - ///Can be called already after \ref preflowPhase1. - - Num flowValue() { - Num a=0; - FOR_EACH_INC_LOC(OutEdgeIt, e, *g, s) a+=(*flow)[e]; - FOR_EACH_INC_LOC(InEdgeIt, e, *g, s) a-=(*flow)[e]; - return a; - //marci figyu: excess[t] epp ezt adja preflow 0. fazisa utan - } - - ///Returns a minimum value cut after calling \ref preflowPhase1. - - ///After the first phase of the preflow algorithm the maximum flow - ///value and a minimum value cut can already be computed. This - ///method can be called after running \ref preflowPhase1 for - ///obtaining a minimum value cut. - ///\warning: Gives proper result only right after calling \ref - ///preflowPhase1. - ///\todo We have to make some status variable which shows the actual state - /// of the class. This enables us to determine which methods are valid - /// for MinCut computation - template - void actMinCut(_CutMap& M) { - NodeIt v; - for(g->first(v); g->valid(v); g->next(v)) { - if ( level[v] < n ) { - M.set(v,false); - } else { - M.set(v,true); - } - } - } - - ///Returns the inclusionwise minimum of the minimum value cuts. - - ///Sets \c M to the characteristic vector of the minimum value cut - ///which is inclusionwise minimum. It is computed by processing - ///a bfs from the source node \c s in the residual graph. - ///\pre M should be a node map of bools initialized to false. - ///\pre \c flow must be a maximum flow. - template - void minMinCut(_CutMap& M) { - - std::queue queue; - - M.set(s,true); - queue.push(s); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - OutEdgeIt e; - for(g->first(e,w) ; g->valid(e); g->next(e)) { - Node v=g->target(e); - if (!M[v] && (*flow)[e] < (*capacity)[e] ) { - queue.push(v); - M.set(v, true); - } - } - - InEdgeIt f; - for(g->first(f,w) ; g->valid(f); g->next(f)) { - Node v=g->source(f); - if (!M[v] && (*flow)[f] > 0 ) { - queue.push(v); - M.set(v, true); - } - } - } - } - - - ///Returns the inclusionwise maximum of the minimum value cuts. - - ///Sets \c M to the characteristic vector of the minimum value cut - ///which is inclusionwise maximum. It is computed by processing a - ///backward bfs from the target node \c t in the residual graph. - ///\pre M should be a node map of bools initialized to false. - ///\pre \c flow must be a maximum flow. - template - void maxMinCut(_CutMap& M) { - - NodeIt v; - for(g->first(v) ; g->valid(v); g->next(v)) { - M.set(v, true); - } - - std::queue queue; - - M.set(t,false); - queue.push(t); - - while (!queue.empty()) { - Node w=queue.front(); - queue.pop(); - - - InEdgeIt e; - for(g->first(e,w) ; g->valid(e); g->next(e)) { - Node v=g->source(e); - if (M[v] && (*flow)[e] < (*capacity)[e] ) { - queue.push(v); - M.set(v, false); - } - } - - OutEdgeIt f; - for(g->first(f,w) ; g->valid(f); g->next(f)) { - Node v=g->target(f); - if (M[v] && (*flow)[f] > 0 ) { - queue.push(v); - M.set(v, false); - } - } - } - } - - - ///Returns a minimum value cut. - - ///Sets \c M to the characteristic vector of a minimum value cut. - ///\pre M should be a node map of bools initialized to false. - ///\pre \c flow must be a maximum flow. - template - void minCut(CutMap& M) { minMinCut(M); } - - ///Resets the source node to \c _s. - - ///Resets the source node to \c _s. - /// - void resetSource(Node _s) { s=_s; } - - - ///Resets the target node to \c _t. - - ///Resets the target node to \c _t. - /// - void