diff -r eb9587f09b42 -r f8549e3f6c5a src/hugo/preflow.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/hugo/preflow.h Mon Sep 13 13:57:13 2004 +0000 @@ -0,0 +1,796 @@ +// -*- C++ -*- +#ifndef HUGO_PREFLOW_H +#define HUGO_PREFLOW_H + +#include +#include + +#include +#include + +/// \file +/// \ingroup flowalgs + +namespace hugo { + + /// \addtogroup flowalgs + /// @{ + + ///Preflow algorithms class. + + ///This class provides an implementation of the \e preflow \e + ///algorithm producing a flow of maximum value in a directed + ///graph. The preflow algorithms are the fastest max flow algorithms + ///up-to-date. The \e source node, the \e target node, the \e + ///capacity of the edges and the \e starting \e flow value of the + ///edges should be passed to the algorithm through the + ///constructor. It is possible to change these quantities using the + ///functions \ref setSource, \ref setTarget, \ref setCap and \ref + ///setFlow. + /// + ///After running \c phase1 or \c preflow, the actual flow + ///value can be obtained by calling \ref flowValue(). The minimum + ///value cut can be written into a \c node map of \c bools by + ///calling \ref minCut. (\ref minMinCut and \ref maxMinCut writes + ///the inclusionwise minimum and maximum of the minimum value cuts, + ///resp.) + /// + ///\param Graph The directed graph type the algorithm runs on. + ///\param Num The number type of the capacities and the flow values. + ///\param CapMap The capacity map type. + ///\param FlowMap The flow map type. + /// + ///\author Jacint Szabo + template , + typename FlowMap=typename Graph::template EdgeMap > + class Preflow { + protected: + typedef typename Graph::Node Node; + typedef typename Graph::NodeIt NodeIt; + typedef typename Graph::EdgeIt EdgeIt; + typedef typename Graph::OutEdgeIt OutEdgeIt; + typedef typename Graph::InEdgeIt InEdgeIt; + + typedef typename Graph::template NodeMap NNMap; + typedef typename std::vector VecNode; + + const Graph* g; + Node s; + Node t; + const CapMap* capacity; + FlowMap* flow; + int n; //the number of nodes of G + + typename Graph::template NodeMap level; + typename Graph::template NodeMap excess; + + // constants used for heuristics + static const int H0=20; + static const int H1=1; + + public: + + ///Indicates the property of the starting flow map. + + ///Indicates the property of the starting flow map. The meanings are as follows: + ///- \c ZERO_FLOW: constant zero flow + ///- \c GEN_FLOW: any flow, i.e. the sum of the in-flows equals to + ///the sum of the out-flows in every node except the \e source and + ///the \e target. + ///- \c PRE_FLOW: any preflow, i.e. the sum of the in-flows is at + ///least the sum of the out-flows in every node except the \e source. + ///- \c NO_FLOW: indicates an unspecified edge map. \ref flow will be + ///set to the constant zero flow in the beginning of the algorithm in this case. + /// + enum FlowEnum{ + NO_FLOW, + ZERO_FLOW, + GEN_FLOW, + PRE_FLOW + }; + + ///Indicates the state of the preflow algorithm. + + ///Indicates the state of the preflow algorithm. The meanings are as follows: + ///- \c AFTER_NOTHING: before running the algorithm or at an unspecified state. + ///- \c AFTER_PREFLOW_PHASE_1: right after running \c phase1 + ///- \c AFTER_PREFLOW_PHASE_2: after running \ref phase2() + /// + enum StatusEnum { + AFTER_NOTHING, + AFTER_PREFLOW_PHASE_1, + AFTER_PREFLOW_PHASE_2 + }; + + protected: + FlowEnum flow_prop; + StatusEnum status; // Do not needle this flag only if necessary. + + public: + ///The constructor of the class. + + ///The constructor of the class. + ///\param _G The directed graph the algorithm runs on. + ///\param _s The source node. + ///\param _t The target node. + ///\param _capacity The capacity of the edges. + ///\param _flow The flow of the edges. + ///Except the graph, all of these parameters