diff -r ee5959aa4410 -r c280de819a73 src/work/marci/bfs_dfs.h --- a/src/work/marci/bfs_dfs.h Sun Apr 17 18:57:22 2005 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,348 +0,0 @@ -// -*- c++ -*- -#ifndef LEMON_BFS_DFS_H -#define LEMON_BFS_DFS_H - -/// \ingroup galgs -/// \file -/// \brief Bfs and dfs iterators. -/// -/// This file contains bfs and dfs iterator classes. -/// -// /// \author Marton Makai - -#include -#include -#include - -#include - -namespace lemon { - - /// Bfs searches for the nodes wich are not marked in - /// \c reached_map - /// Reached have to be a read-write bool node-map. - /// \ingroup galgs - template */ > - class BfsIterator { - protected: - typedef typename Graph::Node Node; - typedef typename Graph::Edge Edge; - typedef typename Graph::OutEdgeIt OutEdgeIt; - const Graph* graph; - std::queue bfs_queue; - ReachedMap& reached; - bool b_node_newly_reached; - Edge actual_edge; - bool own_reached_map; - public: - /// In that constructor \c _reached have to be a reference - /// for a bool bode-map. The algorithm will search for the - /// initially \c false nodes - /// in a bfs order. - BfsIterator(const Graph& _graph, ReachedMap& _reached) : - graph(&_graph), reached(_reached), - own_reached_map(false) { } - /// The same as above, but the map storing the reached nodes - /// is constructed dynamically to everywhere false. - /// \deprecated - BfsIterator(const Graph& _graph) : - graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), - own_reached_map(true) { } - /// The map storing the reached nodes have to be destroyed if - /// it was constructed dynamically - ~BfsIterator() { if (own_reached_map) delete &reached; } - /// This method markes \c s reached. - /// If the queue is empty, then \c s is pushed in the bfs queue - /// and the first out-edge is processed. - /// If the queue is not empty, then \c s is simply pushed. - BfsIterator& pushAndSetReached(Node s) { - reached.set(s, true); - if (bfs_queue.empty()) { - bfs_queue.push(s); - actual_edge=OutEdgeIt(*graph, s); - //graph->first(actual_edge, s); - if (actual_edge!=INVALID) { - Node w=graph->target(actual_edge); - if (!reached[w]) { - bfs_queue.push(w); - reached.set(w, true); - b_node_newly_reached=true; - } else { - b_node_newly_reached=false; - } - } - } else { - bfs_queue.push(s); - } - return *this; - } - /// As \c BfsIterator works as an edge-iterator, - /// its \c operator++() iterates on the edges in a bfs order. - BfsIterator& - operator++() { - if (actual_edge!=INVALID) { - actual_edge=++OutEdgeIt(*graph, actual_edge); - //++actual_edge; - if (actual_edge!=INVALID) { - Node w=graph->target(actual_edge); - if (!reached[w]) { - bfs_queue.push(w); - reached.set(w, true); - b_node_newly_reached=true; - } else { - b_node_newly_reached=false; - } - } - } else { - bfs_queue.pop(); - if (!bfs_queue.empty()) { - actual_edge=OutEdgeIt(*graph, bfs_queue.front()); - //graph->first(actual_edge, bfs_queue.front()); - if (actual_edge!=INVALID) { - Node w=graph->target(actual_edge); - if (!reached[w]) { - bfs_queue.push(w); - reached.set(w, true); - b_node_newly_reached=true; - } else { - b_node_newly_reached=false; - } - } - } - } - return *this; - } - /// Returns true iff the algorithm is finished. - bool finished() const { return bfs_queue.empty(); } - /// The conversion operator makes for converting the bfs-iterator - /// to an \c out-edge-iterator. - ///\bug Edge have to be in LEMON 0.2 - operator Edge() const { return actual_edge; } - /// Returns if b-node has been reached just now. - bool isBNodeNewlyReached() const { return b_node_newly_reached; } - /// Returns if a-node is examined. - bool isANodeExamined() const { return actual_edge==INVALID; } - /// Returns a-node of the actual edge, so does if the edge is invalid. - Node source() const { return bfs_queue.front(); } - /// \pre The actual edge have to be valid. - Node target() const { return graph->target(actual_edge); } - /// Guess what? - /// \deprecated - const ReachedMap& getReachedMap() const { return reached; } - /// Guess what? - /// \deprecated - const std::queue& getBfsQueue() const { return bfs_queue; } - }; - - /// Bfs searches for the nodes wich are not marked in - /// \c reached_map - /// Reached have to work as a read-write bool Node-map, - /// Pred is a write edge node-map and - /// Dist is a read-write node-map of integral value, have to be. - /// \ingroup galgs - template , - typename PredMap - =typename Graph::template NodeMap, - typename DistMap=typename Graph::template NodeMap > - class Bfs : public BfsIterator { - typedef BfsIterator Parent; - protected: - typedef typename Parent::Node Node; - PredMap& pred; - DistMap& dist; - public: - /// The algorithm will search in a bfs order for - /// the nodes which are \c false initially. - /// The constructor makes no initial changes on the maps. - Bfs(const Graph& _graph, ReachedMap& _reached, PredMap& _pred, DistMap& _dist) : - BfsIterator(_graph, _reached), - pred(_pred), dist(_dist) { } - /// \c s is marked to be reached and pushed in the bfs queue. - /// If the queue is empty, then the first out-edge is processed. - /// If \c s was not marked previously, then - /// in addition its pred is set to be \c INVALID, and dist to \c 0. - /// if \c s was marked previuosly, then it is simply pushed. - Bfs& push(Node s) { - if (this->reached[s]) { - Parent::pushAndSetReached(s); - } else { - Parent::pushAndSetReached(s); - pred.set(s, INVALID); - dist.set(s, 0); - } - return *this; - } - /// A bfs is processed from \c s. - Bfs& run(Node s) { - push(s); - while (!this->finished()) this->operator++(); - return *this; - } - /// Beside the bfs iteration, \c pred and \dist are saved in a - /// newly reached node. - Bfs& operator++() { - Parent::operator++(); - if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) - { - pred.set(this->target(), this->actual_edge); - dist.set(this->target(), dist[this->source()]); - } - return *this; - } - /// Guess what? - /// \deprecated - const PredMap& getPredMap() const { return pred; } - /// Guess what? - /// \deprecated - const DistMap& getDistMap() const { return dist; } - }; - - /// Dfs searches for the nodes wich are not marked in - /// \c reached_map - /// Reached have to be a read-write bool Node-map. - /// \ingroup galgs - template */ > - class DfsIterator { - protected: - typedef typename Graph::Node Node; - typedef typename Graph::Edge Edge; - typedef typename Graph::OutEdgeIt OutEdgeIt; - const Graph* graph; - std::stack dfs_stack; - bool b_node_newly_reached; - Edge actual_edge; - Node actual_node; - ReachedMap& reached; - bool own_reached_map; - public: - /// In that constructor \c _reached have to be a reference - /// for a bool node-map. The algorithm will search in a dfs order for - /// the nodes which are \c false initially - DfsIterator(const Graph& _graph, ReachedMap& _reached) : - graph(&_graph), reached(_reached), - own_reached_map(false) { } - /// The same as above, but the map of reached nodes is - /// constructed dynamically - /// to everywhere false. - DfsIterator(const Graph& _graph) : - graph(&_graph), reached(*(new ReachedMap(*graph /*, false*/))), - own_reached_map(true) { } - ~DfsIterator() { if (own_reached_map) delete &reached; } - /// This method markes s reached and first out-edge is processed. - DfsIterator& pushAndSetReached(Node s) { - actual_node=s; - reached.set(s, true); - OutEdgeIt e(*graph, s); - //graph->first(e, s); - dfs_stack.push(e); - return *this; - } - /// As \c DfsIterator works as an edge-iterator, - /// its \c operator++() iterates on the edges in a dfs order. - DfsIterator& - operator++() { - actual_edge=dfs_stack.top(); - if (actual_edge!=INVALID/*.valid()*/) { - Node w=graph->target(actual_edge); - actual_node=w; - if (!reached[w]) { - OutEdgeIt e(*graph, w); - //graph->first(e, w); - dfs_stack.push(e); - reached.set(w, true); - b_node_newly_reached=true; - } else { - actual_node=graph->source(actual_edge); - ++dfs_stack.top(); - b_node_newly_reached=false; - } - } else { - //actual_node=G.aNode(dfs_stack.top()); - dfs_stack.pop(); - } - return *this; - } - /// Returns true iff the algorithm is finished. - bool finished() const { return dfs_stack.empty(); } - /// The conversion operator makes for converting the bfs-iterator - /// to an \c out-edge-iterator. - ///\bug Edge have to be in LEMON 0.2 - operator Edge() const { return actual_edge; } - /// Returns if b-node has been reached just now. - bool isBNodeNewlyReached() const { return b_node_newly_reached; } - /// Returns if a-node is examined. - bool isANodeExamined() const { return actual_edge==INVALID; } - /// Returns a-node of the actual edge, so does if the edge is invalid. - Node source() const { return actual_node; /*FIXME*/} - /// Returns b-node of the actual edge. - /// \pre The actual edge have to be valid. - Node target() const { return graph->target(actual_edge); } - /// Guess what? - /// \deprecated - const ReachedMap& getReachedMap() const { return reached; } - /// Guess what? - /// \deprecated - const std::stack& getDfsStack() const { return dfs_stack; } - }; - - /// Dfs searches for the nodes wich are not marked in - /// \c reached_map - /// Reached is a read-write bool node-map, - /// Pred is a write node-map, have to be. - /// \ingroup galgs - template , - typename PredMap - =typename Graph::template NodeMap > - class Dfs : public DfsIterator { - typedef DfsIterator Parent; - protected: - typedef typename Parent::Node Node; - PredMap& pred; - public: - /// The algorithm will search in a dfs order for - /// the nodes which are \c false initially. - /// The constructor makes no initial changes on the maps. - Dfs(const Graph& _graph, ReachedMap& _reached, PredMap& _pred) : DfsIterator(_graph, _reached), pred(_pred) { } - /// \c s is marked to be reached and pushed in the bfs queue. - /// If the queue is empty, then the first out-edge is processed. - /// If \c s was not marked previously, then - /// in addition its pred is set to be \c INVALID. - /// if \c s was marked previuosly, then it is simply pushed. - Dfs& push(Node s) { - if (this->reached[s]) { - Parent::pushAndSetReached(s); - } else { - Parent::pushAndSetReached(s); - pred.set(s, INVALID); - } - return *this; - } - /// A bfs is processed from \c s. - Dfs& run(Node s) { - push(s); - while (!this->finished()) this->operator++(); - return *this; - } - /// Beside the dfs iteration, \c pred is saved in a - /// newly reached node. - Dfs& operator++() { - Parent::operator++(); - if (this->graph->valid(this->actual_edge) && this->b_node_newly_reached) - { - pred.set(this->target(), this->actual_edge); - } - return *this; - } - /// Guess what? - /// \deprecated - const PredMap& getPredMap() const { return pred; } - }; - - -} // namespace lemon - -#endif //LEMON_BFS_DFS_H