resetTarget(Node _t) { t=_t; } - - /// Resets the edge map of the capacities to _cap. - - /// Resets the edge map of the capacities to _cap. - /// - void resetCap(const CapMap& _cap) { capacity=&_cap; } - - /// Resets the edge map of the flows to _flow. - - /// Resets the edge map of the flows to _flow. - /// - void resetFlow(FlowMap& _flow) { flow=&_flow; } - - - private: - - int push(Node w, VecStack& active) { - - int lev=level[w]; - Num exc=excess[w]; - int newlevel=n; //bound on the next level of w - - OutEdgeIt e; - for(g->first(e,w); g->valid(e); g->next(e)) { - - if ( (*flow)[e] >= (*capacity)[e] ) continue; - Node v=g->target(e); - - if( lev > level[v] ) { //Push is allowed now - - if ( excess[v]<=0 && v!=t && v!=s ) { - int lev_v=level[v]; - active[lev_v].push(v); - } - - Num cap=(*capacity)[e]; - Num flo=(*flow)[e]; - Num remcap=cap-flo; - - if ( remcap >= exc ) { //A nonsaturating push. - - flow->set(e, flo+exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - - } else { //A saturating push. - flow->set(e, cap); - excess.set(v, excess[v]+remcap); - exc-=remcap; - } - } else if ( newlevel > level[v] ) newlevel = level[v]; - } //for out edges wv - - if ( exc > 0 ) { - InEdgeIt e; - for(g->first(e,w); g->valid(e); g->next(e)) { - - if( (*flow)[e] <= 0 ) continue; - Node v=g->source(e); - - if( lev > level[v] ) { //Push is allowed now - - if ( excess[v]<=0 && v!=t && v!=s ) { - int lev_v=level[v]; - active[lev_v].push(v); - } - - Num flo=(*flow)[e]; - - if ( flo >= exc ) { //A nonsaturating push. - - flow->set(e, flo-exc); - excess.set(v, excess[v]+exc); - exc=0; - break; - } else { //A saturating push. - - excess.set(v, excess[v]+flo); - exc-=flo; - flow->set(e,0); - } - } else if ( newlevel > level[v] ) newlevel = level[v]; - } //for in edges vw - - } // if w still has excess after the out edge for cycle - - excess.set(w, exc); - - return newlevel; - } - - - void preflowPreproc ( flowEnum fe, VecStack& active, - VecNode& level_list, NNMap& left, NNMap& right ) { - - std::queue bfs_queue; - - switch ( fe ) { - case ZERO_FLOW: - { - //Reverse_bfs from t, to find the starting level. - level.set(t,0); - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - InEdgeIt e; - for(g->first(e,v); g->valid(e); g->next(e)) { - Node w=g->source(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( g->valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - } - - //the starting flow - OutEdgeIt e; - for(g->first(e,s); g->valid(e); g->next(e)) - { - Num c=(*capacity)[e]; - if ( c <= 0 ) continue; - Node w=g->target(e); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); - flow->set(e, c); - excess.set(w, excess[w]+c); - } - } - break; - } - - case GEN_FLOW: - case PRE_FLOW: - { - //Reverse_bfs from t in the residual graph, - //to find the starting level. - level.set(t,0); - bfs_queue.push(t); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - InEdgeIt e; - for(g->first(e,v); g->valid(e); g->next(e)) { - if ( (*capacity)[e] <= (*flow)[e] ) continue; - Node w=g->source(e); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( g->valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - - OutEdgeIt f; - for(g->first(f,v); g->valid(f); g->next(f)) { - if ( 0 >= (*flow)[f] ) continue; - Node w=g->target(f); - if ( level[w] == n && w != s ) { - bfs_queue.push(w); - Node first=level_list[l]; - if ( g->valid(first) ) left.set(first,w); - right.set(w,first); - level_list[l]=w; - level.set(w, l); - } - } - } - - - //the starting flow - OutEdgeIt e; - for(g->first(e,s); g->valid(e); g->next(e)) - { - Num rem=(*capacity)[e]-(*flow)[e]; - if ( rem <= 0 ) continue; - Node w=g->target(e); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); - flow->set(e, (*capacity)[e]); - excess.set(w, excess[w]+rem); - } - } - - InEdgeIt f; - for(g->first(f,s); g->valid(f); g->next(f)) - { - if ( (*flow)[f] <= 0 ) continue; - Node w=g->source(f); - if ( level[w] < n ) { - if ( excess[w] <= 0 && w!=t ) active[level[w]].push(w); - excess.set(w, excess[w]+(*flow)[f]); - flow->set(f, 0); - } - } - break; - } //case PRE_FLOW - } - } //preflowPreproc - - - - void relabel(Node w, int newlevel, VecStack& active, - VecNode& level_list, NNMap& left, - NNMap& right, int& b, int& k, bool what_heur ) - { - - Num lev=level[w]; - - Node right_n=right[w]; - Node left_n=left[w]; - - //unlacing starts - if ( g->valid(right_n) ) { - if ( g->valid(left_n) ) { - right.set(left_n, right_n); - left.set(right_n, left_n); - } else { - level_list[lev]=right_n; - left.set(right_n, INVALID); - } - } else { - if ( g->valid(left_n) ) { - right.set(left_n, INVALID); - } else { - level_list[lev]=INVALID; - } - } - //unlacing ends - - if ( !g->valid(level_list[lev]) ) { - - //gapping starts - for (int i=lev; i!=k ; ) { - Node v=level_list[++i]; - while ( g->valid(v) ) { - level.set(v,n); - v=right[v]; - } - level_list[i]=INVALID; - if ( !what_heur ) { - while ( !active[i].empty() ) { - active[i].pop(); //FIXME: ezt szebben kene - } - } - } - - level.set(w,n); - b=lev-1; - k=b; - //gapping ends - - } else { - - if ( newlevel == n ) level.set(w,n); - else { - level.set(w,++newlevel); - active[newlevel].push(w); - if ( what_heur ) b=newlevel; - if ( k < newlevel ) ++k; //now k=newlevel - Node first=level_list[newlevel]; - if ( g->valid(first) ) left.set(first,w); - right.set(w,first); - left.set(w,INVALID); - level_list[newlevel]=w; - } - } - - } //relabel - - - template - class DistanceMap { - protected: - const MapGraphWrapper* g; - typename MapGraphWrapper::template NodeMap dist; - public: - DistanceMap(MapGraphWrapper& _g) : g(&_g), dist(*g, g->nodeNum()) { } - void set(const typename MapGraphWrapper::Node& n, int a) { - dist.set(n, a); - } - int operator[](const typename MapGraphWrapper::Node& n) - { return dist[n]; } - // int get(const typename MapGraphWrapper::Node& n) const { - // return dist[n]; } - // bool get(const typename MapGraphWrapper::Edge& e) const { - // return (dist.get(g->source(e))target(e))); } - bool operator[](const typename MapGraphWrapper::Edge& e) const { - return (dist[g->source(e)]target(e)]); - } - }; - - }; - - - template - void MaxFlow::preflowPhase1( flowEnum fe ) - { - - int heur0=(int)(H0*n); //time while running 'bound decrease' - int heur1=(int)(H1*n); //time while running 'highest label' - int heur=heur1; //starting time interval (#of relabels) - int numrelabel=0; - - bool what_heur=1; - //It is 0 in case 'bound decrease' and 1 in case 'highest label' - - bool end=false; - //Needed for 'bound decrease', true means no active nodes are above bound b. - - int k=n-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - VecStack active(n); - - NNMap left(*g, INVALID); - NNMap right(*g, INVALID); - VecNode level_list(n,INVALID); - //List