can be reset by + ///calling \ref setSource, \ref setTarget, \ref setCap and \ref + ///setFlow, resp. + Preflow(const Graph& _G, Node _s, Node _t, + const CapMap& _capacity, FlowMap& _flow) : + g(&_G), s(_s), t(_t), capacity(&_capacity), + flow(&_flow), n(_G.nodeNum()), level(_G), excess(_G,0), + flow_prop(NO_FLOW), status(AFTER_NOTHING) { } + + + + ///Runs the preflow algorithm. + + ///Runs the preflow algorithm. + void run() { + phase1(flow_prop); + phase2(); + } + + ///Runs the preflow algorithm. + + ///Runs the preflow algorithm. + ///\pre The starting flow map must be + /// - a constant zero flow if \c fp is \c ZERO_FLOW, + /// - an arbitrary flow if \c fp is \c GEN_FLOW, + /// - an arbitrary preflow if \c fp is \c PRE_FLOW, + /// - any map if \c fp is NO_FLOW. + ///If the starting flow map is a flow or a preflow then + ///the algorithm terminates faster. + void run(FlowEnum fp) { + flow_prop=fp; + run(); + } + + ///Runs the first phase of the preflow algorithm. + + ///The preflow algorithm consists of two phases, this method runs the + ///first phase. After the first phase the maximum flow value and a + ///minimum value cut can already be computed, though a maximum flow + ///is not yet obtained. So after calling this method \ref flowValue + ///and \ref minCut gives proper results. + ///\warning: \ref minMinCut and \ref maxMinCut do not + ///give minimum value cuts unless calling \ref phase2. + ///\pre The starting flow must be + /// - a constant zero flow if \c fp is \c ZERO_FLOW, + /// - an arbitary flow if \c fp is \c GEN_FLOW, + /// - an arbitary preflow if \c fp is \c PRE_FLOW, + /// - any map if \c fp is NO_FLOW. + void phase1(FlowEnum fp) + { + flow_prop=fp; + phase1(); + } + + + ///Runs the first phase of the preflow algorithm. + + ///The preflow algorithm consists of two phases, this method runs the + ///first phase. After the first phase the maximum flow value and a + ///minimum value cut can already be computed, though a maximum flow + ///is not yet obtained. So after calling this method \ref flowValue + ///and \ref actMinCut gives proper results. + ///\warning: \ref minCut, \ref minMinCut and \ref maxMinCut do not + ///give minimum value cuts unless calling \ref phase2. + void phase1() + { + int heur0=(int)(H0*n); //time while running 'bound decrease' + int heur1=(int)(H1*n); //time while running 'highest label' + int heur=heur1; //starting time interval (#of relabels) + int numrelabel=0; + + bool what_heur=1; + //It is 0 in case 'bound decrease' and 1 in case 'highest label' + + bool end=false; + //Needed for 'bound decrease', true means no active + //nodes are above bound b. + + int k=n-2; //bound on the highest level under n containing a node + int b=k; //bound on the highest level under n of an active node + + VecNode first(n, INVALID); + NNMap next(*g, INVALID); + + NNMap left(*g, INVALID); + NNMap right(*g, INVALID); + VecNode level_list(n,INVALID); + //List of the nodes in level i 0 ) { + b=k; + end=true; + } else break; + } + + if ( first[b]==INVALID ) --b; + else { + end=false; + Node w=first[b]; + first[b]=next[w]; + int newlevel=push(w, next, first); + if ( excess[w] > 0 ) relabel(w, newlevel, first, next, level_list, + left, right, b, k, what_heur); + + ++numrelabel; + if ( numrelabel >= heur ) { + numrelabel=0; + if ( what_heur ) { + what_heur=0; + heur=heur0; + end=false; + } else { + what_heur=1; + heur=heur1; + b=k; + } + } + } + } + flow_prop=PRE_FLOW; + status=AFTER_PREFLOW_PHASE_1; + } + // Heuristics: + // 2 phase + // gap + // list 'level_list' on the nodes on level i implemented by hand + // stack 'active' on the active nodes on level i + // runs heuristic 'highest label' for H1*n relabels + // runs heuristic 'bound decrease' for H0*n relabels, starts with 'highest label' + // Parameters H0 and H1 are initialized to 20 and 1. + + + ///Runs