diff -r c46cfb2651ec -r f485b3008cf5 src/hugo/min_cost_flow.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/hugo/min_cost_flow.h Wed Sep 22 09:55:41 2004 +0000 @@ -0,0 +1,241 @@ +// -*- c++ -*- +#ifndef HUGO_MINCOSTFLOWS_H +#define HUGO_MINCOSTFLOWS_H + +///\ingroup flowalgs +///\file +///\brief An algorithm for finding a flow of value \c k (for small values of \c k) having minimal total cost + + +#include +#include +#include +#include + +namespace hugo { + +/// \addtogroup flowalgs +/// @{ + + ///\brief Implementation of an algorithm for finding a flow of value \c k + ///(for small values of \c k) having minimal total cost between 2 nodes + /// + /// + /// The class \ref hugo::MinCostFlow "MinCostFlow" implements + /// an algorithm for finding a flow of value \c k + /// having minimal total cost + /// from a given source node to a given target node in an + /// edge-weighted directed graph. To this end, + /// the edge-capacities and edge-weitghs have to be nonnegative. + /// The edge-capacities should be integers, but the edge-weights can be + /// integers, reals or of other comparable numeric type. + /// This algorithm is intended to use only for small values of \c k, + /// since it is only polynomial in k, + /// not in the length of k (which is log k). + /// In order to find the minimum cost flow of value \c k it + /// finds the minimum cost flow of value \c i for every + /// \c i between 0 and \c k. + /// + ///\param Graph The directed graph type the algorithm runs on. + ///\param LengthMap The type of the length map. + ///\param CapacityMap The capacity map type. + /// + ///\author Attila Bernath + template + class MinCostFlow { + + typedef typename LengthMap::ValueType Length; + + //Warning: this should be integer type + typedef typename CapacityMap::ValueType Capacity; + + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::Edge Edge; + typedef typename Graph::OutEdgeIt OutEdgeIt; + typedef typename Graph::template EdgeMap EdgeIntMap; + + + typedef ResGraphWrapper ResGraphType; + typedef typename ResGraphType::Edge ResGraphEdge; + + class ModLengthMap { + typedef typename Graph::template NodeMap NodeMap; + const ResGraphType& G; + const LengthMap &ol; + const NodeMap &pot; + public : + typedef typename LengthMap::KeyType KeyType; + typedef typename LengthMap::ValueType ValueType; + + ValueType operator[](typename ResGraphType::Edge e) const { + if (G.forward(e)) + return ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); + else + return -ol[e]-(pot[G.head(e)]-pot[G.tail(e)]); + } + + ModLengthMap(const ResGraphType& _G, + const LengthMap &o, const NodeMap &p) : + G(_G), /*rev(_rev),*/ ol(o), pot(p){}; + };//ModLengthMap + + + protected: + + //Input + const Graph& G; + const LengthMap& length; + const CapacityMap& capacity; + + + //auxiliary variables + + //To store the flow + EdgeIntMap flow; + //To store the potential (dual variables) + typedef typename Graph::template NodeMap PotentialMap; + PotentialMap potential; + + + Length total_length; + + + public : + + /// The constructor of the class. + + ///\param _G The directed graph the algorithm runs on. + ///\param _length The length (weight or cost) of the edges. + ///\param _cap The capacity of the edges. + MinCostFlow(Graph& _G, LengthMap& _length, CapacityMap& _cap) : G(_G), + length(_length), capacity(_cap), flow(_G), potential(_G){ } + + + ///Runs the algorithm. + + ///Runs the algorithm. + ///Returns k if there is a flow of value at least k edge-disjoint + ///from s to t. + ///Otherwise it returns the maximum value of a flow from s to t. + /// + ///\param s The source node. + ///\param t The target node. + ///\param k The value of the flow we are looking for. + /// + ///\todo May be it does make sense to be able to start with a nonzero + /// feasible primal-dual solution pair as well. + int run(Node s, Node t, int k) { + + //Resetting variables from previous runs + total_length = 0; + + for (typename Graph::EdgeIt e(G); e!=INVALID; ++e) flow.set(e, 0); + + //Initialize the potential to zero + for (typename Graph::NodeIt n(G); n!=INVALID; ++n) potential.set(n, 0); + + + //We need a residual graph + ResGraphType res_graph(G, capacity, flow); + + + ModLengthMap mod_length(res_graph, length, potential); + + Dijkstra dijkstra(res_graph, mod_length); + + int i; + for (i=0; i 0 && fl_e != 0) + return false; + if (mod_pot < 0 && fl_e != capacity[e]) + return false; + } + } + return true; + } + + + }; //class MinCostFlow + + ///@} + +} //namespace hugo + +#endif //HUGO_MINCOSTFLOWS_H