of the nodes in level ifirst(v); g->valid(v); g->next(v)) level.set(v,n); - //setting each node to level n - - switch ( fe ) { - case PRE_FLOW: - { - //counting the excess - NodeIt v; - for(g->first(v); g->valid(v); g->next(v)) { - Num exc=0; - - InEdgeIt e; - for(g->first(e,v); g->valid(e); g->next(e)) exc+=(*flow)[e]; - OutEdgeIt f; - for(g->first(f,v); g->valid(f); g->next(f)) exc-=(*flow)[f]; - - excess.set(v,exc); - - //putting the active nodes into the stack - int lev=level[v]; - if ( exc > 0 && lev < n && v != t ) active[lev].push(v); - } - break; - } - case GEN_FLOW: - { - //Counting the excess of t - Num exc=0; - - InEdgeIt e; - for(g->first(e,t); g->valid(e); g->next(e)) exc+=(*flow)[e]; - OutEdgeIt f; - for(g->first(f,t); g->valid(f); g->next(f)) exc-=(*flow)[f]; - - excess.set(t,exc); - - break; - } - default: - break; - } - - preflowPreproc( fe, active, level_list, left, right ); - //End of preprocessing - - - //Push/relabel on the highest level active nodes. - while ( true ) { - if ( b == 0 ) { - if ( !what_heur && !end && k > 0 ) { - b=k; - end=true; - } else break; - } - - if ( active[b].empty() ) --b; - else { - end=false; - Node w=active[b].top(); - active[b].pop(); - int newlevel=push(w,active); - if ( excess[w] > 0 ) relabel(w, newlevel, active, level_list, - left, right, b, k, what_heur); - - ++numrelabel; - if ( numrelabel >= heur ) { - numrelabel=0; - if ( what_heur ) { - what_heur=0; - heur=heur0; - end=false; - } else { - what_heur=1; - heur=heur1; - b=k; - } - } - } - } - } - - - - template - void MaxFlow::preflowPhase2() - { - - int k=n-2; //bound on the highest level under n containing a node - int b=k; //bound on the highest level under n of an active node - - VecStack active(n); - level.set(s,0); - std::queue bfs_queue; - bfs_queue.push(s); - - while (!bfs_queue.empty()) { - - Node v=bfs_queue.front(); - bfs_queue.pop(); - int l=level[v]+1; - - InEdgeIt e; - for(g->first(e,v); g->valid(e); g->next(e)) { - if ( (*capacity)[e] <= (*flow)[e] ) continue; - Node u=g->source(e); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) active[l].push(u); - } - } - - OutEdgeIt f; - for(g->first(f,v); g->valid(f); g->next(f)) { - if ( 0 >= (*flow)[f] ) continue; - Node u=g->target(f); - if ( level[u] >= n ) { - bfs_queue.push(u); - level.set(u, l); - if ( excess[u] > 0 ) active[l].push(u); - } - } - } - b=n-2; - - while ( true ) { - - if ( b == 0 ) break; - - if ( active[b].empty() ) --b; - else { - Node w=active[b].top(); - active[b].pop(); - int newlevel=push(w,active); - - //relabel - if ( excess[w] > 0 ) { - level.set(w,++newlevel); - active[newlevel].push(w); - b=newlevel; - } - } // if stack[b] is nonempty - } // while(true) - } - - - - template - bool MaxFlow::augmentOnShortestPath() - { - ResGW res_graph(*g, *capacity, *flow); - bool _augment=false; - - //ReachedMap level(res_graph); - FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); - BfsIterator bfs(res_graph, level); - bfs.pushAndSetReached(s); - - typename ResGW::template NodeMap pred(res_graph); - pred.set(s, INVALID); - - typename ResGW::template NodeMap free(res_graph); - - //searching for augmenting path - while ( !bfs.finished() ) { - ResGWOutEdgeIt e=bfs; - if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { - Node v=res_graph.source(e); - Node w=res_graph.target(e); - pred.set(w, e); - if (res_graph.valid(pred[v])) { - free.set(w, std::min(free[v], res_graph.resCap(e))); - } else { - free.set(w, res_graph.resCap(e)); - } - if (res_graph.target(e)==t) { _augment=true; break; } - } - - ++bfs; - } //end of searching augmenting path - - if (_augment) { - Node n=t; - Num augment_value=free[t]; - while (res_graph.valid(pred[n])) { - ResGWEdge e=pred[n]; - res_graph.augment(e, augment_value); - n=res_graph.source(e); - } - } - - return _augment; - } - - - - - - - - - - template - template - bool MaxFlow::augmentOnBlockingFlow() - { - typedef MutableGraph MG; - bool _augment=false; - - ResGW res_graph(*g, *capacity, *flow); - - //bfs for distances on the residual graph - //ReachedMap level(res_graph); - FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); - BfsIterator bfs(res_graph, level); - bfs.pushAndSetReached(s); - typename ResGW::template NodeMap - dist(res_graph); //filled up with 0's - - //F will contain the physical copy of the residual graph - //with the set of edges which are on shortest paths - MG F; - typename ResGW::template NodeMap - res_graph_to_F(res_graph); - { - typename ResGW::NodeIt n; - for(res_graph.first(n); res_graph.valid(n); res_graph.next(n)) { - res_graph_to_F.set(n, F.addNode()); - } - } - - typename MG::Node sF=res_graph_to_F[s]; - typename MG::Node tF=res_graph_to_F[t]; - typename MG::template EdgeMap original_edge(F); - typename MG::template EdgeMap residual_capacity(F); - - while ( !bfs.finished() ) { - ResGWOutEdgeIt e=bfs; - if (res_graph.valid(e)) { - if (bfs.isBNodeNewlyReached()) { - dist.set(res_graph.target(e), dist[res_graph.source(e)]+1); - typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)], res_graph_to_F[res_graph.target(e)]); - original_edge.update(); - original_edge.set(f, e); - residual_capacity.update(); - residual_capacity.set(f, res_graph.resCap(e)); - } else { - if (dist[res_graph.target(e)]==(dist[res_graph.source(e)]+1)) { - typename MG::Edge f=F.addEdge(res_graph_to_F[res_graph.source(e)], res_graph_to_F[res_graph.target(e)]); - original_edge.update(); - original_edge.set(f, e); - residual_capacity.update(); - residual_capacity.set(f, res_graph.resCap(e)); - } - } - } - ++bfs; - } //computing distances from s in the residual graph - - bool __augment=true; - - while (__augment) { - __augment=false; - //computing blocking flow with dfs - DfsIterator< MG, typename MG::template NodeMap > dfs(F); - typename MG::template NodeMap pred(F); - pred.set(sF, INVALID); - //invalid iterators for sources - - typename MG::template NodeMap free(F); - - dfs.pushAndSetReached(sF); - while (!dfs.finished()) { - ++dfs; - if (F.valid(/*typename MG::OutEdgeIt*/(dfs))) { - if (dfs.isBNodeNewlyReached()) { - typename MG::Node v=F.aNode(dfs); - typename MG::Node w=F.bNode(dfs); - pred.set(w, dfs); - if (F.valid(pred[v])) { - free.set(w, std::min(free[v], residual_capacity[dfs])); - } else { - free.set(w, residual_capacity[dfs]); - } - if (w==tF) { - __augment=true; - _augment=true; - break; - } - - } else { - F.erase(/*typename MG::OutEdgeIt*/(dfs)); - } - } - } - - if (__augment) { - typename MG::Node n=tF; - Num augment_value=free[tF]; - while (F.valid(pred[n])) { - typename MG::Edge e=pred[n]; - res_graph.augment(original_edge[e], augment_value); - n=F.source(e); - if (residual_capacity[e]==augment_value) - F.erase(e); - else - residual_capacity.set(e, residual_capacity[e]-augment_value); - } - } - - } - - return _augment; - } - - - - - - - template - bool MaxFlow::augmentOnBlockingFlow2() - { - bool _augment=false; - - ResGW res_graph(*g, *capacity, *flow); - - //ReachedMap level(res_graph); - FOR_EACH_LOC(typename Graph::NodeIt, e, *g) level.set(e, 0); - BfsIterator bfs(res_graph, level); - - bfs.pushAndSetReached(s); - DistanceMap dist(res_graph); - while ( !bfs.finished() ) { - ResGWOutEdgeIt e=bfs; - if (res_graph.valid(e) && bfs.isBNodeNewlyReached()) { - dist.set(res_graph.target(e), dist[res_graph.source(e)]+1); - } - ++bfs; - } //computing distances from s in the residual graph - - //Subgraph containing the edges on some shortest paths - ConstMap true_map(true); - typedef SubGraphWrapper, - DistanceMap > FilterResGW; - FilterResGW filter_res_graph(res_graph, true_map, dist); - - //Subgraph, which is able to delete edges which are already - //met by the dfs - typename FilterResGW::template NodeMap - first_out_edges(filter_res_graph); - typename FilterResGW::NodeIt v; - for(filter_res_graph.first(v); filter_res_graph.valid(v); - filter_res_graph.next(v)) - { - typename FilterResGW::OutEdgeIt e; - filter_res_graph.first(e, v); - first_out_edges.set(v, e); - } - typedef ErasingFirstGraphWrapper > ErasingResGW; - ErasingResGW erasing_res_graph(filter_res_graph, first_out_edges); - - bool __augment=true; - - while (__augment) { - - __augment=false; - //computing blocking flow with dfs - DfsIterator< ErasingResGW, - typename ErasingResGW::template NodeMap > - dfs(erasing_res_graph); - typename ErasingResGW:: - template NodeMap - pred(erasing_res_graph); - pred.set(s, INVALID); - //invalid iterators for sources - - typename ErasingResGW::template NodeMap - free1(erasing_res_graph); - - dfs.pushAndSetReached( - typename ErasingResGW::Node( - typename FilterResGW::Node( - typename ResGW::Node(s) - ) - ) - ); - while (!dfs.finished()) { - ++dfs; - if (erasing_res_graph.valid( - typename ErasingResGW::OutEdgeIt(dfs))) - { - if (dfs.isBNodeNewlyReached()) { - - typename ErasingResGW::Node v=erasing_res_graph.aNode(dfs); - typename ErasingResGW::Node w=erasing_res_graph.bNode(dfs); - - pred.set(w, /*typename ErasingResGW::OutEdgeIt*/(dfs)); - if (erasing_res_graph.valid(pred[v])) { - free1.set(w, std::min(free1[v], res_graph.resCap( - typename ErasingResGW::OutEdgeIt(dfs)))); - } else { - free1.set(w, res_graph.resCap( - typename ErasingResGW::OutEdgeIt(dfs))); - } - - if (w==t) { - __augment=true; - _augment=true; - break; - } - } else { - erasing_res_graph.erase(dfs); - } - } - } - - if (__augment) { - typename ErasingResGW::Node n=typename FilterResGW::Node(typename ResGW::Node(t)); - // typename ResGW::NodeMap a(res_graph); - // typename ResGW::Node b; - // Num j=a[b]; - // typename FilterResGW::NodeMap a1(filter_res_graph); - // typename FilterResGW::Node b1; - // Num j1=a1[b1]; - // typename ErasingResGW::NodeMap a2(erasing_res_graph); - // typename ErasingResGW::Node b2; - // Num j2=a2[b2]; - Num augment_value=free1[n]; - while (erasing_res_graph.valid(pred[n])) { - typename ErasingResGW::OutEdgeIt e=pred[n]; - res_graph.augment(e, augment_value); - n=erasing_res_graph.source(e); - if (res_graph.resCap(e)==0) - erasing_res_graph.erase(e); - } - } - - } //while (__augment) - - return _augment; - } - - - - /// @} - -} //END OF NAMESPACE LEMON - -#endif //LEMON_MAX_FLOW_H - - - -