the second phase of the preflow algorithm. + + ///The preflow algorithm consists of two phases, this method runs + ///the second phase. After calling \ref phase1 and then + ///\ref phase2 the methods \ref flowValue, \ref minCut, + ///\ref minMinCut and \ref maxMinCut give proper results. + ///\pre \ref phase1 must be called before. + void phase2() + { + + int k=n-2; //bound on the highest level under n containing a node + int b=k; //bound on the highest level under n of an active node + + + VecNode first(n, INVALID); + NNMap next(*g, INVALID); + level.set(s,0); + std::queue bfs_queue; + bfs_queue.push(s); + + while ( !bfs_queue.empty() ) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + for(InEdgeIt e(*g,v); e!=INVALID; ++e) { + if ( (*capacity)[e] <= (*flow)[e] ) continue; + Node u=g->tail(e); + if ( level[u] >= n ) { + bfs_queue.push(u); + level.set(u, l); + if ( excess[u] > 0 ) { + next.set(u,first[l]); + first[l]=u; + } + } + } + + for(OutEdgeIt e(*g,v); e!=INVALID; ++e) { + if ( 0 >= (*flow)[e] ) continue; + Node u=g->head(e); + if ( level[u] >= n ) { + bfs_queue.push(u); + level.set(u, l); + if ( excess[u] > 0 ) { + next.set(u,first[l]); + first[l]=u; + } + } + } + } + b=n-2; + + while ( true ) { + + if ( b == 0 ) break; + if ( first[b]==INVALID ) --b; + else { + Node w=first[b]; + first[b]=next[w]; + int newlevel=push(w,next, first); + + //relabel + if ( excess[w] > 0 ) { + level.set(w,++newlevel); + next.set(w,first[newlevel]); + first[newlevel]=w; + b=newlevel; + } + } + } // while(true) + flow_prop=GEN_FLOW; + status=AFTER_PREFLOW_PHASE_2; + } + + /// Returns the value of the maximum flow. + + /// Returns the value of the maximum flow by returning the excess + /// of the target node \ref t. This value equals to the value of + /// the maximum flow already after running \ref phase1. + Num flowValue() const { + return excess[t]; + } + + + ///Returns a minimum value cut. + + ///Sets \c M to the characteristic vector of a minimum value + ///cut. This method can be called both after running \ref + ///phase1 and \ref phase2. It is much faster after + ///\ref phase1. \pre M should be a node map of bools. \pre + ///If \ref mincut is called after \ref phase2 then M should + ///be initialized to false. + template + void minCut(_CutMap& M) const { + switch ( status ) { + case AFTER_PREFLOW_PHASE_1: + for(NodeIt v(*g); v!=INVALID; ++v) { + if (level[v] < n) { + M.set(v, false); + } else { + M.set(v, true); + } + } + break; + case AFTER_PREFLOW_PHASE_2: + minMinCut(M); + break; + case AFTER_NOTHING: + break; + } + } + + ///Returns the inclusionwise minimum of the minimum value cuts. + + ///Sets \c M to the characteristic vector of the minimum value cut + ///which is inclusionwise minimum. It is computed by processing a + ///bfs from the source node \c s in the residual graph. \pre M + ///should be a node map of bools initialized to false. \pre \ref + ///phase2 should already be run. + template + void minMinCut(_CutMap& M) const { + + std::queue queue; + M.set(s,true); + queue.push(s); + + while (!queue.empty()) { + Node w=queue.front(); + queue.pop(); + + for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { + Node v=g->head(e); + if (!M[v] && (*flow)[e] < (*capacity)[e] ) { + queue.push(v); + M.set(v, true); + } + } + + for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { + Node v=g->tail(e); + if (!M[v] && (*flow)[e] > 0 ) { + queue.push(v); + M.set(v, true); + } + } + } + } + + ///Returns the inclusionwise maximum of the minimum value cuts. + + ///Sets \c M to the characteristic vector of the minimum value cut + ///which is inclusionwise maximum. It is computed by processing a + ///backward bfs from the target node \c t in the residual graph. + ///\pre \ref phase2() or preflow() should already be run. + template + void maxMinCut(_CutMap& M) const { + + for(NodeIt v(*g) ; v!=INVALID; ++v) M.set(v, true); + + std::queue queue; + + M.set(t,false); + queue.push(t); + + while (!queue.empty()) { + Node w=queue.front(); + queue.pop(); + + for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { + Node v=g->tail(e); + if (M[v] && (*flow)[e] < (*capacity)[e] ) { + queue.push(v); + M.set(v, false); + } + } + + for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { + Node v=g->head(e); + if (M[v] && (*flow)[e] > 0 ) { + queue.push(v); + M.set(v, false); + } + } + } + } + + ///Sets the source node to \c _s. + + ///Sets the source node to \c _s. + /// + void setSource(Node _s) { + s=_s; + if ( flow_prop != ZERO_FLOW ) flow_prop=NO_FLOW; + status=AFTER_NOTHING; + } + + ///Sets the target node to \c _t. + + ///Sets the target node to \c _t. + /// + void setTarget(Node _t) { + t=_t; + if ( flow_prop == GEN_FLOW ) flow_prop=PRE_FLOW; + status=AFTER_NOTHING; + } + + /// Sets the edge map of the capacities to _cap. + + /// Sets the edge map of the capacities to _cap. + /// + void setCap(const CapMap& _cap) { + capacity=&_cap; + status=AFTER_NOTHING; + } + + /// Sets the edge map of the flows to _flow. + + /// Sets the edge map of the flows to _flow. + /// + void setFlow(FlowMap& _flow) { + flow=&_flow; + flow_prop=NO_FLOW; + status=AFTER_NOTHING; + } + + + private: + + int push(Node w, NNMap& next, VecNode& first) { + + int lev=level[w]; + Num exc=excess[w]; + int newlevel=n; //bound on the next level of w + + for(OutEdgeIt e(*g,w) ; e!=INVALID; ++e) { + if ( (*flow)[e] >= (*capacity)[e] ) continue; + Node v=g->head(e); + + if( lev > level[v] ) { //Push is allowed now + + if ( excess[v]<=0 && v!=t && v!=s ) { + next.set(v,first[level[v]]); + first[level[v]]=v; + } + + Num cap=(*capacity)[e]; + Num flo=(*flow)[e]; + Num remcap=cap-flo; + + if ( remcap >= exc ) { //A nonsaturating push. + + flow->set(e, flo+exc); + excess.set(v, excess[v]+exc); + exc=0; + break; + + } else { //A saturating push. + flow->set(e, cap); + excess.set(v, excess[v]+remcap); + exc-=remcap; + } + } else if ( newlevel > level[v] ) newlevel = level[v]; + } //for out edges wv + + if ( exc > 0 ) { + for(InEdgeIt e(*g,w) ; e!=INVALID; ++e) { + + if( (*flow)[e] <= 0 ) continue; + Node v=g->tail(e); + + if( lev > level[v] ) { //Push is allowed now + + if ( excess[v]<=0 && v!=t && v!=s ) { + next.set(v,first[level[v]]); + first[level[v]]=v; + } + + Num flo=(*flow)[e]; + + if ( flo >= exc ) { //A nonsaturating push. + + flow->set(e, flo-exc); + excess.set(v, excess[v]+exc); + exc=0; + break; + } else { //A saturating push. + + excess.set(v, excess[v]+flo); + exc-=flo; + flow->set(e,0); + } + } else if ( newlevel > level[v] ) newlevel = level[v]; + } //for in edges vw + + } // if w still has excess after the out edge for cycle + + excess.set(w, exc); + + return newlevel; + } + + + + void preflowPreproc(VecNode& first, NNMap& next, + VecNode& level_list, NNMap& left, NNMap& right) + { + for(NodeIt v(*g); v!=INVALID; ++v) level.set(v,n); + std::queue bfs_queue; + + if ( flow_prop == GEN_FLOW || flow_prop == PRE_FLOW ) { + //Reverse_bfs from t in the residual graph, + //to find the starting level. + level.set(t,0); + bfs_queue.push(t); + + while ( !bfs_queue.empty() ) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { + if ( (*capacity)[e] <= (*flow)[e] ) continue; + Node w=g->tail(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node z=level_list[l]; + if ( z!=INVALID ) left.set(z,w); + right.set(w,z); + level_list[l]=w; + level.set(w, l); + } + } + + for(OutEdgeIt e(*g,v) ; e!=INVALID; ++e) { + if ( 0 >= (*flow)[e] ) continue; + Node w=g->head(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node z=level_list[l]; + if ( z!=INVALID ) left.set(z,w); + right.set(w,z); + level_list[l]=w; + level.set(w, l); + } + } + } //while + } //if + + + switch (flow_prop) { + case NO_FLOW: + for(EdgeIt e(*g); e!=INVALID; ++e) flow->set(e,0); + case ZERO_FLOW: + for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); + + //Reverse_bfs from t, to find the starting level. + level.set(t,0); + bfs_queue.push(t); + + while ( !bfs_queue.empty() ) { + + Node v=bfs_queue.front(); + bfs_queue.pop(); + int l=level[v]+1; + + for(InEdgeIt e(*g,v) ; e!=INVALID; ++e) { + Node w=g->tail(e); + if ( level[w] == n && w != s ) { + bfs_queue.push(w); + Node z=level_list[l]; + if ( z!=INVALID ) left.set(z,w); + right.set(w,z); + level_list[l]=w; + level.set(w, l); + } + } + } + + //the starting flow + for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { + Num c=(*capacity)[e]; + if ( c <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) { //putting into the stack + next.set(w,first[level[w]]); + first[level[w]]=w; + } + flow->set(e, c); + excess.set(w, excess[w]+c); + } + } + break; + + case GEN_FLOW: + for(NodeIt v(*g); v!=INVALID; ++v) excess.set(v,0); + { + Num exc=0; + for(InEdgeIt e(*g,t) ; e!=INVALID; ++e) exc+=(*flow)[e]; + for(OutEdgeIt e(*g,t) ; e!=INVALID; ++e) exc-=(*flow)[e]; + excess.set(t,exc); + } + + //the starting flow + for(OutEdgeIt e(*g,s); e!=INVALID; ++e) { + Num rem=(*capacity)[e]-(*flow)[e]; + if ( rem <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) { //putting into the stack + next.set(w,first[level[w]]); + first[level[w]]=w; + } + flow->set(e, (*capacity)[e]); + excess.set(w, excess[w]+rem); + } + } + + for(InEdgeIt e(*g,s); e!=INVALID; ++e) { + if ( (*flow)[e] <= 0 ) continue; + Node w=g->tail(e); + if ( level[w] < n ) { + if ( excess[w] <= 0 && w!=t ) { + next.set(w,first[level[w]]); + first[level[w]]=w; + } + excess.set(w, excess[w]+(*flow)[e]); + flow->set(e, 0); + } + } + break; + + case PRE_FLOW: + //the starting flow + for(OutEdgeIt e(*g,s) ; e!=INVALID; ++e) { + Num rem=(*capacity)[e]-(*flow)[e]; + if ( rem <= 0 ) continue; + Node w=g->head(e); + if ( level[w] < n ) flow->set(e, (*capacity)[e]); + } + + for(InEdgeIt e(*g,s) ; e!=INVALID; ++e) { + if ( (*flow)[e] <= 0 ) continue; + Node w=g->tail(e); + if ( level[w] < n ) flow->set(e, 0); + } + + //computing the excess + for(NodeIt w(*g); w!=INVALID; ++w) { + Num exc=0; + for(InEdgeIt e(*g,w); e!=INVALID; ++e) exc+=(*flow)[e]; + for(OutEdgeIt e(*g,w); e!=INVALID; ++e) exc-=(*flow)[e]; + excess.set(w,exc); + + //putting the active nodes into the stack + int lev=level[w]; + if ( exc > 0 && lev < n && Node(w) != t ) { + next.set(w,first[lev]); + first[lev]=w; + } + } + break; + } //switch + } //preflowPreproc + + + void relabel(Node w, int newlevel, VecNode& first, NNMap& next, + VecNode& level_list, NNMap& left, + NNMap& right, int& b, int& k, bool what_heur ) + { + + int lev=level[w]; + + Node right_n=right[w]; + Node left_n=left[w]; + + //unlacing starts + if ( right_n!=INVALID ) { + if ( left_n!=INVALID ) { + right.set(left_n, right_n); + left.set(right_n, left_n); + } else { + level_list[lev]=right_n; + left.set(right_n, INVALID); + } + } else { + if ( left_n!=INVALID ) { + right.set(left_n, INVALID); + } else { + level_list[lev]=INVALID; + } + } + //unlacing ends + + if ( level_list[lev]==INVALID ) { + + //gapping starts + for (int i=lev; i!=k ; ) { + Node v=level_list[++i]; + while ( v!=INVALID ) { + level.set(v,n); + v=right[v]; + } + level_list[i]=INVALID; + if ( !what_heur ) first[i]=INVALID; + } + + level.set(w,n); + b=lev-1; + k=b; + //gapping ends + + } else { + + if ( newlevel == n ) level.set(w,n); + else { + level.set(w,++newlevel); + next.set(w,first[newlevel]); + first[newlevel]=w; + if ( what_heur ) b=newlevel; + if ( k < newlevel ) ++k; //now k=newlevel + Node z=level_list[newlevel]; + if ( z!=INVALID ) left.set(z,w); + right.set(w,z); + left.set(w,INVALID); + level_list[newlevel]=w; + } + } + } //relabel + + }; +} //namespace hugo + +#endif //HUGO_PREFLOW_H + + + +